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1. Introduction 

 The history of beamforming in sonar applications goes back many years. Perhaps Collodon 
and Sturm’s use of a horn receiver in their 1826 measurement of the speed of sound in water 
is a first example. Their 13-km range certainly required a receiver with a good beam pattern 
to increase the signal to a measureable level. Although receivers have changed over the 
years, beamforming is still an active area of interest and research. 
Modern sonars often utilize multiple sensors in an array configuration. More sensors yield 
more signal information and can help suppress noise and interference. The key to extracting 
information from the array is to exploit the fact that the signals arrive at the different sensors 
at different times due to the array geometry and signal angle. An example of the time delay 
for a signal incident on two sensors is shown below. 
 

 

Fig. 1. Time delay, Δ, associated with a signal incident on a two-sensor array. 

Modelling the signal interaction with the array can be conveniently done using matrices. 

The measured data, y(t), over an array of n sensors is represented as a mapping of the signal, 

s(t), onto the array plus noise.  
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The mapping involves a series of time delays, which are functionally represented by Δ. The 
signal is referenced to the first array sensor, and the time delays are also referenced to the 
first array sensor. It is convenient to call this mapping vector, D. 
The essence of beamforming involves inverting (1) to yield the best estimate of the signal from 
the measured data. The optimal solution in a least-squares sense can be constructed using 
the Moore-Penrose inverse. This inverse is well known and widely used in a variety of 
applications. It is implemented by first left multiplying (1) by the complex transpose of the 
mapping vector, D†. Then, since D†D is a square matrix (in this case a scalar), left 
multiplying by (D†D)-1. This allows the best estimate of the signal, s(t), to be expressed in 
terms of the measured sensor data, y(t), and the mapping vector, D. 

 

1

2† 1 †

( )

( )
( ) ( )

( )n

y t

y t
s t D D D

y t



 
 
   
  
 


 (2) 

or  

 † †

1

2
2

( )

( )1
( ) ( 1 )

( )

n

n

y t

y t
s t

n

y t

 
 
     
  
 




 (3) 

since, 

 D†D = n (4) 

The mathematical interpretation of (3) corresponds to what is commonly called delay-and-
sum beamforming. This equation forms the foundation for beamforming methods. 
An important observation needs to be noted. The model in (1) was developed for only one 

signal. It is the optimal solution for the case that includes only one signal. However, the one-

signal model is often used in multiple-signal environments. Much work has gone into 

mitigating the effects of other signals on (3) by introducing weights on the sensors that 

reduce the leakage from other directions or can sometimes put a null in the direction of the 

interfering signal. However, these methods have their limitations. It is best to use a 

multiple-signal model in a multiple-signal environment. 

2. Narrowband signals 

The required time shifts in the mapping matrix have a particularly simple representation for 
narrowband signals. This is based on the observation that shifting the phase of a 
narrowband signal approximates a time shift. The resulting equations allow for high 
resolution beamforming and direction-of-arrival estimation.  

2.1 Phase shift approximation 

The extra distance, ∆, that the signal, s, has to travel to the second array element in Fig. 1 is 
geometrically determined by the distance between the sensors, a, and the angle of incidence, 

 . This extra distance is simply 
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sin( )a  

 
(5)

 

For narrowband signals it is convenient to express this distance as the radian measure of the 
fraction of a wavelength extra distance that the signal travels. 

 ߮	 2
sin( )a





  (6) 

This phase angle can then be used to simulate advancing or delaying a narrowband signal 

by simple multiplication of the phase term.  

 ݁௜ఝ݁௜ఠ௧ = ݁௜ሺఠ௧ାఝሻ (7) 

It should be noted that this is only an approximation in the sense that it does not actually 

shift the signal in time. Instead it only changes the phase to match a signal shifted in time. 

This phase-shifted signal still starts and stops at the same time samples as the original 

signal. So, it is not actually time shifted, but it does approximate a time-shifted signal over 

part of its interval. This can be problematic for short signal pulses and large time shifts. 

