
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322397785?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 

 

Agrobacterium-Mediated Genetic 
Transformation: History and Progress 

Minliang Guo*, Xiaowei Bian, Xiao Wu and Meixia Wu 
College of Bioscience and Biotechnology, Yangzhou University, Jiangsu,  

P. R. China 

1. Introduction 

Agrobacterium tumefaciens is a Gram-negative soil phytopathogenic bacterium that causes the 
crown gall disease of dicotyledonous plants, which is characterized by a tumorous 
phenotype. It induces the tumor by transferring a segment of its Ti plasmid DNA 
(transferred DNA, or T-DNA) into the host genome and genetically transforming the host. 
One century has past after A. tumefaciens was firstly identified as the causal agent of crown 
gall disease (Smith & Townsend, 1907). However, A. tumefaciens is still central to diverse 
fields of biological and biotechnological research, ranging from its use in plant genetic 
engineering to representing a model system for studies of a wide variety of biological 
processes, including bacterial detection of host signaling chemicals, intercellular transfer of 
macromolecules, importing of nucleoprotein into plant nuclei, and interbacterial chemical 
signaling via autoinducer-type quorum sensing (McCullen & Binns, 2006; Newton & Fray, 
2004; Pitzschke & Hirt, 2010). Therefore, the molecular mechanism underlying the genetic 
transformation has been the focus of research for a wide spectrum of biologists, from 
bacteriologists to molecular biologists to botanists. 

1.1 History of Agrobacterium tumefaciens research  

A. tumefaciens is capable of inducing tumors at wound sites of hundreds of dicotyledonous 
plants, and some monocots and gymnosperms (De Cleene and De Ley, 1976), which may 
happen on the stems, crowns and roots of the host. At the beginning of the last century, 
crown gall disease was considered a major problem in horticultural production. This disease 
caused significant loss of crop yield in many perennial horticultural crops (Kennedy, 1980), 
such as cherry (Lopatin, 1939), apple (Ricker et al., 1959), and grape (Schroth et al., 1988). All 
these horticultural crops are woody species and propagated by grafting scions onto 
rootstocks. The grafting wounds are usually covered by soil and thus provide an excellent 
infection point for the soil-borne A. tumefaciens. In 1941, it was proved that crown gall tumor 
tissue could be permanently transformed by only transient exposure to the pathogen of A. 
tumefaciens (White and Braun, 1941). Thereafter, a ‘tumor-inducing capacity’ was proposed 
to be transmitted from A. tumefaciens to plant tissue (Braun, 1947; Braun and Mandle, 1948). 
Twenty years late, molecular techniques provided the first evidence that crown gall tumors, 
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cultured axenically, contained DNA of A. tumefaciens origin, which implied that host cells 
were genetically transformed by Agrobacterium (Schilperoort et al., 1967). In 1974, the tumor-
inducing (Ti) plasmid was identified to be essential for the crown gall-inducing ability (Van 
Larebeke et al., 1974; Zaenen et al., 1974). Southern hybridization turned out to prove that 
the bacterial DNA transferred to host cells originates from the Ti plasmid and ultimately 
resulted in the discovery of T-DNA (transferred DNA), specific segments transferred from 
A. tumefaciens to plant cells (Chilton et al., 1977; Chilton et al., 1978; Depicker et al., 1978). 
The T-DNA is referred to as the T-region when located on the Ti-plasmid. The T-region is 
delimited by 25-bp directly repeated sequences, which are called T-DNA border sequences. 
The T-DNAs, when transferred to plant cells, encode enzymes for the synthesis of (1) the 
plant hormones auxin and cytokinin and (2) strain-specific low molecular weight amino acid 
and sugar phosphate derivatives called opines. The massive accumulation of auxin and 
cytokinin in transformed plant cells causes uncontrolled cell proliferation and the synthesis 
of nutritive opines that can be metabolized specifically by the infecting A. tumefaciens strain. 
Thus, the opine-producing tumor effectively creates an ecological niche specifically suited to 
the infecting A. tumefaciens strain (Escobar & Dandekar, 2003; Gelvin, 2003). Besides the T-
DNAs, Ti-plasmid also contains most of the genes that are required for the transfer of the T-
DNAs from A. tumefaciens to the plant cell. 
Initial study of these plant tumors was intended to reveal the molecular mechanism that 

may be relevant to animal neoplasia. Although no relationship was found between animal 

and plant tumors, A. tumefaciens and plant tumor were proved to be of intrinsic interest 

because the tumorous growth was shown to result from the transfer of T-DNA from 

bacterial Ti-plasmid to the plant cell and the stable integration of the T-DNA to plant 

genome. The demonstration that wild-type T-DNA coding region can be replaced by any 

DNA sequence without any effect on its transfer from A. tumefaciens to the plant inspired the 

promise that A. tumefaciens might be used as gene vector to deliver genetic material into 

plants. In the early of 1980’s, two events about A. tumefaciens mediated genetic 

transformation signaled the beginning of the era of plant genetic engineering. First, A. 

tumefaciens and its Ti-plasmid were used as a gene vector system to produce the first 

transgenic plant (Zambryski et al., 1983). The healthy transgenic plants had the ability to 

transmit the disarmed T-DNA, including the foreign genes, to their progeny. Second, non-

plant antibiotic-resistance genes, for example, a bacterial kanamycin-resistance gene, could 

be instructed to function efficiently in plant cells by splicing a plant-active promoter to the 

coding region of the bacterial genes. This enabled accurate selection of transformed plant 

cells (Beven, 1984). The eventual success of using A. tumefaciens as a gene vector to create 

transgenic plants was viewed as a prospect and a “wish”. The future of A. tumefaciens as a 

gene vector for crop improvement began to look bright. During the 1990’s, maize, a monocot 

plant species that was thought to be outside the A. tumefaciens “normal host range”, was 

successfully transformed by A. tumefaciens (Chilton, 1993). Today, many agronomically and 

horticulturally important plant species are routinely transformed by A. tumefaciens, and the 

list of plant species that can be genetically transformed by A. tumefaciens seems to grow 

daily (Gelvin, 2003). At present, many economically important crops, such as corn, soybean, 

cotton, canola, potatoes, and tomatoes, were improved by A. tumefaciens–mediated genetic 

transformation and these transgenic varieties are growing worldwide (Valentine, 2003). By 

now, the species that are susceptible to A. tumefaciens–mediated transformation were 

broadened to yeast, fungi, and mammalian cells (Lacroix et al., 2006b). 
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In the new century, intrests of most Agrobacterium community shifted to the transfer channel 
and host. Most recent important articles on Agrobacterium-mediated T-DNA transfer are to 
explore the molecular mechanism of T-complex targeting to plant nucleus. Recent 
progresses of these aspects of Agrobacterium-mediated genetic transformation will be the 
emphases of this chapter and be discussed in the following related sections. 

