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1. Introduction  

Breast cancer is the most common form of cancer among women. In 2009, an estimated 

194,280 new cases of breast cancer were diagnosed in the United States; breast cancer was 

estimated to account for 27% of all new cancer cases and 15% of cancer-related mortality in 

women (Jemal et al, 2009). Similarly, in Europe in 2008, the disease accounted for some 28% 

and 17% of new cancer cases and cancer-related mortality in women respectively (Ferlay et 

al, 2008). The increasing incidence of breast cancer worldwide will result in an increased 

social and economic burden; for this reason there is a pressing need from a health and 

economics perspective to develop and provide appropriate, patient specific treatment to 

reduce the morbidity and mortality of the disease. Understanding the aetiology, biology and 

pathology of breast cancer is hugely important in diagnosis, prognostication and selection of 

primary and adjuvant therapy. Breast tumour behaviour and outcome can vary 

considerably according to factors such as age of onset, clinical features, histological 

characteristics, stage of disease, degree of differentiation, genetic content and molecular 

aberrations. It is increasingly recognised that breast cancer is not a single disease but a 

continuum of several biologically distinct diseases that differ in their prognosis and 

response to therapy (Marchionni  et al, 2008; Sorlie et al, 2001). The past twenty years has 

seen significant advances in breast cancer management. Targeted therapies such as 

hormonal therapy for estrogen receptor (ER) positive breast tumours and trastuzumab for 

inhibition of HER2/neu signalling have become an important component of adjuvant 

therapy and contributed to improved outcomes (Fisher et al,  2004; Goldhirsch et al, 2007; 

Smith  et al, 2007). However, our understanding of the molecular basis underlying breast 

cancer heterogeneity remains incomplete. It is likely that there are significant differences 

between breast cancers that reach far beyond the presence or absence of ER or HER2/neu 

amplification. Patients with similar morphology and molecular phenotype based on ER, PR 

and HER2/neu receptor status can have different clinical courses and responses to therapy. 

There are small ER positive tumours that behave aggressively while some large high grade 

ER negative, HER2/neu receptor positive tumours have an indolent course. ER-positive 

tumours are typically associated with better clinical outcomes and a good response to 
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hormonal therapies such as tamoxifen (Osborne et al, 1998). However, a subset of these 

patients recur and up to 40% develop resistance to hormonal therapy (Clarke et al, 2003). 

Furthermore, clinical studies have shown that adding adjuvant chemotherapy to tamoxifen 

in the treatment of node negative, ER positive breast cancer improves disease outcome 

(Fisher et al, 2004). Indeed, treatment with tamoxifen alone is only associated with a 15% 

risk of distant recurrence, indicating that 85% of these patients would do well without, and 

could be spared the cytotoxic side-effects of adjuvant chemotherapy.  
The heterogeneity of outcome and response to adjuvant therapy has driven the discovery of 
further molecular predictors. Particular attention has focused on those with prognostic 
significance which may help target cancer treatment to the group of patients who are likely 
to derive benefit from a particular therapy. There has been a huge interest in defining the 
gene expression profiles of breast tumours to further understand the aetiology and progression 
of the disease in order to identify novel prognostic and therapeutic markers. The sequencing 
of the human genome and the advent of high throughput molecular profiling has facilitated 
comprehensive analysis of transcriptional variation at the genomic level. This has resulted in 
an exponential increase in our understanding of breast cancer molecular biology. Gene 
expression profiling using microarray technology was first introduced in 1995 (Schena et al, 
1995). This technology enables the measurement of expression of tens of thousands of 
mRNA sequences simultaneously and can be used to compare gene expression within a 
sample or across a number of samples. Microarray technology has been productively 
applied to breast cancer research, contributing enormously to our understanding of the 
molecular basis of breast cancer and helping to achieve the goal of individualised breast 
cancer treatment. However as the use of this technology becomes more widespread, our 
understanding of the inherent limitations and sources of error increases. The large amount 
of data produced from such high throughput systems has necessitated the use of complex 
computational tools for management and analysis of this data; leading to rapid 
developments in bioinformatics.  
This chapter provides an overview of current gene expression profiling techniques, their 
application to breast cancer prognostics and the bioinformatic challenges that must be 
overcome to generate meaningful results that will be translatable to the clinical setting. A 
literature search was performed using the PubMed database to identify publications 
relevant to this review. Citations from these articles were also examined to yield further 
relevant publications. 

2. Microarray technology – principles & technical considerations 

2.1 High throughput genomic technology 

There are a multitude of high throughput genomic approaches which have been developed 
to simultaneously measure variation in thousands of DNA sequences, mRNA transcripts, 
peptides or metabolites:   

• DNA microarray measures gene expression 

• Microarray comparative genomic hybridisation (CGH) measures genomic gains and 
losses or identifies differences in copy number for genes involved in pathological states 
(Oosterlander et al, 2004) 

• Single nucleotide polymorphism (SNP) microarray technology (Huang et al, 2001) has 
been developed to test for genetic aberrations that may predispose an individual to 
disease development.   
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• CpG arrays (Yan et al , 2000) can be used to determine whether patterns of specific 
epigenetic alterations correlate with pathological parameters.  

• Protein microarrays (Stoll et al, 2005) consisting of antibodies, proteins, protein 
fragments, peptides or carbohydrate elements, are used to detect patterns of protein 
expression in diseased states. 

• ChIP-on-chip (Oberley et al, 2004) combines chromatin immunoprecipitation (ChIP) 
with glass slide microarrays (chip) to detect how regulatory proteins interact with the 
genome.  

All of these approaches offer unique insights into the genetic and molecular basis of disease 
development and progression.  
This chapter focuses primarily on gene expression profiling and cDNA microarrays, 
however many of the issues raised, particularly in relation to bioinformatics are also 
applicable to the other “-omic” technologies.  
Gene expression which is a measurement of gene “activity” can be determined by the 
abundance of its messenger RNA (mRNA) transcripts or by the expression of the protein 
which it encodes. ER, PR and HER2/neu receptor status are determined in clinical practice 
using immunohistochemistry (IHC) to quantitate protein expression or fluorescence in situ 
hybridisation (FISH) to determine copy number. These techniques are semi-quantitative and 
are optimal when determining the expression of individual or a small number of genes.  
Microarray technology is capable of simultaneously measuring the expression levels of 

thousands of genes in a biological sample at the mRNA level. The abundance of individual 

mRNA transcripts in a sample is a reflection of the expression levels of corresponding genes. 

When a complementary DNA (cDNA) mixture reverse transcribed from the mRNA is 

labelled and hybridised to a microarray, the strength of the signal produced at each address 

shows the relative expression levels of the corresponding gene.  

cDNA microarrays are miniature platforms containing thousands of DNA sequences which 

act as gene specific probes, immobilised on a solid support (nylon, glass, silicon) in a parallel 

format. They are reliant on the complementarity of the DNA duplex i.e. reassembly of 

strands with base pairing A to T and C to G which occurs with high specificity. There are 

microarray platforms available containing bound librarys of oligonucleotides representing 

literally all known human genes e.g. Affymetrix GeneChip (Santa Clara, CA), Agilent array 

(Santa Clara, CA), Illumina bead array (San Diego, CA). When fluorescence-labelled cDNA 

is hybridised to these arrays, expression levels of each gene in the human genome can be 

quantified using laser scanning microscopes. These microscopes measure the intensity of the 

signal generated by each bound probe; abundant sequences generate strong signals and rare 

sequences generate weaker signals. Despite differences in microarray construction and 

hybridization methodologies according to manufacturing, microarray-based measurements 

of gene expression appear to be reproducible across a range of different platforms when the 

same starting material is used, as demonstrated by the MicroArray Quality Control project 

(Shi et al, 2006).  

