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Sonar Model Based Matched  
Field Signal Processing 

Nikolai Kolev and Georgi Georgiev 
NV Naval Academy 

Bulgaria 

1. Introduction 

Passive underwater sonar array systems were subject to development in the past decades for 
accomplishing tasks in naval surveillance and geo-acoustical investigation of the ocean 
bottom. Modern sonar passive array systems are using adaptive matched field signal 
processing techniques. Passive sonar array signal processing based on ocean physical 
propagation model is known as “Matched Field Processing” (MFP). It is a specific 
application of the more general case of space-time adaptive signal processing in the area of 
sonar array signals processing (Klemm, 2002). It is a cross-correlation technique developed 
for matching the values of the computed with a propagation model sound pressure with the 
measured values at the output of a passive sonar vertical array. The maximum in the cross-
correlation or ambiguity surface gives an estimation of the position of the underwater 
source. This technique is first proposed by Clay in 1966 and later on theoretically and 
experimentally developed by Hinich and Bucker in 1972 and 1975 (Sullivan & Middleton, 
1993). In 1980 and 1981 Klemm introduced in the matched field signal processing algorithms 
the Capon’s minimum variance and Burg’s maximum entropy estimators for better 
resolution in shallow water environments (Sullivan & Middleton, 1993). The acoustic field in 
an ocean horizontally stratified waveguide may be presented as a sum of “normal waves” or 
“normal modes”1, each satisfying the boundary conditions and propagating down the layer 
with its own speed, wave constant and attenuation. The coherent modal sum is used in 
matched field signal processing for localization of an underwater source in range and depth. 
It can be used for localization of the source also with a horizontal array because the angular 
modal spread is proportional to the direction of arrival relative to the axis of the array 
(Klemm, 2002). The matched field processing for source position localization is presented in 
most of the investigations as a parameter estimation problem. It is assumed that the 
detection has been carried out and the frequency of the source is known. Some authors 
consider joint detection and localization problem [Booth et al., 2000]. In the beginning MFP 
of narrowband signals was used which was later modified with the more realistic for 
practical applications broadband case where MFP results for several frequencies are 
averaged. The aim of this chapter is to introduce the reader to the principles of matched 
field signal processing and present narrowband MFP experimental results. An available on 
the web normal mode propagation code and vertical sonar array signals data from a 
controlled source localization experiment are used. A comparison is made between MFP 

                                                 
1 standing waves 
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results of three known matched field processors applied to vertical array sonar experimental 
data.  

2. Model based matched field processing of vertical sonar array signals 

In conventional antenna array systems signal processing the usual methods of beamforming 
include phase control of the signals in receive or transmit mode in order to form and steer 
antenna beam pattern in given direction (see Van Trees, 2002). In MFP the steering vector is 
determined by the predicted with a propagation model sound pressure for a range of source 
coordinates in a waveguide with known depth sound speed profile (SSP) and bottom 
acoustical parameters. A flow diagram of MFP is given on fig. 1.  
 

 

Fig. 1. Matched Field Processing Flow Diagram for Source Position Estimation 

From the time domain array sampled signals the cross-spectral density matrix (CSDM) is 
estimated. As a steering vector for the matched filed processor the calculated sound 
pressure level with normal mode propagation model is used. An ambiguity surface is 
formed through matching or cross-correlating of the steering vector with the received sound 
pressure field. The maximum of the ambiguity surface gives the most likely position of the 
sound source in range and depth. There are several general signal processing algorithms 
applicable for MFP.  