1.2 Basic process of A. tumefaciens–mediated genetic transformation 

The process of A. tumefaciens–mediated genetic transformation is a long journey. For the 
sake of description, many authors divided this process into several steps (Guo et al., 2009a; 
Guo, 2010; McCullen & Binns, 2006; Pitzschke & Hirt, 2010). Here, we arbitrarily and simply 
split it into five steps: (1) Sensing of plant chemical signals and inducing of virulence (vir) 
proteins. The chemical signals released by wounded plant are perceived by a VirA/VirG 
two-component system of A. tumefaciens, which leads to the transcription of virulence (vir) 
gene promoters and thus the expression of vir proteins. (2) T-DNA processing. T-DNA is 
nicked by VirD2/VirD1 from the T-region of Ti plasmid and forms a single-stranded linear 
T-strand with one VirD2 molecule covalently attached to the 5′end of the T-strand. (3) 
Attaching of A. tumefaciens to plant and transferring of T-complex to plant cell. A. tumefaciens 
cell attaches to plant and transfers the T-complex from A. tumefaciens to plant cell by a 
VirD4/B T4SS transport system. (4) Targeting of T-complex to plant cell nucleus and 
integrating of T-DNA into plant genome. The T-complex is transported into the 
nucleoplasm under the assistance of some host proteins and then integrated into plant 
genomic DNA. (5) Expressing of T-DNA in plant cell and inducing of plant tumor. The T-
DNA genes encode phytohormone synthases that lead to the uncontrolled proliferation of 
plant cell and opine synthases that provide nutritive compounds to infecting bacteria.  

2. Events happening in Agrobacteriun  

A. tumefaciens can perceive the signal molecules from plants and recognize the competent 
hosts. To fulfill the infection, Agrobacterium must respond to the signal molecules. The 
respondence occuring in Agrobacterium includes host recognition, virulence gene expression, 
and T-DNA processing. 

2.1 Sensing of plant signal molecules and vir gene induction  

Many genes are involved in A. tumefaciens-mediated T-DNA transfer, but most of the genes 
required for T-DNA transfer are found on the vir region of Ti plasmid. This vir region 
comprises at least six essential operons (virA, virB, virC, virD, virE, and virG,) and two non-
essential operons (virF and virH) encoding approximate 25 proteins (Gelvin, 2000; Zhu et al., 
2000; Ziemienowicz, 2001). These proteins are termed virulence (vir) proteins and required 
for the sensing of plant signal molecules as well as the processing, transfer, and nuclear 
localization of T-DNA, and the integration of T-DNA into the plant genome. The protein 
number encoded by each operon differs; virA, virG and virF encode only one protein; virE, 
virC, and virH encode two proteins; virD encodes four proteins and virB encodes eleven 
proteins. Only virA and virG are constitutively transcripted. The transcription of all other vir 
operons in vir region is coordinately induced during infection by a family of host-released 
phenolic compounds in combination with some monosaccharides and extracellular acidity 
in the range of pH 5.0 to 5.8. Virtually all of the genes in the vir region are tightly regulated 
by two proteins VirA and VirG encoded by virA operon and virG operon (Lin et al., 2008). 
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The inducible expression of vir operons was first found by using the cocultivation of A. 

tumerfaciens with mesophyll protoplasts, isolated plant cells or cultured tissues (Stachel et 

al., 1986). In vegetatively growing bacteria, only virA and virG are expressed at significant 

level. However, when Agrobacteria are cocultivated with the susceptible plant cells, the 

expression of virB, virC, virD, virE and virG are induced to high levels (Engstrom et al., 

1987). The partially purified extracts of conditioned media from root cultures can also 

induce the expression of vir operons, demonstrating that the vir-inducing factors are some 

diffusible plant cell metabolites. By screening 40 plant-derived chemicals, Bolton et al. (1986) 

identified seven simple plant phenolic compounds that possess the vir-inducing activity. 

Most of these vir-inducing phenolic compounds are needed to make lignin, a plant cell wall 

polymer. The best characterized and most effective vir gene inducers are acetosyringone 

(AS) and hydroxy-acetosyringone from tobacco cells or roots (Stachel et al., 1985). The 

specific composition of phenolic compounds secreted by wounded plants is thought to 

underlie the host specificity of some Agrobacterium strains. Besides phenolic compounds, 

other inducing factors include aldose monosaccharides, low pH, and low phosphate 

(Brencic & Winans, 2005; McCullen & Binns, 2006; Palmer et al., 2004). However, phenols are 

indispensable for vir gene induction, whereas the other inducing factors sensitise 

Agrobacteria to phenols. 

2.2 Regulation of vir gene induction  

The regulatory pathway for vir gene induction by phenolic compounds is mediated by the 

VirA/VirG two-component system, which has structural and functional similarities to other 

already described for other cellular regulation mechanisms (Bourret et al., 1991; Nixon et al., 

1986). Two component regulatory systems comprise two core components, a sensor kinase 

and an intracellular response regulator. The sensor kinase responds to signal input and 

mediates the activation of the intracellular response regulator by controlling the latter’s 

phoshporylation status (Brencic & Winans, 2005; McCullen & Binns, 2006). For the 

Agrobacterium VirA/VirG two-component system, VirA is a membrane-bound sensor 

kinase. The presence of acidic environment and phenolic compounds at a plant wound site 

may directly or indirectly induce autophosphorylation of VirA. The phosphorylated VirA 

can transfer its phosphate to the cytoplasmic VirG to activate VirG. The activated VirG 

binds to the specific 12bp DNA sequences called vir box enhancer elements that are found in 

the promoters of the virA, virB, virC, virD, virE and virG operons, and then upregulates the 

transcription of these operons (Winans, 1992). 