2.2 Experimental approach 

There are experimental design and quality control issues that must be considered when 
undertaking a microarray experiment. The experiment should be designed appropriately to 
answer a specific question and samples must be acquired from either patients or cultured 
cells which are appropriate to the experimental setup. If the aim of a microarray experiment 
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is to identify differentially expressed genes between two groups of samples i.e. 
“experiment” and “control”, it is critical that the largest source of variation results from the 
phenotype under investigation (e.g. patient characteristic or treatment). The risk of 
confounding factors influencing the results can be minimised by ensuring that the groups of 
samples being compared are matched in every respect other than the phenotype under 
investigation. Alternatively, large sample numbers can be used to increase the likelihood 
that the experimental variable is the only consistent difference between the groups.  
For a microarray experiment, fresh frozen tissue samples are required which have been 
snap-frozen in liquid nitrogen or collected in an RNARetain™  or RNA LaterTM solution to 
preserve the quality of the RNA. Formalin-fixed and paraffin embedded tissue samples are 
generally unsuitable for microarray studies as the RNA in the sample suffers degradation 
during tissue processing (Cronin et al, 2004; Masuda et al, 1999, Paik et al, 2005).  
Due to the omnipresence of ribonucleases and the inherent instability of RNA, it is essential to 
measure the integrity of RNA after extraction. Only samples of the highest integrity should be 
considered for reverse transcription to cDNA and hybridisation to the microarray platform 
(figure 1). Once obtained, intensity readings must be background adjusted and transformed; 
this data is then normalised and analysed and results are generally interpreted according to 
biological knowledge. The success of microarray experiments is highly dependent on 
replication. Technical replication refers to the repeated assaying of the same biological sample 
to facilitate quality assessment. Even more important is biological replication on larger sample 
sets. The accuracy of microarray expression measurements must be confirmed using a reliable 
independent technology, such as real-time quantitative PCR, and validated on a larger set of 
independent biological samples. It is independent validation studies that determine the 
strength or clinical relevance of a gene expression profile.  
 

 

Fig. 1. The steps involved in a cDNA microarray experiment  
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3. Molecular profiling – unlocking the heterogeneity of breast cancer 

Breast cancer researchers were quick to adopt high throughput microarray technology, 
which  is unsurprising considering the opportunity it provides to analyse thousands of 
genes simultaneously. 

3.1 Class discovery  

Microarray studies can be used in three different manners;  

• class comparison  

• class prediction  

• class discovery (Simon et al, 2003)  
All of these approaches have been applied to the study of breast cancer.  
Class discovery involves analyzing a given set of gene expression profiles with the goal of 
discovering subgroups that share common features. The early gene expression profiling 
studies of breast cancer (Perou et al, 2000; Sorlie et al, 2001) were class discovery studies. 
Researchers used an unsupervised method of analysis, in which tumours were clustered 
into subgroups by a 496-gene “intrinsic” gene set that reflects differences in gene expression 
between tumours without using selection criteria. The tumour subtype groupings consist of  
luminal like subtypes which are predominantly ER and PR positive, basal-like subtypes 
which are predominantly triple negative for ER, PR and HER2/neu, HER2/neu-like 
subtypes which have increased expression of the HER2/neu amplicon and a normal-like 
subtype (Perou et al, 2000). Subsequent studies from the same authors, on a larger cohort of 
patients with follow-up data showed that the luminal subgroup could be further subdivided 
into at least two groups, and that these molecular subtypes were actually associated with 
distinct clinical outcomes (Sorlie et al 2001). These molecular subtypes of breast cancer have 
been confirmed and added to in subsequent microarray datasets (Hu et al, 2006; Sorlie et al, 
2003;  Sotiriou et al, 2003). Given the importance of the ER in breast cancer biology, it is not 
surprising that the most striking molecular differences were identified between the ER-
positive (luminal) and ER-negative subtypes. These differences have been repeatedly 
identified and validated with different technologies and across different platforms (Fan et al, 
2006; Farmer et al, 2005; Sorlie et al, 2006).  The luminal subgroup has been subdivided into 
two subgroups of prognostic significance:  

• luminal A tumours which have high expression of ER –activated genes, and low 
expression of proliferation related genes  

• luminal B tumours which have higher expression of proliferation related genes and a 
poorer prognosis than luminal A tumours (Geyer et al, 2009; Paik et al, 2000; Parker et 
al, 2009; Sorlie et al, 2001, 2003).  

The ER negative tumours are even more heterogeneous and comprise the: 

• basal-like subgroup which lack ER and HER2/neu expression and feature more frequent 
overexpression of basal cytokeratins, epidermal growth factor receptor and c-Kit 
(Nielsen et al, 2004)  

• HER2/neu subgroup which overexpress HER2/neu and genes associated with the 
HER2/neu pathway and/or the HER2/neu amplicon on chromosome 17.  

The HER2/neu and basal-like subtypes have in common an aggressive clinical behaviour 
but appear to be more responsive to neoadjuvant chemotherapy than the luminal subtypes 
(Carey et al, 2007; Rouzier et al,  2005). Also clustering with the ER negative tumours are the 
normal-like breast cancers; these are as yet poorly characterised and have been shown to 
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cluster with fibroadenoma and normal breast tissue samples (Peppercorn et al, 2008). It is 
important at this point to acknowledge the limitations of this molecular taxonomy; 
intrasubtype heterogeneity has been noted despite the broad similarities defined by these 
large subtypes (Parker et al, 2009). In particular the basal-like subgroup can be divided into 
multiple additional subgroups (Kreike et al, 2007; Nielsen et al, 2004). Additionally, 
although the luminal tumours have been separated into subgroups of prognostic 
significance,  meta-analysis of published expression data has suggested that these luminal 
tumours actually form a continuum and their separation based on expression of 
proliferation genes may be subjective (Shak et al, 2006;  Wirapati et al, 2008). Furthermore, 
the clinical significance of the normal-like subtype is yet to be determined; it has been 
proposed that this subgroup may in fact represent an artefact of sample contamination with 
a high content of normal breast tissue (Parker et al, 2009; Peppercorn et al, 2008). Due to 
these limitations and the subjective nature of how the molecular subtypes were identified, 
the translation of this taxonomy to the clinical setting as a definitive classification has been 
difficult (Pustzai et al, 2006). The development of a prognostic test based on the intrinsic 
subtypes has not been feasible to date. However, the seminal work by Sorlie and Perou 
(Perou et al, 2000; Sorlie et al, 2001) recognized for the first time the scale of biological 
heterogeneity within breast cancer and led to a paradigm shift in the way breast cancer is 
perceived.  

3.2 Class comparison 

A number of investigators undertaking microarray expression profiling studies in breast 

cancer have since adopted class comparison studies. These studies employ supervised 

analysis approaches to determine gene expression differences between samples which 

already have a predefined classification. The “null hypothesis” is that a given gene on the 

array is not differentially expressed between the two conditions or classes under study. The 

alternative hypothesis is that the expression level of that gene is different between the two 

conditions. An example of this approach is the microarray experiments that have been 

undertaken to define differences between invasive ductal and invasive lobular carcinomas 

(Korkola, 2003;  Weigelt, 2009; Zhao, 2004),  between hereditary and sporadic breast cancer 

(Berns, 2001; Hedenfalk, 2001) and between different disease stages of breast cancer 

(Pedraza, 2010).  

3.3 Class prediction 

Perhaps the most clinically relevant use of this technology, however,  are the microarray 

class prediction studies which have been designed to answer specific questions regarding 

gene expression in relation to clinical outcome and response to treatment. The latter 

approach attempts to identify predictive markers, as opposed to the prognostic markers 

which were identified in the “intrinsic gene-set”. There is frequently some degree of 

confusion regarding the terms of “prognostic” and “predictive biomarkers”. This is partially 

due to the fact that many prognostic markers also predict response to adjuvant therapy. This 

is particularly true in breast cancer where, for example, the ER is prognostic, and predictive 

of response to hormonal therapy, but also predictive of a poorer response to chemotherapy 

(Carey 2007; Kim, 2009; Rouzier 2005,). 