2.2 Narrowband beamforming 

The general sonar problem involves multiple sensors and multiple signals. This can be 

expressed as a mapping, D, of the m signals onto the n sensors in the array. 
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The narrowband mapping or steering matrix, D, can be expressed in terms of the phase 

shifts, φ, associated with the various directions of arrival. Here, each column in the matrix 

corresponds to a diffent signal. For a uniform linear array, which is often the case, the 

steering matrix has the following Vandermonde stucture.  
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 (9) 

Other array geometries can be easily accommodated with this approach by correctly 

modeling the various phase delays associated with the various time delays. 

Beamforming requires inverting (8). As before, the Moore-Penrose inverse should be used. 

This yields the following representation for the signals. 
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It is important to note that in this representation the m signals are decoupled or separated. 
This is generally not the case when conventional beamforming techniques are applied in a 
multiple signal environment, since conventional beamforming uses a one-signal model that 
cannot correctly solve the multiple signal case. 

It is worthwhile to understand the mathematical details in (10). The term D†y can be thought 
of as forming m conventional beams from the array data. These beams are then multiplied 

by the matrix (D†D)-1 as prescribed by Moore-Penrose. The (D†D)-1 term allows the beams to 
be be decoupled. This matrix is more fully described in the next section where the 
importance of the off-diagonal terms in this matrix becomes clear. There is no analog in the 

conventional approach since the (D†D)-1 term reduces to a simple scalar in the one-signal 
model. 
A simulation example is shown in Fig. 2 for two overlapping narrowband +20 dB signals 
arriving on a two-sensor array with half-wavelength spacing at incident angles of ±3º. This 
example simulates a direct signal plus a multipath signal that reflects off the water’s surface 
and arrives at a slightly later time. The top plot shows the output using simple beam 
steering. The two signals are not separated since the beamwidth of this approach cannot 
differentiate signals with small angular separation. The next two plots show the outputs of 
the Moore-Penrose beamformer directed at +3º and −3º. The two signals are seen to be 
clearly separated with this approach. 
 

 

Fig. 2. Simple beam steering and Moore-Penrose beamformer outputs for a two-sensor array 
with two overlapping narrowband +20 dB signals at ±3º. 

Sonar data was collected with a synthetic aperture rail system at the NSWC test pool. A 
short 20-kHz narrow beam signal was projected and two vertical wide beam elements 
received the signal. Fig. 3 shows the results from simple beam steering and from the Moore-
Penrose beamformer output. The vertical axis corresponds to the ping number along the rail 
length, and the horizontal axis corresponds to the relative time sample. The bottom target is 
clearly seen between time samples 1100 and 1500 in both images. A multipath signal can 
also be seen between time samples 2500 and 2900 using simple beam steering, since it is 
within the array’s mainlobe. However, the output from the two-signal Moore-Penrose 
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beamformer steered towards the bottom target effectively eliminates or cancels the 
multipath signal. 
 

 

Fig. 3. Direct and multipath signals with beam steering (left) and only a direct signal with 
the Moore-Penrose beamformer (right). 

The separation of the direct path and the multipath signals in Fig. 2 and 3 is interesting since 

both signals exist deep within the classical mainlobe of the steered beam. The ability to 

separate the signals comes from using a multiple-signal model. Null beam steering is 

somewhat similar in the sense that by placing a null at a second signal effectively leads to 

decoupling. However, null beam steering is limited by its fundamental dependency on a 

one-signal model, which has no analog to the important (D†D)-1 term.  

2.3 Likelihood function 

The least-squares method offers a robust high resolution approach for direction-of-arrival 

estimation. The likelihood function, L, can be constructed as the least-squares difference 

between the measured array data, y, and the parametric model, Ds. 

 2
L y Ds   (11) 

It is useful to insert the Moore-Penrose representation for s into (11). After multiplying 
terms, this yields the following representation for L. 

 † † † 1 †( )L y y y D D D D y   (12) 

It is convenient to drop the constant term y†y and flip the sign to yield a maximization 
problem 

† † 1 †( )L y D D D D y  (13) 

This representation can be interpreted as an inner product of the vector D†y and its Hermitian 

conjugate, y†D. The (D†D)-1 term should be interpreted as the inner product metric tensor. 

