
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800



0

Statistical Study of the Galaxy Distribution

Antoine Labatie, Jean-Luc Starck and Marc Lachièze-Rey
Laboratoire AIM (UMR 7158), CEA/DSM-CNRS-Université Paris Diderot, IRFU, SEDI-

SAP, Service d’Astrophysique, Centre de Saclay, F-91191 Gif-Sur-Yvette cedex
France

1. Introduction

Large-scale structures in the Universe provide crucial information about formation of
structures and can be used to test cosmological models. The good agreement between
large-scale observations and the now-standard Lambda-Cold Dark Matter (ΛCDM) model
gives hope for this model to be a lasting foundation. Going a step further, these observations
have been used for precision cosmology to constrain cosmological parameters inside the
model.
Large-scale structures are mainly studied through galaxy surveys, while on the other hand,
cosmological models give predictions in terms of the global matter density field. Thus we
need to understand the relationship between the matter density field and galaxy field, which
is still a subject of research. Yet galaxy surveys have the advantage to map very large volumes.
Recent galaxy surveys such as the Sloan Digital Sky Survey (SDSS, York et al. (2000)) and the 2
degree Field (2dF, Colless et al. (2001)) map unprecedented 3D volumes in the Universe. They
have notably confirmed the view of large-scale structures as a collection of giant bubble-like
voids separated by sheets and filaments of galaxies. This pattern has become known as the
"Cosmic Web" (Bond et al. (1996), Springel et al. (2005)). The SDSS survey also enabled the
first convincing detection of Baryon Acoustic Oscillations (BAOs) in large-scale structures
(Eisenstein et al. (2005)), which opened a new field in precision cosmology.
Future galaxy surveys will map always bigger volumes, with more galaxies and continue
to improve our knowledge of large-scale structures and cosmological models. Though data
sets are of crucial importance, statistical methods extracting the information also have an
important role. They should be optimized in order to exploit the full potential of these
surveys. The purpose of this chapter is to review the different methods that can be used.
A first class of methods that we present is based on Fourier analysis, using the correlation
function and the power spectrum. It originates from the simplicity of the Gaussian field, fully
described by its second order moments. The Gaussian model gives a simple approximation
of the matter density field, that works well on large scales. Another reason for the study of
correlation function and power spectrum is that they are well understood and can be predicted
in ΛCDM models.
Recently, Fourier analysis has been used to study BAOs. These structures are remnants of
acoustic waves, traveling in the hot plasma before recombination, and that have stayed frozen
in large-scale structures. The detection of BAOs in the SDSS has been a strong support for
the ΛCDM model. Besides, they provide a statistical standard ruler since their absolute
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size is known with small uncertainty. Thus their measurement in galaxy catalogues gives
information on distances, and enables to constrain cosmological parameters.
A second class of methods use geometrical and topological tools to describe
large-scale-structures. Among this class of methods, we present the Minkowski functionals
and the genus statistic, providing a rigorous mathematical framework for the analysis.
Among other advantages, Minkowski functionals are known analytically for gaussian
random fields. Historically, the main application of those statistics was to determine the scale
at which the distribution is gaussian, i.e. approximately the scale of linear evolution. Among
other applications, we show how they can be used for model discrimination, or to provide a
standard ruler in galaxy catalogues.
Finally we present the approach based on fractal analysis to characterize the galaxy
distribution. It is motivated by the well-established scale-invariance of the galaxy clustering
at small scales (r < 10h−1 Mpc). Yet fractality on all scales would put into question current
cosmological models, which assume large-scale homogeneity. It would also call into question
the correlation function analysis, which assumes a well-defined mean density of the field.
We discuss the question of the large-scale homogeneity. We show how the extension to
multifractal analysis can represent more general distributions, in particular the distribution
of galaxies, and enable to study the scale of homogeneity.

2. Fourier analysis of clustering

2.1 Power spectrum in the ΛCDM model

The Fourier analysis of clustering mainly originates from a simple approximation of the
large-scale distribution of matter being a Gaussian field. The justification is that, in current
cosmological models involving inflation, the matter distribution originates from tiny gaussian
random fluctuations that gravitationally evolved. Let us note δ the fluctuation field, from the
matter density field ρ and its mean value ρ̄:

δ(x) =
ρ(x)− ρ̄

ρ̄
(1)

In the linear regime of evolution, the fluctuation is supposed to be small (δ ≪ 1), and the
equation of evolution is linear with δ:

∂2δ

∂t2
+ 2

ȧ

a

∂δ

∂t
= 4πGρ̄δ (2)

with a the expansion factor of the Universe, ȧ its time derivative (i.e. H = ȧ
a ), G Newton’s

gravitational constant.
In this regime, the Fourier modes δ̃(k) all evolve proportionally to an evolution factor. There
are two solutions for this equation of evolution, with one growing mode and one decaying
mode. The growing mode, which necessarily governs the evolution, has the following
expression in a ΛCDM model:

G(z) =
5ΩmE(z)