One of the first microarray studies designed to identify a gene-set predictive of prognosis in 

breast cancer was that undertaken by van’t Veer and colleagues (van’t Veer et al, 2002). They 
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developed a 70-gene set capable of predicting the development of metastatic disease in a 

group of 98 patients made up of 34 who had developed metastasis within 5-years of follow-

up, 40 patients who remained disease-free at 5-years, 18 patients with a BRCA-1 mutation, 

and 2 patients with a BRCA-2 mutation. The 70-gene signature was subsequently validated 

in a set of 295 breast cancers, including the group used to train the model, and shown to be 

more accurate than standard histopathological parameters at predicting outcome in these 

breast cancer patients (van de Vijver et al, 2002). The signature includes many genes 

involved in proliferation, and genes associated with invasion, metastasis, stromal integrity 

and angiogenesis are also represented. This 70-gene prognostic signature classifies patients 

based on correlation with a “good-prognosis” gene expression profile; a coefficient of 

greater than 0.4 is classified as good prognosis. The signature was initially criticised for the 

inclusion of some patients in both the discovery and validation stages (van de Vijver et al, 

2002). However, it has been subsequently validated in multiple cohorts of node-positive and 

node-negative patients and has been shown to outperform traditional clinical and 

histological parameters at predicting prognosis (Buyse et al, 2006; Mook et al, 2009).  

3.3.1 Mammaprint assay  

The 70-gene signature was approved by the FDA to become the MammaPrint Assay 
(Agendia BV, Amsterdam, The Netherlands); the first fully commercialized microarray 
based multigene assay for breast cancer. This prognostic tool is now available and can be 
offered to women under the age of 61 years with lymph node negative breast cancer. The 
MammaPrint test results are dichotomous, indicating either a high or low risk of disease 
recurrence, and the test performs best at the extremes of the spectrum of disease outcome 
i.e. identifying patients with a very good or a very poor prognosis.  
The MammaPrint signature is a purely prognostic tool, and its role as a predictive marker 
for response to therapy was not examined at the time it was developed. Its’ clinical utility is 
currently being assessed, however, in a prospective clinical trial called microarray in node 
negative and 1 to 3 positive lymph node disease may avoid chemotherapy (MINDACT) trial 
(Cardoso et al, 2008). The trial aims to recruit 6000 patients, all of whom will be assessed by 
standard clinicopathologic prognostic factors and by the MammaPrint  assay. In cases where 
there is concordance between the standard prognostic factors and the molecular assay, 
patients will be treated accordingly with adjuvant chemotherapy with or without endocrine 
therapy for poor prognosis patients. If both assays predict a good prognosis, no adjuvant 
chemotherapy is given, and adjuvant hormonal therapy is given alone where indicated. In 
cases where there is disconcordance between the standard clinicopathological prognostic 
factors and the MammaPrint assays’ prediction of prognosis the patients are randomised to 
receive adjuvant systemic therapy based on either the clinicopathological or the 
MammaPrint prognostic prediction results. The expected outcome is that there will be a 
reduction of 10-15% in the number of patients requiring adjuvant chemotherapy based on 
the MammaPrint assay prediction. It is envisaged that this trial will answer the questions of 
what patients can be spared chemotherapy and still have a good prognosis, thus 
accelerating progress towards the goal of more tailored therapy for breast cancer patients.  

3.3.2 Oncotype Dx assay 

While MammaPrint was developed as a prognostic assay, the other most widely established 
commercialized multigene assay Oncotype Dx was developed in a more context specific 

www.intechopen.com



 
Computational Biology and Applied Bioinformatics 

 

94

manner as a prognostic and predictive test to determine the benefit of chemotherapy in 
women with node-negative, ER-positive breast cancer treated with tamoxifen (Paik et al, 
2004). The authors used published microarray datasets, including those that identified the 
intrinsic breast cancer subtypes and the 70-gene prognostic signature identified by the 
Netherlands group to develop real time quantitative polymerase chain reaction (RQ-PCR) 
tests for 250 genes. Research undertaken by the National Surgical Adjuvant Breast and 
Bowel Project (NSABP) B14 protocol using three independent clinical series, resulted in the 
development of an optimised 21-gene predictive assay (Paik et al, 2004). The assay has been 
commercialised as Oncotype® DX by Genomic Health Inc1 and consists of a panel of 16 
discriminator genes and 5 endogenous control genes which are detected by RQ-PCR using 
formalin-fixed paraffin embedded (FFPE) sections from standard histopathology blocks. The 
ability to use FFPE tissue facilitates clinical translation and has allowed retrospective 
analysis of archived tissue in large cohorts with appropriate follow up data. The assay has 
been used to generate Recurrence Scores (RS) by differentially weighting the constituent 
genes which are involved in: 

• proliferation (MKI67, STK15, BIRC5/Survivin, CCNB1, MYBL2) 

• estrogen response (ER, PGR, SCUBE2)  

• HER2/neu amplicon (HER2/neu/ERBB2, GRB7), 

• invasion (MMP11, CTSL2) 

• apoptosis (BCL2, BAG1) 

• drug metabolism (GSTM1) 

• macrophage response (CD68).  
The assay was evaluated in 651 ER positive lymph node negative breast cancer patients who 
were treated with either tamoxifen or tamoxifen and chemotherapy as part of the NSABP 
B20 protocol (Paik et al, 2006). It was found that patients with high recurrence scores had a 
large benefit from chemotherapy, with a 27.6% mean decreased in 10 year distance 
recurrence rates, while those with a low recurrence score derived virtually no benefit from 
chemotherapy. The RS generated by the expression of the 21 genes is a continuous variable 
ranging from 1-100, but has been divided into three groups for clinical decision making; low 
(<18), intermediate (18-31) and high (>31). It has been shown in a number of independent 
datasets that ER positive breast cancer patients with a low RS have a low risk of recurrence 
and derive little benefit from chemotherapy. Conversely, ER positive patients with high RS 
have a high risk of recurrence but do benefit from chemotherapy (Goldstein, 2006;  Habel, 
2006;  Mina, 2007; Paik, 2006). The ability of the 21-gene signature to so accurately predict 
prognosis has led to the inclusion of the Oncotype Dx assay in American Society of Clinical 
Oncology (ASCO) guidelines on the use of tumour markers in breast cancer as a predictor of 
recurrence in ER-positive, node-negative patients. However, despite the accurate 
performance of the assay for high and low risk patients, there remains uncertainty regarding 
the management of patients with intermediate RS (18-31). This issue is being addressed in a 
prospective randomized trial assigning individual options for treatment (TAILORx) 
sponsored by the National Cancer Institute (Lo et al, 2007). This multicentre trial aims to 
recruit 10,000 patients with ER –positive, lymph node negative breast cancer who are 
assigned to one of three groups based on their RS; low<11, intermediate 11-25 and high >25. 
Notably, the RS criteria have been changed for the TAILORx trial, with the intermediate 

                                                 
1http://www.genomichealth.com/OncotypeDX 
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range being changed from RS 18-30 to RS 11-25 to avoid exluding patients who may derive a 
small benefit from chemotherapy (Sparano et al, 2006). Patients in the intermediate RS 
group are randomly assigned to receive either adjuvant chemotherapy and hormonal 
therapy, or hormonal therapy alone. The primary aim of the trial is to determine if ER 
positive patients with an intermediate RS benefit from adjuvant chemotherapy or not.  
The MammaPrint and Oncotype Dx gene signatures both predict breast cancer behaviour, 
however there are fundamental differences between them (outlined in table 1). This chapter 
has focused on these signatures as they were the first to be developed, have been extensively 
validated, and are commercially available. However it is important to note that there are 
other multi-gene based assays that have been developed and commercialized  but are not 
discussed in detail as they are not yet as widely utilized (Loi et al, 2007; Ma et al, 2008; Ross 
et al, 2008;  Wang et al,  2005 ).  
 

Assay MammaPrint Oncotype Dx 

Manufacturer Agendia BV Genomic Health, Inc. 