Octopine-type Ti plasmid encoded VirA protein has 829 amino acids. VirA is a member of the 
histidine protein kinase class and able to autophosphorylate. When VirA autophosphorylates 
in vitro, the phosphate was found to bind to histidine residue 474, a histidine residue that is 
absolutely conserved among homologous proteins (Jin et al., 1990). VirA protein can be 
structurally divided into a number of domains. In an order from N-terminus to C-terminus, 
these domains are defined as transmembrane domain 1 (TM1), periplasmic domain, 
transmembrane domain 2 (TM2), linker domain, kinase domain and receiver domain (Lee et 
al., 1996). The periplasmic domain is required for the interaction with ChvE, the sugar-binding 
protein that responds to the vir-inducing sugars. The linker domain is located on the region of 
amino acid 280~414, which was supposed to interact with the vir gene inducing phenolic 
compounds (Chang & Winans 1992). A highly amphipathic helix sequence of 11 amino acids 
was identified in the region of amino acid 278-288. This amphipathic sequence is highly 
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conserved in a large number of chemoreceptor proteins and thus was supposed to be the 
receptor site for phenolic inducers (Turk et al., 1994). However, it is unclear whether the 
phenolic inducers interact with VirA directly or indirectly. The kinase domain is a highly 
conserved domain that presents in the family of the sensor proteins and contains the 
conserved histidine residue 474 that is the autophosphorylation site. Site-directing mutation of 
this His 474 results in avirulence and the lost of vir gene inducing expression in the presence of 
plant signal molecules (Jin et al., 1990). The receiver domain shows an unusual feature that is 
homologous to a region of VirG. Similar receiver domains are present in a small number of 
homologous histidine protein kinases, but the function of this domain is unclear. 
VirG is a transcriptional activator of 241 amino acid residues. It is composed of two main 
domains, N-terminal domain and C-terminal domain. The aspartic acid 52 in the N-terminal 
domain of VirG can be phosphorylated by the phosphorylated VirA (Jin et al, 1993). The 
phosphorylation of N-terminal domain is thought to induce the conformation change of C-
terminal domain. The C-terminal domain of VirG possesses the DNA-binding function, 
resulting in VirG specifically binding to the vir box sequence that is found within 80 
nucleotides upstream from the transcription initiation sites of vir genes. Phosphorylation is 
required for the transcriptional activation function of VirG, but how phosphorylation 
modulates the properties of VirG is unknown. Some models suggested that phosphorylation 
might increase the affinity of VirG to its binding sites or promote the ability of VirG to 
contact RNA polymerase (Lin et al., 2008; McCullen & Binns, 2006; Wang et al., 2002). 

2.3 T-DNA processing     

The activation of vir genes initiates a cascade of events. Following the expression of vir 
genes, some Vir proteins produce the transfer intermediate, a linear single stranded (ss) 
DNA called T-DNA or T-strand that is derived from the bottom (coding) strand of the T-
region of the Ti plasmid. T-region is flanked by two 25 bp long imperfect direct repeats, 
termed border sequences. VirD2/VirD1 is able to recognize the border sequences and cleave 
the bottom strand of T-region at identical positions between bp 3 and 4 from the left end of 
each border (Sheng & Citovsky, 1996). Upon the cleavage of T-DNA border sequence, VirD2 
remains covalently associated with the 5´-end of the ssT-strand via tyrosine residue 29 
(Vogel & Das, 1992). The excised ssT-strand is removed, and the resulting single-stranded 
gap in the T-region is repaired, most likely replaced by a newly synthesizing DNA strand. 
The association of VirD2 with the 5´-end of the ssT-strand is believed to prevent the 
exonucleolytic attack to the 5´-end of the ssT-strand (Durrenberger et al., 1989) and to 
distinguish the 5´-end as the leading end of the T-DNA complex during transfer.  
One report indicated that VirD1 possesses a topoisomerase-like activity (Ghai and Das, 
1989). VirD1 appears to be a type I DNA topoisomerase that do not require ATP for activity. 
However, a late study (Scheiffele et al., 1995) contradicted this conclusion. The VirD1 
protein purified by Scheiffele et al. (1995) never showed any topoisomerase activity. It was 
speculated that the topoisomerase activity observed by Ghai and Das (1989) might originate 
from VirD2. Mutational study of VirD1 showed that a region from amino acids 45~60 is 
important for VirD1 activity. Sequence comparison of this fragment with the functionally 
analogous proteins of conjugatable bacterial plasmids showed that this region is a potential 
DNA-binding domain (Vogel & Das, 1994). 
The nopaline Ti plasmid encoded VirD2 consists of 447 amino acids with a molecular weight 
of 49.7 kDa. Deletion analysis of VirD2 demonstrated that the C-terminal 50% of VirD2 
could be deleted or replaced without affecting its endonuclease activity. Sequence 
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comparison of VirD2 from different Agrobacterium species shows that the N-terminus is 
highly conserved with 90% homology, whereas only 26% homology is found in the C-
terminus (Wang et al., 1990). A sequence comparison of VirD2 protein with its functionally 
homologous proteins in bacterial conjugation and in rolling circle replication revealed that a 
conserved 14-residue motif lies in the residues 126~139 of VirD2. This motif contains the 
consensus sequence HxDxD(H/N)uHuHuuuN (invariant residues in capital letters; x, any 
amino acid; u, hydrophobic residue) (Ilyina & Koonin, 1992). Mutational analysis indicated 
that all the invariant residues except for the last asparagine (N) in this motif are important 
for the endonuclease activity of VirD2. The second aspartic acid (D) and three nonconserved 
residues in this motif are also essential for the endonuclease activity of VirD2 (Vogel et al., 
1995). This motif is believed to coordinate the essential cofactor Mg2+ by the two histidines 
in the hydrophobic region of the motif (Ilyina & Koonin, 1992). The poorly conserved C-
terminal halves of VirD2 from different Agrobacterium species displayed a very similar 
hydropathy profile (Wang et al., 1990). The C-terminal domain of VirD2 is thought to guide 
the T-complex to the plant nucleus. The sequence characterization and function of this 
region of VirD2 will be discussed in a late section of this chapter.  

3. Contact of Agrobacterium with plant and transfer of Agrobacterial 
molecules to plant 

3.1 Chemotaxis of A. tumefaciens   

A. tumefaciens is a motile organism, with peritrichous flagellae, that possesses a highly 
sensitive chemotaxis system. It could respond to a range of sugars and amino acids and be 
attracted to these sugars and amino acids (Loake et al., 1988). A. tumefaciens mutants 
deficient in motility and in chemotaxis were fully virulent when inoculated directly. 
However, when used to inoculate soil, which was air-dried and then used to grow plants, 
these mutants were completely avirulent. These results indicated that the motility and 
chemotaxis are critical to A. tumefaciens infection under natural conditions (Hawes & Smith, 
1989). Wild-type A. tumefaciens strains both containing and lacking Ti plasmid exhibited 
chemotaxis toward excised root tips from all plant species tested and toward root cap cells 
of pea and maize, suggesting that the majority of chemotactic responses in A. tumefaciens 
appear to be chromosomally encoded (Loake et al., 1988; Parke et al., 1987). However, the 
chemotactic response to some phenolic compounds, for example acetosyringone, which 
were identified as strong vir gene inducers, is controversial. Some reports showed that 
chemotaxis toward acetosyringone requires the presence of a Ti plasmid, specifically the 
regulatory genes virA and virG, and occurs with a threshold sensitivity of < 10-8 M, some 
1000-fold below the maximal vir-inducing concentration (Ashby et al., 1988; Shaw et al., 
1989). Whereas, reports from other groups indicated that acetosyringone did not elicit 
chemotaxis at any concentration (Hawes & Smith, 1989) and chemotaxis toward related 
compounds did not require the Ti plasmid (Park et al., 1987). So, it does seem difficult to 
rationalize a role for acetosyringone and the regulatory genes virA and virG in 
chemotaxis. 