2.1 Cross-spectral density matrix estimation 

Cross spectral density matrix2 (CSDM) is formed through estimation of the cross-spectral 

functions of the signal at the output of the sonar array. The cross-spectral function may be 

                                                 
2 The name covariance matrix is also used 
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defined with a Furier transform of the cross-correlation function or directly via finite Furier 

transform of the input time domain signal (Bendat, 2010). If sample records are available 

from a stationary random processes in the time domain3   k
x t ,   k

y t  for a finite time 

interval 0 t T  the cross-spectal function of the two processes is defined: 

      *1
, , , ,

xy k k
S T k X T Y T

T
           (1) 

where  

    
0

,
T

j t

k k
X T x t e dt              (2) 

    
0

,
T

j t

k k
Y T y t e dt                 (3) 

The functions  ,
k

X T ,  ,
k

Y T represent finite Furier transforms of the time domain 

samples  k
x t   k

y t  , (*) is the complex conjugate operator, k is sample index. An estimate 

of the cross spectral density function is  

 
   , lim , ,

xy XYT
S k E S T k 


                (4) 

In practise the record length is always finite and the expectation operation  E is taken 

from a finite number of ensemple elements. If the signals at the outputs of the M elements 

antenna array are stationary the data can be presented after the finite Furier transforms in 

the frequency domain with the following matrix: 

 

       
       
       

       

1 1 1 2 1 3 1

2 1 2 2 2 3 2

3 1 3 2 3 3 3

1 2 3

N

N

N

M M M M N

X X X X

X X X X

X X X X

X X X X

   
   
   

   





    


      (5) 

The row in (5) represents the frequency spectrum of the signal from a given hydrophone 
(channel). 
The array cross-spectral matrix for the n-th frequency bin is: 

 

               
               
               

               

1 1 1 2 1 3 1

2 1 2 2 2 3 2

3 1 3 2 3 3 3

1 2 3

n n n n n n n M n

n n n n n n n M n

n n n n n n n M n

M n n M n n M n n M n M n

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

       
       
       

       

   

   

   

   





    


  (6) 

                                                 
3 For example signals at the output of two hydrophones from the array 
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Where (*) is the complex conjugate operator. The cross-spectral matrix for an M element 

array is square MxM matrix for a given frequency
n

 . The estimation is defined with the 

following expectation operator for the frequency bin 
n

 : 

 
      *ˆ

X n n n
S X X   

 
             (7) 

An estimate of the CSDM  X n
S 


is formed through averaging ensemble cross-spectrum 

data. On figure 2 a data cube of CSDM estimates is presented for three frequency bins. 
 
 

 

Fig. 2. Data cube of a real CSDM estimates for different frequency bins. 

2.2 Steering vector calculation 

The frequency range and the parameters of the ocean waveguide determine the sound 

propagation model for the matched field processing steering vector. In the application a low 

frequency source positioned in a shallow water ocean waveguide is considered which 

specifies the normal mode propagation model. For sound propagation numerical 

calculations in a range-independant environment the normal mode representation of the 

acoustical pressure actuated by a harmonic source in a horizontally stratified medium is 

given by the following infinite radical sum (Ferla et al., 1993): 

 

 1

0
1

( , ) ( ) ( )
4 ( ) 8

m s m m
ms

i
p r z z z H k r

z r 





  
 

       (8) 

Where r is the range, z the depth, ρ the density, zs the source depth, Ψm the mode amplitude, 
1

0
H the zero-order Hankel function of the first kind, km is the eigenvalue. In the solution a 

large argument asimptotic approximation of the Hankel function is used. When the number 

of modes is limited to M the final expression for the sound pressure is: 

 4

1

( , ) ( ) ( )
( ) 8

jk rM
j

m s m
ms m

mj e
p r z e z z

z r k



 




   ,     (9) 

where dependence of the pressure – p from distance – r and depth z is obvious.  

Each of the modes has unique wave number, attenuation, phase speed and group speed. 

The sum of the modes for different source positions and distances from the source forms 

ω1 
ω2

ωn

www.intechopen.com



 
Sonar Model Based Matched Field Signal Processing 

 

109 

unique vertical distribution of the pressure which is subject to matching with the 

experimentally measured pressure (see fig.7). The calculated sound pressure is used as a 

steering vector in the matched field processor.  
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Fig. 3. Graphics of nine normal modes representing the sound field in a shallow water 
waveguide considered in the examples.  