Development of Signature 
From candidate set of 25,000 

genes in 98 patients 
From candidate set of 250 

genes in 447 patients 

Gene signature 70 genes 21 genes 

Patient cohort 
Stage I & II breast cancer 

Lymph node negative 
<55yrs 

Stage I & II breast cancer 
Lymph node negative 

ER positive 
Receiving Tamoxifen 

Platform cDNA Microarray RQ-PCR 

Sample requirements 
Fresh frozen tissue or 

collected in RNA 
preservative 

FFPE tissue 

Outcome 
5-year distant relapse free 

survival 
10-year distant relapse free 

survival 

Test  Results 

Dichotomous correlation 
coefficient 

>4.0 = good prognosis 
<4.0 = poor prognosis 

Continuous recurrence score 
<18 = low risk 

18-31= intermediate risk 
>31 = high risk 

Predictive No;  purely prognostic Yes 

Prospective Trial MINDACT TAILORx 

FDA approved Yes No 

ASCO Guidelines No Yes 

Table 1. Comparison of commercially available prognostic assays MammaPrint and 
Oncotype Dx 

4. Microarray data integration  

4.1 Setting standards for microarray experiments  

It must be acknowledged that despite the multitude of breast cancer prognostic signatures 
available, the overlap between the gene lists is minimal (Ahmed, 2005; Brenton, 2005; Fan et 
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al, 2006; Michiels et al, 2005). This lack of concordance has called into question the 
applicability of microarray analysis across the entire breast cancer population. In order to 
facilitate external validation of signatures and meta-analysis in an attempt to devise more 
robust signatures, it is important that published microarray data be publicly accessible to 
the scientific community. In 2001 the Microarray Gene Expression Data Society proposed 
experimental annotation standards known as minimum information about a microarray 
experiment (MIAME), stating that raw data supporting published studies should be made 
publicly available in one of a number of online repositories (table 2), these standards are 
now upheld by leading scientific journals and facilitating in depth interrogation of multiple 
datasets simultaneously. 
  

Public Database 
for Microarray 

Data 
URL Organization Description 

Array Express http://www.ebi.ac.uk/arrayexpress/ European 
Bioinformatics 
Institute (EBI) 

Public data 
deposition and 
queries 

GEO Gene 
Expression 
Omnibus 

http://www.ncbi.nlm.nih.gov/geo/ National Centre for 
Biotechnology 
Information (NCBI)

Public data 
deposition and 
queries 

CIBEX Center 
for Information 
Biology Gene 
Expression 
Database  

http://cibex.nig.ac.jp/index.jsp National Institute 
of Genetics 

Public data 
deposition and 
queries 

ONCOMINE 
Cancer Profiling 
Database 

http://www.oncomine.org/main/
index.jsp 

University of 
Michigan 

Public queries 

PUMAdb 
Princeton 
University 
MicroArray 
database 

http://puma.princeton.edu/ Princeton 
University 

Public queries 

SMD Stanford 
Microarray 
Database 

http://genome-
www5.stanford.edu/ 

Stanford Univeristy Public queries 

UNC Chapel 
Hill Microarray 
database 

https://genome.unc.edu/ University of North 
Carolina at Chapel 
Hill 

Public queries 

Table 2. List of Databases with Publicly Available Microarray Data 

4.2 Gene ontology 

The volume of data generated by high throughput techniques such as microarray poses the 
challenge of how to integrate the genetic information obtained from large scale experiments 
with information about specific biological processes, and how genetic profiles relate to 
functional pathways. The development of the Gene Ontology (GO) as a resource for 
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experimentalists and bioinformaticians has contributed significantly to overcoming this 
challenge (Ashburner et al, 2000). The GO Consortium was established with the aim of 
producing a structured, precisely defined, common, controlled vocabulary for describing 
the roles of genes and gene products in any organism. Initially a collaboration between three 
organism databases: Flybase (The Flybase Consortium, 1999), Mouse Genome Informatics 
(Blake et al, 2000) and the Saccharomyces Genome Database (Ball et al, 2000), the GO 
Consortium has grown to include several of the world’s major repositories for plant, animal 
and microbial genomes.  
The Gene Ontology provides a structure that organizes genes into biologically related 
groups according to three criteria. Genes and gene products are classified according to:  

• Molecular Function: biochemical activity of gene products at the molecular level 

• Biological Process:  biological function of a gene product  

• Cellular Component: location in the cell or extracellular environment where molecular 
events occur 

Every gene is described by a finite, uniform vocabulary. Each GO entry is defined by a 

numeric ID in the format GO#######. These GO identifiers are fixed to the textual 

definition of the term, which remains constant. A GO annotation is the specific association 

between a GO identifier and a gene or protein and has a distinct evidence source that 

supports the association. A gene product can take part in one or more biological process and 

perform one or more molecular functions. Thus, a well characterized gene product can be 

annotated to multiple GO terms in the three GO categories outlined above. GO terms are 

related to each-other such that each term is placed in the context of all of the other terms in a 

node-directed acyclic graph (DAC). The relationships used by the GO are: “is_a”, “part_of”, 

“regulates”, “positively_regulates”, “negatively_regulates” and “disjoint_from”. Each term 

in the DAC may have one or more parent terms and possibly one or more child nodes, and 

the DAC gives a graphical representation of how GO terms relate to each other in a 

hierarchical manner.  

The development of Gene Ontology has facilitated analysis of microarray gene sets in the 

context of the molecular functions and pathways in which they are involved (Blake & 

Harris, 2002). GO-term analysis can be used to determine whether genetic “hits” show 

enrichment for a particular group of biological processes, functions or cellular 

compartments. One approach uses statistical analysis to determine whether a particular GO 

is over or under-represented in the list of differentially expressed genes from a microarray 

experiment. The statistical tests used for such analysis include hypergeometric, binomial or 

Chi-square tests (Khatri et al, 2005).  

An alternative approach known as “gene-set testing” has been described which involves 

beginning with a known set of genes and testing whether this set as a whole is differentially 

expressed in a microarray experiment (Lamb et al, 2003; Mootha et al, 2003). The results of 

such analyses inform hypotheses regarding the biological significance of microarray 

analyses.  

Several tools have been developed to facilitate analysis of microarray data using GO, and a 

list of these can be found at: http://www.geneontology.org/GO.tools.microarray.shtml 

Analysing microarray datasets in combination with biological knowledge provided by GO 

makes microarray data more accessible to the molecular biologist and  can be a valuable 

strategy for the selection of biomarkers and the determination of drug treatment effect in 

breast cancer (Arciero et al, 2003; Cunliffe et al, 2003).  
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4.3 Microarray meta-analysis – combining datasets 

Meta-analyses have confirmed that different prognostic signatures identify similar 

biological subgroups of breast cancer patients (Fan et al, 2006) and have also shown that the 

designation of tumours to a “good prognosis”/”low risk” group or a “poor 

prognosis”/”high risk” group is largely dependent on the expression patterns of 

proliferative genes. In fact, some of these signatures have been shown to have improved 

performance when only the proliferative genes are used (Wirapati, 2008). Metanalyses of the 

signatures have also proposed that the prognostic ability of the signatures is optimal in the 

ER positive and HER2-negative subset of breast tumours (Desmedt, 2008; Wirapati, 2008), 

the prognosis of this group of tumours being governed by proliferative activity.  

Despite obvious clinical application, none of these prognostic assays are perfect, and they all 

carry a false classification rate. The precise clinical value for these gene expression profiles 

remains to be established by the MINDACT and TAILORx trials. In the interim the 

performance of these assays is likely to be optimised by combining them with data from 

traditional clinicopathological features, an approach which has been shown to increase 

prognostic power (Sun et al, 2007).  

Microarray technology has undoubtedly enhanced our understanding of the molecular 

mechanisms underlying breast carcinogenesis; profiling studies have provided a myriad of 

candidate genes that may be implicated in the cancer process and are potentially useful as 

prognostic and predictive biomarkers or as therapeutic targets. However, as yet there is 

little knowledge regarding the precise regulation of these genes and receptors, and further 

molecular categories are likely to exist in addition to and within the molecular subtypes 

already delineated. Accumulating data reveal the incredible and somewhat foreboding 

complexity and variety of breast cancers and while mRNA expression profiling studies are 

ongoing, a new player in breast cancer biology has come to the fore in recent years; a 

recently discovered RNA species termed MiRNA (miRNA) which many scientists believe 

may represent a crucial link in the cancer biology picture. 