3.2 Attachment of A. tumefaciens to plant    

It is reasonable that an intimate association between pathogen and host cells is required for 

the transfer of T-DNA and virulence proteins from A. tumefaciens to plant cells. A. 

tumefaciens can efficiently attach to both plant tissues and abiotic surfaces, and establish 
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complex biofilms at colonization sites. Microscopic observation of bacteria interacting with 

the plant cells demonstrates a significant propensity to attach in a polar fashion (Smith & 

Hindley, 1978; Tomlinson & Fuqua, 2009). All Agrobacterium mutants deficient in attachment 

to plant cells are either avirulent or extremely attenuated in virulence (Cangelosi et al., 1989; 

Douglas et al., 1982, 1985; Matthysse & McMahan, 2001; O’Connell & Handelsman, 1989). 

Although obviously critical, the attachment process is one of the least-characterized sets of 

cellular processes in the entire interaction. Little progress on this area was made in recent 

years (Tomlinson & Fuqua, 2009). 

3.2.1 Bacterial genes involved in the attachment of A. tumefaciens to plant     

The binding of A. tumefaciens to host plant cells seems to require the participation of specific 

receptors that may exist on the bacterial and plant cell surface because the binding of A. 

tumefaciens to host plant cells is saturable and unrelated bacteria fail to inhibit the binding of 

A. tumefaciens to host plant cells (B.B. Lippincot & J.A. Lippincot, 1969). A number of A. 

tumefaciens mutants reported to affect the attachment of bacteria to plant cells have been 

isolated. Some related genes are identified and sequenced (Matthysse et al., 2000; Reuhs et 

al., 1997). However, it is surprising that a large number of genes are involved in the bacterial 

attachment to host cells and the actual functions of most genes are unclear (Matthysse et al., 

2000). All the genes reported to affect the bacterial attachment to host cells are chromosomal 

genes.The genes involved in the binding of bacteria to host plant cells are identified to 

mainly locate on two regions of the bacterial chromosome.  

The binding of bacteria to host cells is thought to be a two-step process (Matthysse & 

McMahan, 1998). The binding in the first step is loose and reversible because the bound 

bacteria are easy to being washed from the binding sites by shear forces, such as water 

washing or vortexing of tissue culture cells. Genes involved in this step are identified to 

locate on the att gene region (more than 20 kb in size) of the bacterial chromosome. Gene 

mutations in this region abolish virulence. The mutants in the att gene region can be divided 

into two groups. The first group can be restored to attachment and virulence by the addition 

of conditioned medium. This group appears to be altered in signal exchange between the 

bacterium and the host. Mutations in this group of mutants occur in the genes homologous 

to ABC transporters and transcriptional regulator as well as some closely linked 

downstream genes (Matthysse et al., 2000; Matthysse & McMahan, 1998; Reuhs et al., 1997). 

The second group of mutants in the att gene region is not affected by the presence of 

conditioned medium. This mutant group appears to affect the synthesis of surface 

molecules, which may play a role in the bacterial attachment to the host. This group 

includes mutants in the genes homologous to transcriptional regulator and ATPase as well 

as a number of biosynthetic genes, which include the transacetylase required for the 

formation of an acetylated capsular polysaccharide. The acetylated capsular polysaccharide 

is required for the bacterial attachment to some plants because the production of the 

acetylated capsular polysaccharide is correlated to the attachment of wild-type strain C58 to 

the host cells and the purified acetylated capsular polysaccharide from wild-type strains 

blocks the binding of the bacteria to some host cells (Matthysse et al., 2000; Matthysse & 

McMahan, 1998, 2001; Reuhs et al., 1997). 

The second step in the bacterial attachment to the host results in tight binding of the 
bacteria to the plant cell surface because the bound bacteria can no longer be removed 
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from the plant cell surface by shear forces. This step requires the synthesis of cellulose 
fibrils by the bacteria, which recruits larger numbers of bacteria to the wound sites. 
Cellulose-minus bacterial mutants show reduced virulence (Minnemeyer et al., 1991). The 
genes required for the synthesis of bacterial cellulose fibrils (cel genes) are identified to 
locate on the bacterial chromosome near, but not contiguous with the att gene region 
(Robertson et al., 1988). 
Some other chromosomal virulence genes chvA, chvB, and pscA (exoC) are believed to be 

involved indirectly in bacterial attachment to host (Cangelosi et al., 1987; Douglas et al., 

1982; O’Connell & Handelsman, 1989). These genes are involved in the synthesis, 

processing, and export of a cyclic ǃ-1,2-glucan, which has been implicated in the bacterial 

binding to plant cells. Mutations in chvA, chvB, and pscA (exoC) cause a 10-fold decrease in 

binding of bacteria to zinnea mesophyll cells and strongly attenuate virulence (Douglas et 

al., 1985; Kamoun et al., 1989; Thomashow et al., 1987). ChvB is believed to be involved in 

the synthesis of the cyclic ǃ-1,2-glucan (Zorreguieta & Ugalde, 1986). ChvA is homologous 

to a family of membrane-bound ATPases and appears to be involved in the export of the 

cyclic ǃ-1,2-glucan from the cytoplasm to the periplasm and extracellular fluid (Cangelosi et 

al., 1989; De Iannino & Ugalde, 1989). However, the virulence of chvB mutants is 

temperature sensitive (Banta et al., 1998). At lower temperature (16 ºC), chvB mutants 

became virulent and were able to attach to plant roots (Bash & Matthysse, 2002). 

3.2.2 Plant factors involved in the attachment of A. tumefaciens to plant    

In addition to bacterial factors, some plant factors are essential for the attachment of A. 
tumefaciens to plant cells. Two plant cell wall proteins: a vitronectin-like protein (Wagner & 
Matthysse, 1992) and a rhicadhesin-binding protein (Swart et al., 1994) have been proposed 
to mediate the bacterial attachment to plant cells. Vitronectin is an animal receptor that is 
specifically utilized by different pathogenic bacteria (Burridge et al., 1988). A plant 
vitronectin-like protein is reported to occur in several A. tumefaciens host plant (Sanders et 
al., 1991). Human vitronectin and antivitronectin antibodies were shown to inhibit the 
binding of A. tumefaciens to plant tissues. Nonattaching A. tumefaciens mutants, such as chvB, 
pscA and att mutants, showed a reduction in the ability to bind vitronectin. Therefore, the 
plant vitronectin-like protein was proposed to play a role in A. tumefaciens attachment to its 
host cells (Wagner & Matthysse, 1992).  However, a recent report argues against the role of 
the vitronectinlike protein in bacterial attachment and Agrobacterium-mediated 
transformation (Clauce-Coupel et al., 2008). 
Genetic studies showed that additional plant cell-surface proteins might play a role in A. 
tumefaciens attachment. Two Arabidopsis ecotypes, B1-1 and Petergof, which are highly 
recalcitrant to Agrobacterium-mediated transformation, were proposed to be blocked at an 
early step of the binding (Nam et al., 1997). Two Arabidopsis T-DNA insertion mutants of the 
ecotype Ws, rat1 and rat3, which are resistant to Agrobacterium transformation (rat mutants), 
are deficient in A. tumefaciens binding to cut root surfaces (Nam et al., 1999). DNA sequence 
analysis indicated that rat1 and rat3 mutations affect an arabinogalactan protein (AGP) and 
a potential cell-wall protein, respectively. AGPs were confirmed to be involved in A. 
tumefaciens transformation (Nam et al., 1999). Interestingly, AGP17 (rat1 mutant) appears to 
be involved in host defense reactions and signaling (Gaspar et al., 2004; Gelvin, 2010a). 
Other two rat mutans, ratT8 and ratT9, were identified to be mutated in the genes coding for 
receptor-like protein kinases (Zhu et al., 2003). 
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3.3 Transfer of Agrobacterial molecules to plant   

Following the production of T-DNA and attachment to the host cells, Agrobacterium 

transports T-DNA and virulence proteins into the host. The transportation must cross the 

bacterial cell membrane and wall, as well as host cell membrane and wall. 