Inner product spaces are of considerable interest in physics and mathematics. This array 

processing example is likewise interesting.  
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It is worthwhile to investigate the properties of this metric tensor for the two-signal and n-
element case. The metric tensor is constructed from the steering matrix, D. 
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where 2 1    . The inverse is then 
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It can be seen that when n is large, the inner product metric tensor tends to become 
diagonally dominant. In this case the off-diagonal terms tend to be relatively less important, 
and the conventional signal processing approach starts to assume some validity.  
The off-diagonal terms in (15) are particularly interesting. These terms are a measure of the 
coupling between the signals. Interestingly, as the angle between the two signals becomes 
small, the off-diagonal terms approach the magnitude of the diagonal terms. 
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Since the off-diagonal terms can grow to be nearly as large as the diagonal terms when the 
separation angle is small, they clearly cannot be simply ignored.  
There are special cases when the off-diagonal terms can be safely ignored. These special 

cases occur when the off-diagonal terms are zero, which occur when 

 2 , 4 , .n        (17)  

Because the off-diagonal terms are zero at these values, the problem naturally decouples and 
the signals can be completely separated. These zeros correspond to the zeros commonly seen 
in conventional sidelobe structures. This is the goal of null steering, which adaptively adds 
weights to the steering matrix to produce nulls in the beam pattern in the direction of an 
unwanted signal by exploiting the condition in (17) where the off-diagonal terms go to zero.  
The likelihood function is commonly expressed using a projection operator and a sample 

covariance matrix representation. This may be derived by taking the trace of (13) and 

rotating the vector y† to the right side of the equation.  

 † 1 † †( ( ) )L tr D D D D y y † 1 †( ( ) )tr D D D D R  (18) 
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The least-squares function for the one-signal case reduces to the familiar periodogram 

representation, since (D†D)-1 reduces to a simple scalar. The peak in this function 
corresponds to the best estimate of the parameters. 

 † 2L D y  (19) 

2.4 Direction-of-arrival estimation 

Direction-of-arrival estimation of signals is an important function of array processing. This 
information can be used for localization applications or used as input for high resolution 
beamforming applications. The likelihood function approach can be used to solve this 
problem by finding the parameters that maximize the function.  
A simulation example is shown in Fig. 4 for the same two overlapping narrowband +20 dB 

signals arriving on an array at incident angles of ±3º as seen in Fig. 2. The likelihood 

function is calculated over the 250 time sample interval. Two cases are considered; the first 

one with an array of four sensors and the second with eight sensors with half-wavelength 

spacing.  

 

    

Fig. 4. Example likelihood functions for two narrowband signals with incident angles of ±3º 
on arrays with 4 and 8 sensors. 

The peak in the likelihood function corresponds to the best estimate of the directions of 
arrival. This approach has been shown to approach the Cramer-Rao bound in applications 
[Stoica 1989]. The Cramer-Rao bound has been derived in the literature and is given as  

 CRB = (SNR)-1 (n(n2 -1)/6)-1 (20) 

So, the ability to estimate the directions of arrival depends on two terms. The bound is 
inversely proportional to the signal-to-noise ratio. The bound is also inversely related to the 
number of sensors in a nonlinear way. Four sensors yield ten-fold better estimates than two 
sensors. Likewise, eight sensors yield an eight-fold better estimate than four sensors. This 
increase in resolution with more sensors is seen in the above figure. 
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An alternative and popular approach to direction-of-arrival estimation is the signal 
subspace method [Schmidt 1986]. This alternative method depends on the eigenvalue 
structure of the sample covariance matrix. There are a couple of problems with this method. 
Noise in the sample covariance matrix can lead to poor estimation of the true eigenvalues. 
Additionally, coherent signals such as seen in multipath lead to problems in the structure of 
the sample covariance matrix. A number of signal subspace techniques have been developed 
to address these problems [Wang 1985], [Di Claudio 2001]. 