5. MicroRNA - a recently discovered layer of molecular complexity 

It has been proposed that the discovery of miRNAs as regulators of gene expression represents 
a paradigm changing event in biology and medicine. This discovery was made in 1993 by 
researchers at the Ambros laboratory in Dartmouth Medical School, USA at which time it was 
thought to be a biological entity specific to the nematode C. Elegans (Lee et al, 1993). In the 
years following this discovery, hundreds of miRNAs were identified in animals and plants. 
However it is only in the past 5 years that the field of miRNA research has really exploded 
with the realisation that miRNAs are critical to the development of multicellular organisms 
and the basic functions of cells (Bartel, 2004). MiRNAs are fundamental to genetic regulation, 
and their aberrant expression and function have been linked to numerous diseases and 
disorders (Bartel, 2004; Esquela-Kerscher & Slack, 2006). Importantly, miRNA have been 
critically implicated in the pathogenesis of most human cancers, thus uncovering an entirely 
new repertoire of molecular factors upstream of gene expression.  

5.1 MicroRNA - novel cancer biomarkers 

The first discovery of a link between miRNAs and malignancy was the identification of a 
translocation-induced deletion at chromosome 13q14.3 in B-cell Chronic Lymphocytic 
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Leukaemia (Calin et al, 2002). Loss of miR-15a and miR-16-1 from this locus results in 
increased expression of the anti-apoptotic gene BCL2. Intensifying research in this field, 
using a range of techniques including miRNA cloning, quantitative PCR, microarrays and 
bead-based flow cytometric miRNA expression profiling has resulted in the identification 
and confirmation of abnormal miRNA expression in a number of human malignancies 
including breast cancer (Heneghan et al, 2010;  Lowery et al, 2007). MiRNA expression has 
been observed to be upregulated or downregulated in tumours compared with normal 
tissue, supporting their dual role in carcinogenesis as either oncogenic miRNAs or tumour 
suppressors respectively (Lu et al, 2005). The ability to profile miRNA expression in human 
tumours has led to remarkable insight and knowledge regarding the developmental lineage 
and differentiation states of tumours. It has been shown that distinct patterns of miRNA 
expression are observed within a single developmental lineage, which reflect mechanisms of 
transformation, and support the idea that miRNA expression patterns encode the 
developmental history of human cancers. In contrast to mRNA profiles it is possible also to 
successfully classify poorly differentiated tumours using miRNA expression profiles 
(Volinia et al, 2006). In this manner, miRNA expression could potentially be used to 
accurately diagnose poorly differentiated tissue samples of uncertain histological origin, e.g. 
metastasis with an unknown primary tumour, thus facilitating treatment planning. 
MicroRNAs exhibit unique, inherent characteristics which make them particularly attractive 

for biomarker development. They are known to be dysregulated in cancer, with 

pathognomonic or tissue specific expression profiles and even a modest number of miRNAs 

is sufficient to classify human tumours, which is in contrast to the relatively large mRNA 

signatures generated by microarray studies (Lu et al, 2005). Importantly, miRNA are 

remarkably stable molecules. They undergo very little degradation even after processing 

such as formalin fixation and remain largely intact in FFPE clinical tissues, lending 

themselves well to the study of large archival cohorts with appropriate follow-up data (Li et 

al, 2007;  Xi et al, 2007). The exceptional stability of miRNAs in visceral tissue has stimulated 

investigation into their possible preservation in the circulation and other bodily fluids 

(urine, saliva etc.). The hypothesis is that circulating miRNAs, if detectable and quantifiable 

would be the ideal biomarker accessible by minimally invasive approaches such as simple 

phlebotomy (Cortez et al, 2009; Gilad et al, 2008; Mitchell et al, 2008). 

5.2 MicroRNA microarray 

The unique size and structure of miRNAs has necessitated the modification of existing 

laboratory techniques, to facilitate their analysis. Due to the requirement for high quality 

large RNA molecules, primarily for gene expression profiling, many laboratories adopted 

column-based approaches to selectively isolate large RNA molecules, discarding small RNA 

fractions which were believed to contain degradation products. Modifications to capture 

miRNA have been made to existing protocols to facilitate analysis of the miRNA fraction. 

Microarray technology has also been modified to facilitate miRNA expression profiling. 

Labelling and probe design were initially problematic due to the small size of miRNA 

molecules. Reduced specificity was also an issue due to the potential of pre-miRNA and pri-

miRNAs to produce signals in addition to active mature miRNA. Castoldi et al described a 

novel miRNA microarray platform using locked nucleic acid (LNA)-modified capture 

probes (Castoldi et al, 2006). LNA modification improved probe thermostability and 

increased specificity, enabling miRNAs with single nucleotide differences to be 
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discriminated - an important consideration as sequence-related family members may be 

involved in different physiological functions (Abbott et al, 2005). An alternative high 

throughput miRNA profiling technique is the bead-based flow cytometric approach 

developed by Lu et al.; individual polystyrene beads coupled to miRNA complementary 

probes are marked with fluorescent tags (Lu et al, 2005). After hybridization with size-

fractioned RNAs and streptavidin-phycoerythrin staining, the beads are analysed using a 

flow-cytometer to measure bead colour and pycoerythrin, denoting miRNA identity and 

abundance respectively. This method offered high specificity for closely related miRNAs 

because hybridization occurs in solution. The high-throughput capability of array-based 

platforms make them an attractive option for miRNA studies compared to lower 

throughput techniques such as northern blotting and cloning; which remain essential for the 

validation of microarray data. 

5.2.1 MicroRNA microarray - application to breast cancer 

Microarray analysis of miRNA expression in breast cancer is in its’ infancy relative to 

expression profiling of mRNA. However, there is increasing evidence to support the 

potential for miRNAs as class predictors in breast cancer. The seminal report of aberrant 

miRNA expression in breast cancer by Iorio et al. in 2005 identified 29 miRNAs that were 

differentially expressed in breast cancer tissue compared to normal, a subset of which could 

correctly discriminate between tumour and normal with 100% accuracy (Iorio et al, 2005). 

Among the leading miRNAs differentially expressed; miR-10b, miR-125b and mR-145 were 

downregulated whilst miR-21 and miR-155 were consistently over-expressed in breast 

tumours. In addition, miRNA expression correlated with biopathological features such as 

ER and PR expression (miR-30) and tumour stage (miR-213 and miR-203). Mattie et al. 

subsequently identified unique sets of miRNAs associated with breast tumors defined by 

their HER2/neu or ER/PR status (Mattie et al, 2006). We have described 3 miRNA 

signatures predictive of ER, PR and Her2/neu receptor status, respectively, which were 

identified by applying artificial neural network analysis to miRNA microarray expression 

data (Lowery et al, 2009). Blenkiron et al used an integrated approach of both miRNA and 

mRNA microarray expression profiling to classify tumours according to “intrinsic subtype”. 

This approach identified a number of miRNAs that are differentially expressed according to 

intrinsic breast cancer subtype and associated with clinicopathological factors including ER 

status and tumour grade. Importantly, there was overlap between the differentially 

expressed miRNAs identified in these studies.  