3.3.1 Transfer apparatus   

A. tumefaciens uses type IV secretion system (T4SS) to transfer T-DNA and effector proteins 

to its host cells (Cascales & Christie, 2003, 2004). The T4SS was initially defined to be a class 

of DNA transporters whose components are highly homologous to the conjugal transfer 

(tra) system of the conjugative IncN plasmid pKM101 and the A. tumefaciens T-DNA transfer 

system (Burns, 2003; Christie & Vogel, 2000).  T4SS, also known as the mating pair formation 

(Mpf) apparatus, is a cell envelope-spanning complex (composed of 11-13 core proteins) that 

is believed to form a pore or channel through which DNA and/or protein is delivered from 

the donor cell to the recipient cell.  Recently the members of T4SS have steady increased, 

with the identification of additional systems involved in DNA and protein translocation 

(Alvarez-Martinez & Christie, 2009; Cascales & Christie, 2003; Christie & Vogel, 2000; 

Gillespie, 2010). However, the best-studied T4SS member is the VirB/D4 transporter of A. 

tumefaciens. In the past decade, much of the research on Agrobacterium-mediated T-DNA 

transfer focused on the vir-specific T4SS, the T-complex transporter. Therefore, the A. 

tumefaciens T-complex transporter has become a paradigm of T4SS (Alvarez-Martinez & 

Christie, 2009; Cascales & Christie, 2003). 

The VirB/D4 T4SS is assembled from 11 proteins (VirB1 to VirB11) encoded by the virB 

operon, and VirD4. At least 10 of the 11 VirB proteins are believed to be the structural 

subunits of the T-pilin and associated transport apparatus that spans from the cytoplasm of 

the cell, through the inner membrane, periplasmic space and outer membrane, to the outside 

of the cell. In the past few years, work in identifying the interactions among the VirB protein 

subunits and defining the steps in the transporter assembly pathway has extended our 

knowledge of the structure of the VirB transport apparatus. To demonstrate the architecture 

of the VirB/D4 transporter, a model that depicts the subcellular locations and interactions of 

the VirB and VirD4 subunits of the A. tumefaciens VirB/D4 T4SS was proposed (Alvarez-

Martinez & Christie, 2009; Cascales & Christie, 2004). Recently, VirB7, VirB9, and VirB10 

homologs from the pKM101 T4SS were purified and the cryoEM structure of a core complex 

composed of pKM101 VirB7-like TraN, VirB9-like TraO, and VirB10-like TraF was revealed 

(Fronzes et al., 2009). 

Agrobacterium-mediated T-DNA transfer to plant shows striking similarities to the plasmid 
interbacterial conjugation (Ream, 1989; Stachel & Zambryski, 1986). Bacterial conjugation 
can be visualized as the merging of two ancient bacterial systems: the DNA rolling-circle 
replication system and type IV secretion system (T4SS) (Llosa et al., 2002). The DNA rolling-
circle replication system in plasmid conjugation was also known as the DNA transfer and 
replication (Dtr) system. The Dtr system corresponds to the T-DNA relaxase nucleoprotein 
complex. The T4SS responding for the plasmid conjugation was initially called mating pair 
formation (Mpf) system. In order to recognize these two systems and link them, a protein is 
normally required for many conjugal plasmids to couple the Dtr to the Mpf. This protein 
was called coupling protein as its function (Gomis-Ruth et al., 2002).  
VirD4 is a homologue of coupling protein family and is believed to be the coupling protein 
that links the transferred molecules and T4SS transporter. VirD4 is an inner membrane 
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protein with potential DNA binding ability and ATPase activity. Membrane topology 
analysis of VirD4 revealed that VirD4 contains an N-terminal-proximal region, which 
includes two transmembrane helices and a small periplasmic domain, and a large C-
terminal cytoplasmic domain (Cascales & Christie, 2003; Das & Xie, 1998). VirD4 localizes to 
the cell pole. The polar location of VirD4 was not dependent on T-DNA processing, the 
assembly of T4SS transporter and the expression of other Vir proteins. Both the small 
periplasmic domain and the cytoplasmic nucleotide-binding domain are required for the 
polar localization of VirD4 and essential for T-DNA transfer. VirD4 forms a large oligomeric 
complex (Kumar & Das, 2002). VirD4 can recruit VirE2 to the cell poles (Atmakuri et al., 
2003) and weakly interact with VirD2-T-strand complex (Cascales & Christie, 2004). 
Although VirD4 is essential for coordinating the T4SS to drive T-DNA transfer, it has been 
unclear whether VirD4 physically/directly interacts with the T4SS transporter. However, 
the interaction between VirD4 homologues and the protein components of Dtr system 
exhibits specificity.  It was supposed that VirD4 protein might recruit T-complex to the T4SS 
transporter through contacts with the T-complex protein and then through the contacts with 
VirB10 coordinate the passage of T-complex through the T4SS channel (Cascales & Christie, 
2003; Llosa et al., 2003). However, it should be pointed out that the recruitment of T-
complex might be much more difficult than the recruitment of single VirE2 molecule due to 
the difference of molecular size between T-complex and VirE2. Recently, two cytoplasmic 
proteins, VBP (VirD2-binding protein) (Guo et al., 2007a, 2007b) and VirC1 (Atmakuri et al., 
2007) were reported to be involved in the recruitment of the T-complex to T4SS. Genome-
wide sequence analysis showed that A. tumefaciens contains three vbp homologous genes. 
Reverse genetic study showed that mutatons of three vbp genes highly attenuated the 
bacterial ability to cause tumors on plants (Guo et al., 2007a, 2009b). 