2.5 Number of signals resolvable by an array  

The number of signals resolvable by an array is somewhat dependent on the array 
processing methods used. Signal subspace methods are strictly limited to n−1 signals with 
an array of n sensors [Friedlander 1991]. This limit is imposed since of the n eigenvalues of 
the sample covariance matrix at least one needs to be assigned to the noise subspace. Hence, 
that leaves at most n−1 eigenvalues to be assigned to the signal subspace. It may be possible 
to assign all the eigenvalues to the signal subspace, but then it would technically not be a 
subspace. 
Both the Moore-Penrose inverse and the likelihood function require the inversion of the 

term D†D. This inverse may or may not exist. In order for it to exist, it is necessary for D†D to 
be full rank. This requirement constrains the number of resolvable signals. 
Consider the n by m general steering matrix for n uniformly spaced array elements and m 
signals. If the incident angles for the incoming signals are all different, then D has m 
independent columns. For uniformly spaced sensors and most other geometries there are n 
independent rows. Since the rank of an n by m matrix is less than or equal to min(m,n), D 

has full rank if and only if rank(D) = min(m,n). In this case, rank(D†D) = min(m,n), so that 

when the incident angles for the incoming angles are distinct, the m by m matrix D†D is 
invertible if and only if n ≥ m.  
This result that an n-sensor array can resolve n signals differs from the signal subspace 

result of n−1 signals. Simulation and test pool examples of two signals resolved by two 

sensors are seen in Fig. 2 and 3. These signals are resolved in the sense that they can be fully 

decoupled in beamforming and direction-of-arrival methods. 

3. Time-shift operators 

Proper array processing requires shifting the signals in time. Time-shift operators, Δ, are 
useful to translate a digitized signal by an arbitrary amount of time, τ. These can be 
functionally expressed as  

 Δ(τ) s(t) = s(t + τ) (21) 

Unitary matrix operators can be constructed for this task [Piper 2009]. Although the specific 

time-shift matrices developed in this chapter are very useful for solving the general 

broadband problem, they have numerous applications in other signal processing problems 

[Laakso 1996].  

3.1 Unit time shifts  

The simplest time-shift operator is the identity matrix, which shifts the time-series signal by 

a zero amount. Using matrices with ones along other diagonals, results in time shifts by a 
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discrete number of time samples. It is worthwhile to consider the unit time-shift operator, 

Δ(1). This may be written in a Toeplitz matrix form as  

 

0 1 0 0

0 0 1 0

0 0 0 1(1)

0 0 0 0
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 
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 (22) 

The effect of this operator is to shift vector elements up or backwards in time by one unit. It 
should be noted that this simple operator is quite independent of the shape of the waveform 
it operates on. It is convenient to require these operators to be unitary so that inverses are 
simply complex transposes.  

3.2 Fractional time shifts  

Construction of the fractional time-shift operator, Δ(τ), for an arbitrary time shift, τ, is best 

done in the frequency domain where the fractional time shift can be effected by a phase 

shift. This operation can be accomplished by multiplying three matrices; the Fourier matrix, 

F, the phase shift matrix, Δ(θ), and the inverse Fourier matrix, F -1. The resultant time-shift 

operator can then be functionally written as 
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 (23) 

The Fourier, phase shift, and inverse Fourier matrices are listed below 
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where 2  / 2  /andi N i Nf e p e    .  

Multiplication of these matrices yields the following exact analytical expression for the 
fractional time-shift operator 
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This matrix has a Toeplitz structure. The diagonal terms, Δk, are geometric series and are 
easily summed. 
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An example of the fractional time-shift operator advancing a unit impulse signal by 2.2 time 
samples is shown below in Fig. 5.  
 

 

Fig. 5. Example of fractional shift of 2.2 samples applied to unit impulse signal. 

4. Broadband signals 

 Broadband signals are much more useful in sonar systems than narrowband signals. The 
increased bandwidth leads to increased range resolution, and the longer signal duration can 
lead to higher signal-to-noise ratios. This type of signal is important, and considerable 
research effort has gone into array processing of broadband data. The key to solving this 
problem is to use the same functional approach used in the narrowband case but use time-
shift operators to perform the necessary time shifting. 

4.1 One-signal beamformer  

The one-signal model for an n-sensor array can be written in matrix form using the time-
shift operators, Δ, as 
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Inversion of this equation in a least-squares sense can be done with the Moore-Penrose 

inverse. This representation can be interpreted as a simple delay-and-sum approach. 
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It is possible and somewhat popular to solve the above problem in the frequency domain. 