There has been interest in assessing the prognostic value of miRNAs, and expression studies 
in this regard have focused on detecting differences in miRNA expression between primary 
breast tumours and metastatic lymph nodes. This approach has identified numerous 
miRNA that are dysregulated in primary breast tumours compared to metastatic lymph 
nodes (Baffa et al 2009; Huang et al, 2008). MiRNA have also been identified that are 
differentially expressed in patients who had a “poor prognosis” or a short time to 
development of distant metastasis (Foekens et al, 2008); miR-516-3p, miR-128a, miR-210, and 
miR-7 were linked to aggressiveness of lymph node-negative, ER-positive human breast 
cancer.  
The potential predictive value of miRNA is also under investigation. Preclinical studies have 
reported associations between miRNA expression and sensitivity to adjuvant breast cancer 
therapy including chemotherapy, hormonal therapy  and HER2/neu targeted therapy (Ma 
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et al, 2010; Tessel et al, 2010; Wang et al, 2010), prompting analysis of tumour response in 
clinical samples. Rodriguez-Gonzalez et al attempted to identify miRNAs related to 
response to tamoxifen therapy by exploiting the Foekens dataset (Foekens, 2008) which 
comprised miRNA expression levels of 249 miRNAs in 38 ER positive breast cancer patients. 
Fifteen of these patients were hormone naive and experienced relapse, which was treated 
with tamoxifen. Ten patients responded and five did not, progressing within 6 months. Five 
miRNAs (miR-4221, miR-30a-3p, miR-187, miR-30c and miR-182) were the most 
differentially expressed between patients who benefitted from tamoxifen and those who 
failed therapy. The predictive value for these miRNAs was further assessed in 246 ER 
positive primary tumours of hormone naive breast cancer patients who received tamoxifen 
as monotherapy for metastatic disease. MiR-30a-3p, miR-30c and miR-182 were significantly 
associated with response to tamoxifen, but only miR-30c remained an independent predictor 
on multivariate analysis (Rodriguez-Gonzalez, 2010).  
Microarray-based expression profiling has also been used to identify circulating miRNAs 
which are differentially expressed in breast cancer patients and matched healthy controls. 
Zhao et al profiled 1145 miRNAs in the plasma of 20 breast cancer patients and 20 controls, 
identifying 26 miRNAs with at least two-fold differential expression which reasonably 
separated the 20 cases from the 20 controls (Zhao et al, 2010). This is the first example of 
genome-wide miRNA expression profiling in the circulation of breast cancer patients and 
indicates potential for development of a signature of circulating miRNAs that may function 
as a diagnostic biomarker of breast cancer.  
At present diagnostic, prognostic and predictive miRNA signatures and markers remain 
hypothesis generating. They require validation in larger, independent clinical cohorts prior 
to any consideration for clinical application. Furthermore as additional short non-coding 
RNAs are continuously identified through biomarker discovery programmes, the available 
profiling technologies must adapt their platforms to incorporate newer potentially relevant 
targets. MicroRNAs possess the additional attraction of potential for development as 
therapeutic targets due to their ability to regulate gene expression. It is likely that future 
microarray studies will adopt and integrated approach of miRNA and mRNA expression 
analysis in an attempt to decipher regulatory pathways in addition to expression patterns.  

6. Limitations of microarray technology & bioinformatic challenges 

In addition to the great promises and opportunities held by microarray technologies, several 
issues need to be borne in mind and appropriately addressed in order to perform reliable 
and non-questionable experiments. As a result, several steps need to be addressed in order 
to identify and validate reliable biomarkers in the scope of potential future clinical 
application. This is one of the reasons why, despite the promises of using powerful high-
throughput technologies as such as microarray, only very few useful biomarkers have been 
identified so far and/or have been translated to useful clinical assay or companion 
diagnostics (Mammaprint®, Oncotype DX®). There still remains a lack of clinically relevant 
biomarkers (Rifai et al, 2006). Amongst the limitations and pitfalls around the technology 
and the use of microarrays, some of the most important are the reported lack of 
reproducibility, as well as the massive amount of data generated, often extremely noisy and 
with an increasing complexity. As for example, in the recent Affymetrix GeneChip 1.0 ST 
microarray platform (designed to target all known and predicted exons in human, mouse 
and rat genomes), where there is approximately 1.2 million exon clusters corresponding to 
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over 1.4 million probesets (Lancashire et al, 2009). As a result, it appears clearly that 
extracting any relevant key component from such datasets requires robust mathematical 
and/or statistical models running on efficient hardware to perform the appropriate 
analyses. 
With this in mind, it is clear that the identification of new biomarkers still requires a 

concerted, multidisciplinary effort. It requires the expertise of the biologist or pathologist, to 

extract the samples, the scientist to perform the analysis on the platform and then the 

bioinformatician/biostatistician to analyse and interpret the output. The data-mining 

required to cope with these types of data needs careful consideration and specific 

computational tools, and as such remains a major challenge in bioinformatics. 

6.1 Problems with the analysis of microarray data 
6.1.1 Dimensionality and false discovery 

The statistical analysis of mRNA or miRNA array data poses a number of challenges. This 

type of data is of extremely high dimensionality i.e. has a large number of variables. Each of 

these variables represents the relative expression of a mRNA or miRNA in a sample. Each of 

these components contain noise, are non-linear may not follow a normal distribution 

through a population and may be strongly correlated with other probes in the profile. These 

characteristics mean that the data may violate many of the assumptions of conventional 

statistical techniques, particularly with parametric tests. 

The dimensionality of the data poses a significant problem, and remains as one of the most 

critical when analysing microarray data. When one analyses this type of data, one has to 

consider what is referred to as the curse of dimensionality, firstly described by Bellman in 1961 

as the “exponential growth of the search space as a function of dimensionality” (Bellman, 1961; 

Bishop, 1995). This occurs in highly dimensional systems where the number of dimensions 

masks the true importance of an individual single dimension (variable). It is particularly 

true in a microarray experiment when the number of probes representing the number of 

miRNA/mRNA studied far exceeds the number of available samples. So there is the 

potential for a probe that is in reality of high importance to be missed when considered with 

a large number of other probes. This problem is overcome by breaking down the analysis 

into single or small groups of variables and repeating the analysis rather than considering 

the whole profile in one single analysis. Other methods consists of using pre-processing 

methods and feature extraction algorithms in order to only analyse a subset of the data 

supposed to hold the most relevant features (Bishop, 1995), as determined by the pre-

processing steps. 

High dimensionality also creates problems due to false discovery. The false discovery rate 

(FDR) introduced by Benjamini and Hochberg (Benjamini and Hochberg, 1995) is a measure 

of the number of features incorrectly identified as “differential” and various approaches 

have been suggested to accurately control the FDR. In this case if one has a high number of 

dimensions and analyses each singly (as above) a proportion can appear to be of high 

importance due to random chance considering the distribution, even when they are not. To 

overcome this one has to examine a rank order of importance and when testing for 

significance one has to correct the threshold for significance by dividing it by the number of 

dimensions. So for example when analysing the significance of single probes from a profile 

with 4,000 probes in it the threshold becomes   P < 0.05 divided by 4,000 i.e. P < 0.0000125.  
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6.1.2 Quality and noise 

Noise also poses a problem in the analysis of mRNA or miRNA data. The inherent technical 
and biological variability necessarily induces noise within the data, eventually leading to 
biased results. The noise may lead to misinterpretation of sample groups that may actually 
have no biological relevance. As a consequence extreme care needs to be taken to address 
the problem of noise. 
Noise may be random where it is applied to all parts of the miRNA equally or systematic 
where particular probes inherently have more noise than others because of the nature of the 
component miRNA or genomic code that they represent.  
It is now widely acknowledged that the reported high level of noise found in microarray 

data is the most critical pull-back of microarray-based studies, as it is pointed by the MAQC 

Consortium (Shi et al, 2006; Klebanov and Yakovlev, 2007). 

6.1.3 Complexity and non-normality 

Because of the complex nature of the profile a particular mRNA or miRNA may be non-
normally distributed through a population. Such non-normality will immediately invalidate 
any statistical test that uses parametric statistics i.e. depends on the assumption of a normal 
distribution.  Invalidated tests would include ANOVA and t-test. To overcome this, the data 
would have to be transformed mathematically to follow a normal distribution or an 
alternative non parametric test would have to be employed. Examples of non-parametric 
tests include Kruskal-Wallis and Mann Whitney U which are ANOVA and unpaired T-Test 
alternatives respectively. Generally non-parametric tests lack power compared to their 
parametric alternatives and this may prove to be a problem in high dimensional space due 
to the reasons described previously. 

6.1.4 Reproducibility 

Reproducibility has a marked effect on the accuracy of any analysis conducted. Furthermore 

reproducibility has a profound effect on the impact of other issues such as dimensionality 

and false detection. Robust scientific procedures requires that the results have to be 

reproducible in order to reduce the within sample variability, the variability between 

sample runs and the variability across multiple reading instruments. Aspects of variability 

can be addressed using technical and experimental replicates. The averaging of samples 

profiles can be used to increase the confidence in the profiles for comparison (Lancashire et 

al., 2009). Technical replicates provide information on the variability associated with 

instrumental variability whilst experimental (or biological) replicates give a measure of the 

natural sample to sample variation. Problems in data analysis occur when the technical 

variability is high. In this situation the problem in part can be resolved by increasing the 

number of replicates. If however the technical variation is higher than the biological 

variation then the sample cannot be analysed. 