3.3.2 Agrobacterial molecules transported to plant   

Agrobacterial molecules transported into host cells by VirB/D4 T4SS include the VirD2-T-

strand complex, VirE2, VirE3, VirF, and VirD5. VirD2 is covalently bound to the 5′end of 
the T-strand. The bound VirD2, probably in conjunction with other protein components, 
such as VBP (Guo et al., 2007a, 2007b) and VirC1 (Atmakuri et al., 2007), confers 
recognition of the VirD2-T-strand complex by the VirB/D4 T4SS. VirD2 also “pilots” the 
T-strand through the translocation channel. It was supposed that the VirB/D4 T4SS is 
actually a protein transporter and the T-strand is the “hitchhiker” (Cascales & Christie, 
2004). 
VirE2 is a single-stranded DNA-binding protein (Christie et al., 1988; Citovsky et al., 1988) 
that can bind single-stranded DNA without sequence specificity, and is supposed to protect 
the T-strand from the nucleolytic degradation because single-stranded T-DNA is believed to 
be susceptible to nucleases. The binding of VirE2 to single-stranded DNA is strong and co-
operative, suggesting that VirE2 coats the T-strand along its length (Citovsky et al., 1989). 
Another possible function of VirE2 is to guide the nuclear import of T-DNA (Ziemienowicz 
et al., 1999, 2001). This will be discussed in the following section of this chapter. Induced 
Agrobacterium cell can produce sufficient VirE2 to bind all intracellular single-stranded T-
DNA. When bound to single-stranded DNA, VirE2 can alter the ssDNA from a random-coil 
conformation to a telephone cord-like coiled structure and increases the relative rigidity 
(Citovsky et al., 1997). Initial hypothesis is that the protective role of VirE2 is required to 
function in both bacteria and plant cells. So, the prevailing view on the T-DNA transfer is 
that a packaged nucleoprotein complex, the T-complex, composed of the T-strand DNA 
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containing the 5´-associated VirD2 and coated with VirE2 along its length, is the transfer 
intermediate (Howard & Citovsky, 1990; Zupan & Zambryski, 1997). This T-complex 
structure model implies that both VirD2 and VirE2 together with the T-strand are 
transported into plant cell in the same time. This idea makes biological sense because it is 
likely that VirE2 with a high affinity to ssDNA may form a complex with the T-strand 
already inside Agrobacterium cell, especially if both VirE2 and the T-strand are transported 
through the same channel (Binns et al., 1995). Indeed, the T-complex, which contains T-
strand, VirD2 and VirE2, was observed in the crude extracts from vir-induced Agrobacterium 
by using anti-VirE2 antibodies to co-immunoprecipitate both T-strand and VirE2 (Christie et 
al., 1988). 
However, two kinds of evidence argued against that the protective role of VirE2 is required 

to function inside bacterial cells. The first is the observation that a strain expressing virE2 

but lacking T-DNA can complement a virE2 mutant in a tumor formation assay (Otten et al., 

1984) and the T-strand accumulates to wild-type levels in virE2 mutants (Stachel et al., 1987; 

Veluthambi et al., 1988). The second kind of evidence is that virE2 expression in transgenic 

tobacco plants restores the infectivity of a VirE2-deficient Agrobacterium strain (Citovsky et 

al., 1992). In addition, the observation that virE2 mutants can transfer T-DNA into plant cells 

(Yusibov et al., 1994) also proved that VirE2 is not essential for the export of T-DNA. All 

these data appear to support that T-DNA may not be packaged by VirE2 in the bacterial 

cells, at least, the packaging of T-DNA inside bacterial cells by VirE2 is not necessary for the 

tumor formation. VirE2 can be transported independently, but the transportation of VirE2 

requires the activities of VirE1. VirE1 is a chaperone and is necessary for VirE2 translation 

and stability but not essential for the recognition of the translocation signal of ViE2 by the 

transport machinery and the subsequent translocation of VirE2 into plant cells, indicating 

that the role of VirE1 playing in the export process of VirE2 seems restricted to the 

stabilization of VirE2 by preventing VirE2 from the premature interactions in the bacterial 

cell before translocation into plant cells (Vergunst et al., 2003). 

Like VirD2 and VirE2, agrobacterial protein VirF can also be exported to plant cell (Vergunst 

et al., 2000). virF gene is found only in the octopine-specific Ti plasmid. It is not essential for 

T-DNA transfer. Initially, VirF is thought to be a host-range factor of Agrobacterium 

(Regensburg-Tuink & Hooykaas, 1993). A more recent report showed that VirF interacts 

with an Arabidopsis Skp1 protein (Schrammeijer et al., 2001). Yeast Skp1 protein and its 

animal and plant homologs are subunits of the complexes involved in targeted proteolysis. 

This targeted proteolysis can regulate the plant cell cycle. So, it was suggested that VirF may 

function in setting the plant cell cycle to effect better transformation (Gelvin, 2003; Tzfira & 

Citovsky, 2002). 

Protein truncation and fusion of T4SS substrates demonstrated that certain C-terminal 
motifs were required for the export of targeted substrates. The C-terminal 37 amino acids 
of VirF and the C-terminal 50 amino acids of VirE2 and VirE3 are sufficient to mediate 
transport of these fusion proteins to plants (Vergunst et al., 2000, 2003). The minimal size 
of VirF required to direct the translocation of VirF-fusion protein to plants is the C-
terminal 10 amino acids. Site-directed mutations showed that several arginines within this 
region are required for transport (Vergunst et al. 2005). These export signals mediate the 
recognition of substrates by the VirB/D4 T4SS. A possible consensus sequence R-x(7)-R-x-
R-x-R (x, any amino acid) was identified in the C termini of substrates secreted by the 
VirB/D4 T4SS. 
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4. Events happening in host 

Following the entry of agrobacterial molecules in plant cell cytoplasm, the VirD2-T-strand 

interacts with VirE2 and plant proteins, likely forming “super-T-complex”, which is 

responsible for subcellular travelling of T-strand from cytoplasm through nuclear 

membrame into nucleus, and to the chromatin, thus facilitating T-DNA integration into host 

genome. All these biological processes occurring in host cells require the involvement of 

many host factors. 

4.1 Nuclear targeting of T-complex    

The dense structure of the cytoplasm, which greatly restricts the free diffusion of 

macromolecules, and the size of the “super-T-complex”, which far exceeds the 60 kDa size-

exclusion limit of the nuclear pore (Lacroix et al., 2006a), indicate that active transport 

processes are required for the nuclear import of T-complex. As a rule, active nuclear import 

of proteins requires a specific nuclear localization signal (NLS). Typical nuclear localization 

signals are short regions rich in basic amino acids (Silver, 1991). 

4.1.1 Nuclear localization signals in Agrobacterial molecules    

Because T-strand is presumed to be completely coated with proteins inside plant cells it is 

impossible for T-strand itself to carry NLSs. Thus, the NLSs that guide T-complex nuclear 

import most likely reside in its associated proteins, VirD2 and VirE2. Sequence analysis 

reveals that both VirD2 and VirE2 contain NLSs. Two NLSs are found in VirD2. One is the 

typical bipartite NLS that resides in residues 396~413. The nuclear localizing function of this 

bipartite NLS was confirmed by the observation that VirD2-GUS fusion protein, when 

expressed in tobacco protoplasts, can target to plant cell nuclei (Howard et al., 1992; Tinland 

et al., 1992). However, mutations that destroy this bipartite NLS attenuate, and do not 

abolish tumorigenesis, indicating that although this NLS plays a role in T-DNA transfer, it is 

not essential (Rossi et al., 1993; Shurvinton et al., 1992). Another NLS in VirD2 is found in 

residues 32~35, adjacent to the active site in the endonuclease domain (Tinland et al., 1992). 