This can be realized by inserting Fourier transforms and their inverses into (30). Performing 

the multiplications reveals that the signal can be constructed in the frequency domain using 

simple phase shift operators, Δ(θ), defined in (25). Since the phase-shift operators only have 

non-zero elements along the main diagonal, some computational simplicity can be obtained 

with this approach. 
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4.2 Two-signal beamformer 

For two signals and n sensors the sonar model can be written as  
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 (32) 

The resultant Moore-Penrose inverse solution for the two-signal broadband problem can be 
functionally written as  
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 (33) 

Using the above equation with time-shift operators developed in the previous section leads 

to the matrix to be inverted in (33) being rank deficient. This is a problem. It is therefore 

necessary to use an approximate inverse. The following equation uses a simple approximate 

inverse that allows the signals to be decoupled or separated. However, this approximate 

inverse is not well normalized. 

www.intechopen.com



 
Sonar Systems 90

 

1
† †

1 12 22 12 2

† †
2 22 12 22

1 ( 1 ) / 11

( 1 ) / 1 1

n

y

s n y

s n n

y

 
                                  
 

 
 

 (34) 

A simulation example of this approach is shown in Fig. 6 for two overlapping +20 dB chirp 
signals arriving on a two-element array at incident angles of ±3º. This example is similar to 
the one seen in Fig. 2 in that it also simulates a direct signal plus a delayed multipath signal. 
The top plot shows the measured signal of sensor 1. The next two plots show the two 
outputs of the Moore-Penrose beamformer directed at +3º and −3º. The two chirp signals 
can be seen to be clearly separated with this approach. 
 

 

Fig. 6. Sensor 1 measured signal and Moore-Penrose beamformer outputs for a two-sensor 
array with two overlapping broadband +20 dB signals at ±3º.  

The two-signal case may be generalized to the multiple-signal case by expanding the signal 

vector and steering matrix to account for more signals. The inner product metric term, D†D, 
will also need to be expanded and an approximate inverse found. For a large number of 
signals this could be challenging.  
It may be computationally advantageous to solve this problem in the frequecy domain 

instead of the time domain. This can be realized by inserting Fourier transforms and their 

inverses into (34) and multiplying to yield the following frequency domain representation. 

The Δ(θ) terms are the diagonal phase shift matrices defined in (25). 
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 (35) 
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4.3 Broadband direction-of-arrival estimation 

As in the narrowband case, high resolution direction-of-arrival estimates can be obtained 
using a likelihood function approach. The likelihood function is derived from the least-
squares method and is given as 

 † † 1 †( ) .L y D D D D y  (36) 

It is again necessary to use an approximate inverse in (36). The best estimate of the angles 
can be found by numerically evaluating (36) to find its maximum.  
Two examples are shown in Fig. 7. These correspond to the two chirp signals seen in Fig. 6. 
These signals have incident angles of ±3º on an array with either 4 or 8 sensors. 
 

 

Fig. 7. Example likelihood functions for two broadband signals with incident angles of ±3º 
on arrays with 4 and 8 sensors. 

5. Comments  

Array beamforming has been largely dominated by one-dimensional thinking. One 
dimensional in the sense that one-signal models are applied and expected to work in 
multiple-signal environments. Optimal results can only be expected when the number of 
signals in the model equals the number of signals in the environment. 
The Moore-Penrose inverse has been found to be absolutely ideal for beamforming 
applications in a multiple-signal environment. This inverse is essentially a two-step process. 
The first step, which is a multiplication by the complex transpose of the steering matrix, D†, 
can be thought of as simple beamforming. The second step, which is a multiplication by the 
inner product metric tensor, (D†D)-1, decouples the signals. 
Time-shift operators allow broadband signals to be beamformed nearly as easily as 
narrowband signals. A matrix representation of this operation has been given in this 
chapter. Other approaches are also possible. 
The motivation for this chapter has been the multipath cancellation problem. This is a 
significant problem due to the interference of multipath signals that are often seen in sonar 
data as reflections off the surface and the bottom. Since traditional array processing is 
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limited in its abilities to mitigate this problem, it has been necessary to look at what other 
approaches can be used for this problem. This chapter is a result of that long-term interest 
and presents a way forward.  
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