 

 

Fig. 4. Data cube of the calculated sound pressure level 

The steering vector is the sound pressure level for a given possible position of the known 

source in depth . This forms a sound pressure level data cube presented on fig. 4. For every 

possible position of the source in depth 
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calculated in a 2D region. For every distance from the source 
1 2 3 max
, , , ,R R R R a depth 

sound pressure vector 
1 2 3
, , , ,

m
P P P P is formed for the known depth hydrophone receiver 

positions 
1 2 3 max
, , , ,D D D D . This vector is later used as a steering vector for correlation with 

the estimated CSM and forming the ambiguity surface. A maximum in the ambiguity 

surface gives an estimation of the source position in range and depth. On figure 5 a data 

cube with real pressure fields respectively for sources: S1, S10 and S68 considered in  

chapter 3.  
 

 

Fig. 5. Data cube of the calculated sound pressure fields  

2.3 Matched field signal processors 
Two matched field processors are subject to investigation in the application. The first one is 
the classical or Bartlett matched field processor and the second one is the so called minimum 
variance distortion less processor (MVDR). 

2.3.1 Bartlett (conventional) matched field signal processor 
In conventional beamforming the sonar array pattern is steered through phase control of the 
signals at the output of the antenna array (see fig. 1) through steering vector. In matched 
field processing the steering vector represents the computed pressure in the points of the 
array elements. The processor output or as in our case a matched field filter output is: 

      , ,HY v r z X  
 

        (10) 

Where  , ,Hv r z is the pressure vector,  X   is the signal at the input of the procerssor 

and  Y   is the output signal. We want to estimate the power of the signal at the output of 

the filter: 

            *, , , , , , , , , ,H H

X
P r z E v r z XX v r z v r z S v r z            (11) 

where  X
S   corresponds to CSDM given with (7). This conventional processor is known as 

a Bartlett processor. Bartlett matched field processor forms ambiguity surface as a direct dot 

product of model replica vectors  , ,r z  and the sample CSDM -  X
S  . The maximum of 

the power estimate in the ambiguity surface gives the probable position of the source. 

      , , , ,H

BART X
P v r z S v r z       (12) 

S1 
S10

S68

www.intechopen.com



 
Sonar Model Based Matched Field Signal Processing 

 

111 

This processor is a benchmark for the other more sophisticated processors because it has 
much power and low probability of no detection.  

2.3.2 MVDR matched field signal processor 

The MVDR processor is derived with quadratic constraints (Van Trees, 2002). An optimal 

filter is given with the block diagram on fig. 6.  X  and  Y  represent the signals at the 

input and at the output of the filter in the frequency domain.  HW   is the filter frequency 

response. 
 

 

Fig. 6. General optimal filter (processor) structure. 

The signal vector at the input can be written as: 

 
     , ,

S
X F v r z  

,    (13) 

where  F   is the frequency-domain snapshot of the source signal and  , ,v r z  is the 

ocean waveguide manifold vector. It is required that in the absence of noise    Y F  . 

The constraint of no distortion4 implies    , , 1HW v r z    in order to receive the input 

signal at the output of the processor without distortion (with unity gain). Minimization of 

the mean square of the output noise leads to MVDR beamformer first derived by Capon. 

Optimal weight of the processor is given (Van Trees, 2002): 

 

     
     

1

1

, ,

, , , ,

H

NH

MVDR H

N

v r z S
W

v r z S v r z

 


  






 

   (14) 

where  1

N
S   is the inverse of noise CSDM for a given angular frequency,  ,H

S
v k  is the 

hermitian transpose operator. When instead of  N
S   the signal CSDM  X

S  is used in 

(14) the estimator is known as minimum power distortionsless response (MPDR) (Van 

Trees, 2002). Usually it is more difficult to estimate  n
S   to form the weight, because it is 

colored with multipath ocean waveguide interference. It is not possible however also to 

estimate a pure signal matrix  X
S   beacause it is mixed with noise. The optimum weight 

of MPDR5 has the form: 

 

     
     

1

1

, ,

, , , ,

H

XH

MPDR H

X

v r z S
W

v r z S v r z

 


  






 

    (15) 

                                                 
4 Or no gain 
5 In the majority of the literature it is also referred as MVDR (Van Trees, 2002) 

 X  Y
 H
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Later in the text we are using the name MVDR for weights (14), (15) and specify if the CSDM 
of the signal or noise is used. This estimator (beamformer) in the literature is known also as 
Minimum Variance Estimator (MVE) and Maximum Likehood Estimator (Klemm, 2002). 
The power of MFP-MVDR is given with (Van Trees, 2002): 

      H

MVDR X
P W S W                (16) 

where  X
S   is the signal CSDM and  W   is the optimal weight defined with (14) or (15). 