This NLS is a monopartite NLS. GUS proteins fused with this NLS accumulate in plant 

nuclei, but this NLS does not play a role in T-DNA nuclear localization (Shurvinton et al., 

1992). The sequences of residues 419~423 at the C-terminus of VirD2, known as the ω 

domain, are important for tumorigenesis, but do not contribute to nuclear localization 

activity despite its proximity to the bipartite NLS. The ω domain was supposed to be 

involved in T-DNA integration (Mysore et al., 1998). 

VirE2, the most abundant protein component of the T-complex, contains two bipartite NLSs 

in its central region (residues 205~221, and residues 273~287). When fused to GUS, each 

VirE2 NLS is capable of directing the fusion protein to the nucleus of a plant cell, but the 

maximum accumulation in the nucleus requires both VirE2 NLSs (Citovsky et al., 1992). 

Because these two NLSs overlap with the DNA binding domains, mutations of virE2 that 

abolish the activity of one of these NLSs will also eliminate the DNA binding activity. So, no 

genetic evidence can be provided to verify the function of these two VirE2 NLSs in T-

complex nuclear localization. When VirE2 binds to T-strand, the NLSs of VirE2 may be 

occluded and inactive. It has been observed that for the nuclear import of short ssDNA, 

VirD2 was sufficient, whereas import of long ssDNA additionally required VirE2 

(Ziemienowicz et al., 2001). Although predominantly nuclear localization of VirE2 was 
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observed in earlier studies, several recent reports demonstrated the cytoplasmic localization 

of VirE2 (Bhattacharjee et al., 2008; Grange et al., 2008). Indeed, results from different 

research groups indicate that VirE2 localizes to different subcellular compartments in 

different tissues (Gelvin, 2010b). All the evidence argued against the function of VirE2 in T-

complex nuclear localization. RecA, a NLS-lacking ssDNA binding protein, could substitute 

for VirE2 in the nuclear import of T-strand, further demonstrating that VirE2 functions not 

in the nuclear localization, possibly in mediating the passage of T-strand through the 

nuclear pore (Ziemienowicz et al., 2001). VirE2 was assumed to shape the T-complex such 

that it is accepted for translocation into the nucleus. 

4.1.2 Plant proteins involved in T-complex nuclear targeting    

Besides the agrobacterial proteins VirD2 and VirE2, some plant proteins were supposed to 

be involved in the T-complex nuclear translocation. Early yeast two-hybrid screen identified 

an A. thaliana importin-ǂ (AtKAP, now known as importin-ǂ1) that interacts with VirD2 

(Ballas & Citovsky, 1997). Importin-ǂ proteins interact with NLS-containing proteins and 

guide the nuclear translocation of these proteins. Importin-ǂ proteins constitute a protein 

family and Arabidopsis encodes at least nine of these proteins (Gelvin, 2003). Interaction 

between VirD2 and importin-ǂ1 was verified to be VirD2 NLS dependent (Ballas & 

Citovsky, 1997). The importance of importin-ǂ proteins in the T-complex transfer process 

was confirmed by the genetic evidence that a T-DNA insertion into the importin-ǂ7 gene, or 

antisense inhibition of expression of the importin-ǂ1 gene, highly reduces the 

transformation efficiency (Gelvin, 2003). Importin-ǂ1, as well as all other investigated 

importin-ǂ family members, also interacts with VirE2 (Bhattacharjee et al., 2008) and VirE3 

(Garcia-Rodriguez et al., 2006). 

Other plant proteins that were identified to interact with VirD2 include several cyclophilins, 

a kinase CAK2M, and a protein phosphatase 2C (PP2C). Deng et al. (1998) showed that an 

Arabdopsis cyclophilin interacted strongly with VirD2. They further characterized the 

interaction domain of VirD2 and found that a central domain of VirD2 (residues 274~337) 

was involved in the interaction with cyclophilin. No previous function of VirD2 had been 

ascribed to this central region. Cyclosporin A, an inhibitor of VirD2-cyclophilin interaction, 

inhibits Agrobacterium-mediated transformation of Arabidopsis and tobacco (Deng et al., 

1998). Cyclophilin were presumed to serve as a molecular chaperone to help in T-complex 

trafficking within the plant cell. Cyclin-dependent kinase-activating kinase CAK2M 

interacts with VirD2 and catalyzes the phosphorylation of VirD2 in vivo. CAK2M may target 

VirD2 to the C-terminal regulatory domain of RNA polymerase II large subunit (RNApolII 

CTD) (Pitzschke & Hirt, 2010). A tomato type 2C protein phosphatase (PP2C) that was 

identified to interact with VirD2 can catalyze the dephosphorylation of VirD2. This 

phosphatase was assumed to be involved in the phosphorylation and dephosphorylation of 

a serine residue near the C-terminal NLS in the VirD2. Overexpression of this phosphatase 

decreased the nuclear targeting of a GUS-VirD2-NLS fusion protein, suggesting that 

phosphorylation of the C-terminal NLS region may affect the nuclear targeting function of 

VirD2 (Tao et al, 2004). 

Two VirE2-interacting proteins were designated VIP1 and VIP2. VIP1 was showed to 

facilitate the VirE2 nuclear import in yeast and mammalian cells. Tobacco VIP1 antisense 

plants were highly resistant to A. tumefaciens infection (Tzfira et al., 2001), whereas, 
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transgenic plants that overexpress VIP1 are hypersusceptible to A. tumefaciens 

transformation (Tzfira et al., 2002). VIP1 is a basic leucine zipper (bZIP) motif protein and 

shows no significant homology to known animal or yeast proteins (Tzfira et al., 2001). So, 

how VIP1 facilitates the nuclear import of VirE2 remains unclear. Unlike VIP1, VIP2 was 

unable to mediate VirE2 into the yeast cell nucleus. However, VIP1 and VIP2 interacted with 

each other. Thus, VIP1, VIP2 and VirE2 were assumed to function in a multiprotein complex 

(Tzfira & Citovsky, 2000, 2002). A recent paper showed that VIP1 is phosphorylated by the 

mitogenactivated protein kinase MPK3 and the VIP1 phosphorylation affects both nuclear 

localization of VIP1 and Agrobacterium-mediated transformation, implying that VIP1 

phosphorylation is important for super-T-complex nuclear targeting (Djamei et al., 2007). 