6.1.5 Auto-correlation or co-correlation 

Auto correlation exists when two components within a system are strongly linearly 
correlated with one another. In any complicated system there are likely to be a number of 
components that are auto correlated. This is especially true in array profiling of biological 
samples. Firstly due to biological processes one protein in a set of samples is likely to 
interact or correlate with another through a population.  
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Auto correlation becomes a problem when using linear based regression approaches. This is 
because one of the assumptions of regression using multiple components is that the 
components are not auto correlated. If intensity for multiple miRNA probes are to be added 
into a regression to develop a classifier these components should not be auto correlated.  
Auto correlation can be tested for using the Durbin Watson test. 

6.1.6 Generality 

The whole purpose of biomarker (or set of biomarkers) identification, using high-
throughput technologies or any other, is to provide the clinicians with an accurate model in 
order to assess a particular aspect. However, a model is only as good as its ability to 
generalize to unseen real world data. A model only able to explain the population on which 
it was developed would be purely useless for any application. 
As a result, if one is to develop classifiers from mRNA or miRNA array data the features 

identified should be generalised. That is they will predict for new cases in the general 

population of cases. When analysing high dimensional data there is an increased risk of over 

fitting, particularly when the analysis methods imply supervised training on a subset of the 

population. So for example, when a large number of mRNA or miRNA are analysed there is 

the potential for false detection to arise. If a random element identified through false 

detection is included as a component of a classifier (model) then the generality of that 

classifier will be reduce; i.e. it is not a feature that relates to the broader population but is a 

feature specific to the primary set of data used to develop the classifier. Standards of 

validation required to determine generality have been defined by Michiels et al, 2007. 
Generality of classifiers can be increased by the application of bootstrapping or cross 
validation approaches.  
Some algorithms and approaches, that usually involve supervised training, suffer from 

over-fitting (sometimes called memorisation). This is a process where a classifier is 

developed for a primary dataset but models the noise within the data as well as the relevant 

features. This means that the classifier will not accurately classify for new cases i.e. it does 

not represent a general solution to the problem which is applicable to all cases. This is 

analogous, for example, to one developing a classifier that predicts well the risk of 

metastasis for breast cancer patients from Nottingham but will not predict well for a set of 

cases from Denmark. Over fitted classifiers seldom represent the biology of the system being 

investigated and the features identified are often falsely detected.  

One of the most common solutions to avoid over-fitting is to apply a Cross Validation 

technique in combination with the supervised training. Random sample cross validation is a 

process of mixing data. Firstly the data are divided into two or three parts (figure 2); the first 

part is used to develop the classifier and the second or second and third parts are used to 

test the classifier. These parts are sometimes termed training, test and validation data sets 

respectively. In certain classifiers such as Artificial Neural Network based classifiers the 

second blind set is used for optimisation and to prevent over fitting. In random sample cross 

validation the random selection and training process is repeated a number of times to create 

a number of models each looking at the global dataset in a number of different ways (figure 

2). Often the mean performance of these models is considered. 

Leave one out cross validation is an approach also used to validate findings. In this case one 
sample is left out of the analysis. Once training is complete the sample left out is tested. This 
process is repeated a number of times to determine the ability of a classifier to predict 
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unseen cases. This approach of random sample cross validation drives the classifier solution 
to a generalised one by stopping the classifier from training too much on a seen dataset and 
stopping the training earlier based on a blind dataset. 

7. Methods used to analyse microarray data and their limitations 

With the advent of cutting edge new technologies such as microarrays, the analysis tools for 
the data produced need to be appropriately applied. Although expression arrays have 
brought high hopes and expectations, they have brought tremendous challenges with them. 
They have been proven to suffer from different limitations as previously discussed. 
However, innovative computational analysis solutions have been developed and have been 
proven efficient and successful at identifying markers of interest regarding particular 
questions. This section presents some of the most common methods employed to overcome 
the limitations discuss above, and to analyse expression array data. 

7.1 Application of ordination techniques 

If we are to utilise the mRNA or miRNA profile we have to identify robust features despite 
its high dimensionality that are statistically valid for the general population not just for a 
subset. Ordination techniques are used to map the variation in data. They are not directly 
predictive and cannot classify directly unless combined with another classification 
technique. 
 

 

Fig. 2. Illustration of Cross Validation technique, here with three subsets: the training subset 
used to train the classifier, the test subset used to stop the training when it has reached an 
optimal performance on this subset, and a validation subset to evaluate the performance 
(generalization ability) of the trained classifier. 
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7.1.1 Principal components analysis 

PCA is usually a method of choice for dimensionality reduction. It is a multivariate 
exploratory technique used to simplify complex data space (Raychaudhuri et al, 2000) by 
translating the data space into a new space defined by the principal components. It works 
by identifying the main (principal) components that explain best the shape (variance) of a 
data set. Each principal component is a vector (line) through the data set that explains a 
proportion of the variance, it is the expression of a linear combination of the data.  In PCA 
the first component that is added is the one that explains the most variance the second 
component added is then orthogonal to the first. Subsequent orthogonal components are 
added until all of the variation is explained. The addition of vectors through a 
multidimensional data set is difficult to visualise in print, we have tried to illustrate it with 3 
dimensions in figure 3. In mRNA/miRNA profile data where thousands of dimensions 
exist, PCA is a useful technique as it reduces the dimensionality to a manageable number of 
principal components. If the majority of the variance is explained in 2 or 3 principal 
components these can be used to visualise the structure of the population using 2 or 3 
dimensional plots. A limited parameterisation can also be conducted to determine the 
contribution of each parameter (miRNA) to each of the principal components. This however 
suffers from the curse of dimensionality in high dimensional systems. Thus the main 
limitation of using PCA for gene expression data is the inability to verify the association of a 
principal component vector with the known experimental variables (Marengo et al, 2004). 
This often makes it difficult to accurately identify the importance of the mRNA or miRNA in 
the system, and make it a valuable tool only for data reduction. 
 

 

Fig. 3. Example of a 3 dimension PCA with the 3 orthogonal PCs. 
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7.1.2 Hierarchical clustering 

Although several clustering techniques exist, the most used in the context of microarray 
data analysis is hierarchical clustering. Hierarchical clustering is used to identify the 
structure of a given population of cases or a given set of markers such as proteins. Every 
case is considered to have a given position in multidimensional space. Hierarchical 
clustering determines the similarity of cases in this space based on the distance between 
points. There are various linkage methods used for calculating distance, such as single 
linkage, complete linkage and average linkage. Single linkage computes the distance as the 
distance between the two nearest points in the clusters being compared. Complete linkage 
computes the distance between the two farthest points, whilst average linkage averages all 
distances across all the points in the clusters being compared. One commonly used distance 
measure is Euclidian distance which is the direct angular distance between two points. In 
fact it considers the distance in multidimensional space between each point and every other 
point. In this way a hierarchy of distances is determined. This hierarchy is plotted in the 
form of a dendrogram (figure 4). From this dendrogram we can identify clusters of cases or 
markers that are similar at a given distance.  
The one major problem concerning clustering is that it suffers from the curse of 

dimensionality when analysing complex datasets. In a high dimensional space, it is likely 

that for any given pair of points within a cluster there will exist dimensions on which these 

points are far apart from one another. Therefore distance functions using all input features 

equally may not be truly effective (Domeniconi et al, 2004). Furthermore, clustering methods 

will often fail to identify coherent clusters due to the presence of many irrelevant and 

redundant features (Greene et al, 2005). Additionally, the important number of different 

distance measure may add an additional bias: it has been reported that the choice of a 

distance measure can greatly affect the results and produce different outcomes after the 

analysis (Quackenbush, 2001). Dimensionality is also of importance when one is examining 

the structure of a population through ordination techniques. This is particularly the case 

when utilising hierarchical cluster analysis. This approach is of limited suitability for high 

dimensional data as in a high dimensional space the distance between individual cases 

reaches convergence making all cases appear the same (Domeniconi et al, 2004). This makes 

it difficult to identify the real structure in the data or clusters of similar cases. 

7.2 Application of modelling techniques 

This second part of the section focusing on analysis tools considers more evolved techniques 
with what is known as machine learning. There are however a number of other techniques 
that can be employed in a predictive or classification capacity. Others include hidden 
Markov and Bayesian methods. These are widely described in the literature.  