When we have acceptable for array processing signal to noise ratio (SNR) it is relatively easy 

to estimate  X
S   and use (15). Subject to optimization in the described processors is the 

match between the function of the computed sound pressure over the array elements and 

the measured output signal power for a given frequency, given with CSDM. On fig. 7 the 

computed normalized values of the pressure and the measured signal power are 

superimposed at distance and depth of good match . 
 
 

 
 

Fig. 7. Predicted and measured signal power (diagonal values of CSDM) for a frequency bin 
of interrest over the array at distance and depth of good match (red – measured signal 
power, blue – computed squared pressure). 

One way to build robust to some degree of mismatch weight vector and improve the 

numerical stability in matrix inversion is through diagonal loading of the CSDM. This is the 

so called method of “diagonal loading” 6 (Van Trees, 2002). It is also referred in the literature 

as a “white-noise-constraint” (WNC). Adding noise to diagonal elements expands the noise 

                                                 

6 Van Trees shows that imposition of quadratic constrain leads to diagonal loading  
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space and eliminates small eigenvalues in the inverse CSDM. Usually the CSDM is not well 

conditioned matrix7 and the diagonal loading is a way toward more stable matrix inversion 

procedure. The MVDR weight with diagonal loading of the CSDM is (Van Trees, 2002): 

        
     

12

1
2

, ,

, , , ,

H

X

MVDRDL
H

X

v r z S I
W

v r z S I v r z

   


   





   
   

     (17) 

Another way to overcome problems with CSDM inversion is to apply singular value 

decomposition (Van Trees, 2002). With singular value decomposition the square CSDM is 

presented in the following form: 

 *

X
S U V     (18) 

where Λ is diagonal matrix of the eigen values: 

 

1

2

.

.

M






        (19) 

 

where 
1 2

...
M

      and U and V* are unitary with size MxM. Choosing the rank “r” of 

the decomposed CSDM directly imposes constraints on the spatial signal subspace and is 

powerful instrument for multipath interference rejection (r is smaller than the number of 

sensors M which in our case is 48). The inverse matrix is formed with the following matrix 

multiplication: 

 

11 1 11 1

1

1

1 1

. . . .
1 / 0

. . . .
.

. . . .
0 1 /

r M

X

r

M Mr r rM

U U V V

S

U U V V





      (20) 

The optimal weight for MVDR is formed: 

      
    

1 * 2

1 * 2

, ,

, , , ,

H

MVDRPINV H

v r z U V I
W

v r z U V I v r z

 


  





 


 
  (21) 

where the inverse matrix8 is formed with rank reduction and diagonal loading is applied 

(adding noise to the inverse matrix through diagonal loading) , controlled by the parameter 

ε. A similar form of this processor weight was used in (Kolev & Georgiev, 2007).  

                                                 
7 The analysis of the experimental averaged CSDM showed that the ratio between largest singular value 
to the smallest is more than 1 000 000 

8 Also known in the literature as pseudo-inverse 
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The rank in the application is determined if the corresponding singular value is under 1/100 
from the maximum value. On fig. 8 the singular values of a CSDM are plotted and the rank 
is determined to be r=5. 
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Fig. 8. Typical eigenvalues of CSDM determining the matrix rang – r=5. 