4.2 Integration of T-DNA into plant genome    

The integration of the incoming ssT-strand of the T-complex into plant genome is the final 

step of the Agrobacterium-mediated genetic transformation. Whether or not the host can be 

successfully transformed is highly dependent on whether the T-DNA could be integrated 

into the suitable sites of the host genome. 

4.2.1 Integration site   

The DNA sequence analysis of several T-DNA host DNA junctions revealed that these 

junctions, in general, appear more variable than the junctions created by insertions of 

transposons, retroviruses, or retrotransposons (Gheysen et al., 1987). A statistical analysis of 

88,000 T-DNA genome-wild insertions of Arabidopsis revealed the existence of a large 

integration site bias at both the chromosome and gene levels (Alonso et al., 2003). At the 

chromosomal level, fewer T-DNA insertions were found at the centromeric region. At the 

gene level, insertions within promotor and coding exons make up nearly 50% of all insertion 

sites. However, these statistical results may be skewed by the antibiotic resistance selection 

of transformed plants (T1 plants) because only the T1 plants with transcriptionally active T-

DNA insertions can be selected (Alonso et al., 2003; Valentine, 2003). Recently, a genome-

wide analysis of T-DNA-integration sites in Arabidopsis performed under non-selective 

conditions showed that T-DNA integration occurs rather randomly (Kim et al., 2007). 

Another statistical analysis of 9000 flanking sequence tags characterizing transferred DNA 

(T-DNA) transformants in Arabidopsis showed that there are microsimilarities involved in 

the integration of both the right and left borders of the T-DNA insertions. These 

microsimilarities occur only in a stretch of 3 to 5 bp and can be between any T-DNA and 

genomic sequence. This mini-match of 3 to 5 bp basically allows T-DNA to integrate at any 

locus in the genome. It was also showed that T-DNA integration is favored in plant DNA 

regions with an A-T-rich content (Brunaud et al., 2002).  

4.2.2 Integration mechanism     

The observation of the random, as opposed to targeted, nature of T-DNA integration 

indicated that the integration occurs in illegitimate recombination. To date, it has not been 

possible to target T-DNA to any particular locus in the genome with any great efficiency. So, 

the T-DNA integration has been one of the motives of intense investigation of A. tumefaciens. 

But, the molecular mechanism of the T-DNA integration remains largely unknown. Two 

major models for T-DNA integration have been proposed: single-strand-gap repair model 
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and double-strand-break repair model (Gelvin, 2010a; Mayerhofer et al., 1991; Tzfira et al., 

2004).  In the single-strand-gap repair model, VirD2-T-strands invade regions of 

microhomology between T-DNA and plant DNA sequences and partially anneal to the 

microhomologous regions. VirD2 on the 5´-end of the T-strand causes a nick in one strand 

of plant DNA and  ligates the T-strand to the nick.  Following the ligation of the T-strand to 

the target DNA, a nick is introduced in the second strand of the target DNA and extended to 

a gap by exonucleases. During the gap repairing, the complementary strand of T-DNA is 

synthesized, resulting in incorporation of a double-strand copy of the T-strand into the plant 

genome. The double-strand-break repair model hypothesizes that single-strand T-strands 

are replicated in the plant nucleus to a double-strand form and then the double-strand T-

DNA is integrated into double-strand breaks in the target DNA. The double-strand-break 

repair model requires the T-DNA to be converted to a double-strand form before its 

integration into the double-strand breaks. However, there are more results that strongly 

support the double-strand-break repair model (Lacroix et al., 2006a). It seems that double-

stranded T-DNA integration is the native model of T-DNA integration. 

4.2.3 Plant proteins involved in the T-DNA integration    

The plant proteins that may be involved in the T-DNA integration process are only now 

beginning to be defined. As mentioned before, CAK2M phosphorylates VirD2 and targets 

VirD2 to the C-terminal regulatory domain of RNA polymerase II large subunit (RNApolII 

CTD), a factor that is responsible for recruiting TATA-box binding proteins (TBP) to actively 

transcribed regions. CAK2M can also phosphorylate CTD. By associating with VirD2, TBP 

may guide T-strands to transcriptionally active regions of chromatin for integration. It was 

supposed that TBP or CAK2M may target VirD2 to the CTD, thereby controlling T-DNA 

integration (Bako et al., 2003). These nuclear VirD2-binding factors provide a link between 

T-DNA integration and transcription-coupled repair, suggesting that transcription and 

transcription-coupled repair may play a role in T-DNA integration (Bako et al., 2003).  

To integrate into plant chromosomal DNA, T-DNA must interact with chromatin. More than 

109 chromatin genes of 15 gene families were identified to be related to the transformation 

susceptibility (Crane and Gelvin, 2007). As T-DNA integrates into the plant genome by 

illegitimate recombination (Mayerhofer et al, 1991), proteins involved in DNA repair and 

recombination should also be involved in T-DNA integration. Non-homologous end-joining 

proteins, including Ku70, Ku80, Rad50, Mre11, Xrs2, and Sir4, were identified to be required 

for T-DNA intigration (Gelvin, 2010a; Tzfira and Citovsky, 2006; Van Attikum et al., 2001). 

5. Conclusions 

Several decades of intensive studies on Agrobacterium make the transformation of many 
plant and non-plant species by Agrobacterium-mediated transformation protocols become 
routine. The ability of Agrobacterium to genetically transform a wide variety of plant and 
non-plant species has earned it an honour of “nature’s genetic engineer” and placed it at the 
forefront of future biotechnological applications (Rao et al., 2009). However, the 
Agrobacterium-mediated genetic transformation is still an extremely inefficient process, in 
which only few of the host cells can be infected, and T-DNA integration and stable 
expression occur in an even smaller fraction of the infected cells. Out of question, a better 
understanding of the fundamental mechanisms of Agrobacterium-mediated genetic 
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transformation is essential for improving the biotechnological applications of this bacterium 
as a gene vector for genetic transformation of plant and non-plant species. In addition, 
Agrobacterium-mediated genetic transformation serves as an important model system for 
studying host-pathogen recognition and delivery of macromolecules into target cells and 
thus the in-depth study and molecular analysis of Agrobacterium-mediated transformation 
will also add to our understanding of all the biological processes involved in the 
Agrobacterium-mediated genetic transformation. 
Agrobacterium-mediated genetic transformation is a complex process that involves 
Agrobacterium reactions to wounded plant, T-DNA transfer in both bacteria and host cells, 
host reactions to Agrobacterium infection, and genetic transformation of host cells. This 
complex process requires the concerted function of both Agrobacterium and host. The golden 
period of Agrobacterium research led us to understand many of the Agrobacterium’s biological 
processes and mechanisms, such as virulence protein inducing, T-DNA processing, and 
macromolecule exporting by T4SS. However, many key steps of Agrobacterium-mediated 
genetic transformation still remain poorly understood and require further investigation. 
Particularly the events happening in the host infected by Agrobacterium are relatively more 
poorly understood.  
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