7.2.1 Decision tree based methodologies 

Decision tree methodologies include, boosted decision trees, classification and regression 
trees, random forest methodologies. This approach is based on splitting a population into 
groups based on a hierarchy of rules (figure 5). Thus a given case is split into a given class 
based on a series of rules. This approach has been modified in a number of ways. Generally, 
a decision is made based on a feature that separates classes (one branch of the cluster 
dendrogram from another) within the population. This decision is based on a logical or 
numerical rule. Although their use in the analysis of miRNA data has been limited, decision 
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trees have been used in the analysis of miRNA data derived to classify cancer patients (Xu, 
et al, 2009). 
 

 

Fig. 4. Example of a hierarchical clustering analysis result aiming to find clusters of similar 
cases. 

 

 

Fig. 5. Schematic example of the basic principle of Decision Trees 
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Boosted decision trees take the primary decision tree algorithm and boost it. Boosting is a 

process where classifiers are derived to allow prediction of those not correctly predicted by 

earlier steps. This means that a supervised classification is run where the actual class is 

known. A decision tree is created that classifies correctly as many cases as possible. Those 

cases that are incorrectly classified are given more weighting. A new tree is then created 

with these boosted weights. This process is similar to the iterative leaning that is conducted 

with the Artificial Neural Network back propagation algorithm. 

Random forest approaches take the basic decision tree algorithm and couple it with random 

sample cross validation. In this way a forest of trees is created. Integration of a number of 

decision trees identifies a combined decision tree which, as it is developed on blind cases, 

represents what approaches a generalised solution for the problem being modelled 

(Breiman et al, 2001). This approach has been shown to be very good at making generalised 

classifications. The approach essentially derives each tree from a random vector with 

equivalent distribution from within the data set, essentially an extensive form of cross 

validation. Yousef et al, (2010) have used random forest as one method for the identification 

of gene targets for miRNAs. Segura et al (2010) have used random forests as a part of an 

analysis to define post recurrence survival in melanoma patients. 

7.2.2 Artificial Neural Networks 

Artificial Neural Networks are a non linear predictive system that may be used as a 
classifier. A popular form of ANN is the multi-layer perceptron (MLP) and is used to solve 
many types of problems such as pattern recognition and classification, function 
approximation, and prediction. The approach is a form of artificial intelligence in that it 
“learns” a solution to a problem from a preliminary set of samples. This is achieved by 
comparing predicted versus actual values for a seen data set (the training data set described 
earlier) and using the error of the predicted values from the ANN to iteratively develop a 
solution that is better able to classify.  In MLP ANNs, learning is achieved by updating the 
weights that exist between the processing elements that constitute the network topology 
(figure 6). The algorithm fits multiple activation functions to the data to define a given class 
in an iterative fashion, essentially an extension of logistic regression. Once trained, ANNs 
can be used to predict the class of an unknown sample of interest. Additionally, the 
variables of the trained ANN model may be extracted to assess their importance in the system 
of interest. ANNs can be coupled with Random sample cross validation or any other cross 
validation method (LOO or MCCV) in order to ensure that the mode developed is not over 
fitted. One of the advantages of ANNs is that the process generates a mathematical model that 
can be interrogated and explored in order to elucidate further biological details and validate 
the model developed on a wide range of cases. A review of their use is in a clinical setting 
presented in Lisboa and Taktak (2006). Back propagation MLP ANNs have been proposed for 
use in the identification of biomarkers from miRNA data by Lowery et al, 2009.  

7.2.3 Linear Discriminant Analysis (LDA) 

Linear discriminant analysis attempts to separate the data into two subgroups by calculating 

the optimal linear line that best splits the population. Calculation of this discriminating line 

is conducted by taking into account sample variation within similar classes, and minimizing 

it between classes. As a result, any additional sample has its class determined by the side of 

the discriminating line it falls. 
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LDA can outperform other linear classification methods as LDA tries to consider the 
variation within the sample population. Nevertheless, LDA still suffers from its linear 
characteristic, and often fails to accurately classify non-linear problems, which is mostly the 
case in biomedical sciences (Stekel et al, 2003). This is the reason why non-linear classifiers 
are recommended. 
 

 

Fig. 6. Example of a classical MLP ANN topology with the details of a node (or neurone) 

7.2.4 Support Vector Machines 

Support Vector Machines (SVMs) are another popular form of machine learning algorithms 
in the field of analyzing MA data for non-linear modeling (Vapnik and Lerner, 1963). They 
are an evolution of LDA in the sense that they work by separating the data into 2 sub-
groups. They work by separating the data into two regions by constructing a straight line or 
hyper plane that best separates between classes (figure 7). In the common example of a two-
class classification problem, SVMs attempt to find a linear “maximal margin hyperplane” 
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able to accurately discriminate the classes (Dreiseitlet al, 2001), similarly to what does Linear 
Discriminant Analysis. If no such linear hyperplane can be found, usually due to the 
inherent non-linearity of the dataset, the data are mapped into a high-dimensional feature 
space using a kernel function (for example polynomial or radial basis functions) in which 
the two classes can now be separated by a hyperplane which corresponds to a non-linear 
classifier (Furey et al, 2000). The class of the unknown sample is then determined by the side 
of the “maximal marginal hyper plane” on which it lies. SVMs have been used to analyse 
miRNA data by Xue et al, 2005. 
 

 

Fig. 7. Schematic representation of the principle of SVM. SVM tries to maximise the margin 
from the hyperplane in order to best separate the two classes (red positives from blue 
negatives). 

8. Conclusion 

The capability of microarray to simultaneously analyse expression patterns of thousands of 

DNA sequences, mRNA or miRNA transcripts has the potential to provide a unique insight 

into the molecular biology of malignancy. However, the clinical relevance and value of 

microarray data is highly dependent on a number of crucial factors including appropriate 

experimental design and suitable bioinformatic analysis. Breast cancer is a heterogeneous 

disease with many biological variables which need to be considered to generate meaningful 

results. Cohort selection is critical and sufficient biological and technical replicates must be 

included as part of microarray study design. Experimental protocols should be appropriate 

to the research question. The research community have enthusiastically applied high 

throughput technologies to the study of breast cancer. Class prediction, class comparison 

and class discovery studies have been undertaken in an attempt to unlock the heterogeneity 

of breast cancer and identify novel biomarkers. Molecular signatures have been generated 

which attempt to outperform current histopathological parameters at prognostication and 
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prediction of response to therapy. Two clinical tests based on gene expression profiling 

(Oncotype DX and Mammaprint) are already in clinical use and being evaluated in 

multicentre international trials. It is essential that the potential of microarray signatures is 

carefully validated before they are adopted as prognostic tools in the clinical setting. 

Standards have been set for the reporting of microarray data (MIAME) and such data is 

publically available to facilitate external validation and meta-analysis. It is imperative that 

the data is integrated with knowledge normally processed in the clinical setting if we are to 

overcome the difficulties in reproducibility, standardization and lack of proof of significance 

beyond traditional clinicopathological tools that are limiting the incorporation of microarray 

based tools into today’s standard of care.  

Deriving biologically and clinically relevant results from microarray data is highly 
dependent on bioinformatic analysis. Microarray data is limited by inherent characteristics 
that render traditional statistical approaches less effective. These include high 
dimensionality, false discovery rates, noise, complexity, non-normality and limited 
reproducibility. High dimensionality remains one of the most critical challenges in the 
analysis of microarray data. Hierarchical clustering approaches, which have been widely 
used in the analysis of breast cancer microarray data, do not cope well with dimensionality. 
In overcoming this challenge supervised machine learning techniques have been adapted to 
the clinical setting to complement the existing statistical methods. The majority of machine 
learning techniques originated in weak-theory domains such as business and marketing. 
However, these approaches including Artificial Neural Networks and Support Vector 
Machines have been successfully applied to the analysis of miRNA microarray data in the 
context of clinical prognostication and prediction.  
It is clear that the goal of translating microarray technology to the clinical setting requires 
close collaboration between the involved scientific disciplines.If the current momentum in 
microarray-based miRNA and mRNA translational research can be maintained this will add 
an exciting new dimension to the field of diagnostics and prognostics and will bring us 
closer to the ideal of individualized care for breast cancer patients.  
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