3. Vertical sonar array MFP experimental results 

Passive array sonar data from SACLANTC 1993 North Elba experiment available on 

Internet (Saclant sonar data, 1996) is used for processing. Additional information about the 

experiments and signal processing examples is given in (Gingras & Gerstoft,1995, Gerstoft & 

Gingrass, 1996). The array data was collected in shallow-water off the Italian west coast by 

the NATO SACLANT Center in La Spezia, Italy. SACLANT Center has made this data 

available to the public for the purposes of fostering signal processing research. The original 

SACLANT time series has been converted to a series of MATLAB files each of which 

contains a matrix data file from the 48 sensors. Each file represents about 1 minute of data 

The vertical array consists of 48 hydrophones with spacing 2 m between elements at total 

aperture length 94 m (18.7 m to 112.7 m in depth). On 27-th of October a source was towed 

in the surveillance area at a speed approximately 3.5 kn. The source emitted PRN signal 

with a center frequency of 170 Hz. For this source 10 data files are available. The data for the 

moving source was subject to MFP. The available on the site sound speed profiles were used 

for replica computations with KRAKEN normal mode program (Porter, 2007). Technical 

manual of the software was used from (Porter, 1992). On fig. 9 a datagram of sampled time 

domain array signals and their spectrum is given.  

The CSDM was formed from averaged FFT data. The FFT length was 4096 resulting in 

0.2441 Hz FFT binwidth for 1000 Hz sampling data rate. A Hamming window with 50 % 

overlapping was used for weighting. It was observed from fig. 11 the relatively low level of 

the power of CSDM in the frequency window of interest with center frequency 170 Hz 

compared to the low frequency noise (50 – 100 Hz). For estimation of signal CSDM the 

frequency bin for 169.9 Hz is used.  
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Fig. 9. A datagram of time domain array sampled multichannel signals and their power 
spectrum. 
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Fig. 10. Measured Sound Speed Profile of SCALANTC 1993 North Elba experiment. 
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Fig. 11. CSDM for 1 minute moving source array signal.  

On fig. 12 the ambiguity surfaces of three matched field processors: Bartlet, MVDR with 

diagonal loading and MVDR with reduced rank SVD and pseudoiverse matrix are plotted. 

The position of the source is determined with the maximum in the ambiguity surface. All 

data was equally treated with rank of the reduced matrix r = 5, and diagonal loading 

constant ε2 = σ2 = 10. Comparison of the three processors side lobes for an equal depth cut of 

the ambiguity surfaces is given on fig. 13. The level of the side lobes is lower when 

introducing spatial constraints with rank reduction of the inverse matrix. In the source 

localization results on fig. 12 the Bartlett processor is used as a benchmark. Even it has more 

side lobes in the ambiguity surface there is global maximum corresponding to the source 

position. During the processing of the available array data it was established that the 

accuracy of passive localization with the narrow band MFP is very sensitive to environment 

parameters change. Little inaccuracy of SSP or bottom geo-acoustical parameters leads to 

substantial errors in localization. The images on fig. 12 are for the moving source data 

recorded on the 27-th of October. The available environment file on the web site is used in 

the computations (Saclant Sonar Data, 1996). If in the environment file the SSP is changed 

with the data from another file - “sspprofiles.txt” for the 27-th of October more than one and 

halve thousand meters offset in the source range occurs.  

Frequency window of interest 
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Fig. 12. Comparison of ambiguity surfaces localization results of the three processors  
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Fig. 13. Comparison of the normalized power of the three processors MFP-Bartlet - blue, 
MFP-MVDRDL - green and MFPPINV - red. 

4. Conclusion 

The basics of matched field signal processing were presented. Three matched field 

processors were applied on real experimental vertical array sonar data for source 

localization purposes. The MFP-MVDR processor has a lower side lobe levels especially 

applied with rank reduction and pseudo-inverse matrix diagonal loading (see fig. 13). For 

the investigated ranges and shallow water waveguides however the sound structure in 

range is reverberant and repetitive resulting in multiple ambiguity surface local maximums 

or false alarms. The current state of the technology leads to development of underwater 

sensor networks with application of bistatic and multistatic sonar concepts. Results from 

measurements with a bistatic sonar experimental setup are presented in (Kolev et al. 2009), 

(Kolev et al. 2010). The interest for developing adaptive beamforming methods is as with 

uniform but also with non-uniform and random sparse (ad-hoc) arrays with distance 

between nodes bigger than a half-wavelength (Hodgkiss, 1981, Gerstoft, P & Hodgkiss, 

2011). MFP methods are subject to development for application in these underwater 

networks. 
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