2

∫ ∞

z

(1 + z′)
E(z′)3

dz′ (3)

with Ωm the dimensionless matter density and E(z) = H(z)
H0

the dimensionless Hubble
constant at redshift z. In the linear regime, the gaussianity of the field is preserved, as well as
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Statistical Study of the Galaxy Distribution 3

the gaussianity of the Fourier coefficients δ̃(k) of the fluctuation. Thus a complete description
of the field can be given in this regime in terms of the power spectrum P(k) of the fluctuation
field

E[δ̃(k)δ̃⋆(k′)] = (2π)3δD(k − k′)P(k) (4)

with δD the 3-dimensional Dirac function. The power spectrum quantifies the expected
strength of the oscillations at wavelength k. With the usual hypothesis of isotropy, the power
spectrum only depends on the norm k of the vector k. However in galaxy catalogues, the
galaxy are studied in redshift space which slightly breaks the isotropy property.
The linear approximation works very well at large scale, where the strength of the fluctuation
is small. On smaller scale, the matter field is in a much more advanced evolution phase and
has already overtaken non-linear evolution, which makes it much harder to understand. To
take into account non-linear evolution, one has to use N-body simulations and empirically
infer formulas.
Overall, the dark matter power spectrum can be written as

PDM(k, z) = G2(z)T2(k, z)Pl(k) (5)

where T(k, z) is the transfer function at redshift z including non-linear evolution and Pl(k) is
the primordial dark matter power spectrum.

2.2 Two-point correlation function in the ΛCDM model

Just as the power spectrum, the two-point correlation function is a second order statistic that
describes the clustering of a field or a point process. It is simply the inverse Fourier transform
of the power spectrum, i.e. when P and ξ are isotropic:

ξ(r) =
1

2π2

∫

k2P(k)
sin(kr)

kr
dk (6)

The correlation function ξ(r) at distance r also has a statistical interpretation. It measures
the excess of probability to find a pair of points in two volumes dV1 and dV2 at distance r
compared to a random distribution.

dP12 = ρ̄2[1 + ξ(r)]dV1dV2 (7)

The correlation function is directly linked to the fluctuation field δ(x) =
ρ(x)−ρ̄

ρ̄ :

ξ(r) = 〈δ(x)δ(x + r)〉 (8)

with ‖r‖ = r. As for the power spectrum analysis, the standard ΛCDM model predicts
a certain shape for ξ(r) with a dependence on the cosmic parameters. In this model the
correlation is rapidly decreasing at small scale as a power law as found in the distribution
of galaxies (Norberg & Baugh (2001), Zehavi et al. (2005)):

ξ(r) =

(

r

r0

)−γ

(9)

with r0 ≈ 5h−1Mpc and γ ≈ 1.7.
At large scale the correlation presents a very interesting feature caused by BAOs. It is a relic
of sound waves traveling in the early Universe when baryon and photons were coupled in a
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relativistic plasma before recombination which caused the wave propagation to end Eisenstein
& Hu (1998). It has imprinted the large scale distribution and can be seen as a small peak in
the correlation function at a scale rs, corresponding to the comoving distance of the sound
horizon.

2.3 Modeling clustering bias in the galaxy distribution

As described in the previous section, theoretical predictions about clustering are given for
the global dark matter density field. On the other hand, current large-scale surveys map the
galaxy field. Thus, if we want to relate cosmological predictions to these observations, we
have to understand the link between dark matter and galaxies.
The distribution of galaxies ng is usually modeled by a Cox process, i.e. a Poisson process with
an intensity given by a continuous field ρg(x), which itself is a statistical process. Knowing
ρg(x), the number of galaxies in a volume dV around x is a Poisson variable with intensity
ρg(x)dV. The field ρg is linked to the underlying dark matter density field ρm (at least
stochastically) since galaxies tend to form in over-densities, but is not supposed to be identical.
As a consequence, there are differences in the clustering of the two fields, and thus in their
correlation functions ξg(r) and ξm(r). The relationship between ρg and ρm depends on the
way that galaxies are grafted onto the matter density field. This is a critical question that
remains an active research subject.
Historically, it has been observed that clusters of galaxies cluster more strongly than galaxy
themselves. In more recent surveys, more luminous galaxies have been found to cluster more
strongly. This shows a non trivial relation between the dark matter and the visible matter,
which depends also on the type of objects. This effect is referred as the bias of visible matter
with respect to the dark matter:

ξg(r) = b(r)2 ξm(r) (10)

with b(r) the bias of the galaxy field with respect to dark matter. The bias b modulates the
galaxy correlation with respect to the dark matter correlation and should depend on the scale.
This concept of bias appeared in the 80’s to reconcile the CDM model with observational
constraints. A first attempt to understand this bias was made by Kaiser in 1984 with the high
peak model, which considers the formation of objects at local maximums of the smoothed
density field.
Recently, the halo model (Cooray & Sheth (2002)) has been a fruitful step in order to connect
the galaxy and dark matter distributions. A given halo model predicts the expected number
of galaxies above given luminosity thresholds inside halos of different mass. Halo models
can be parametrized to match very well current observations and naturally explains the
biasing phenomenon. The halo model has become particularly useful in cosmological N-body
simulations, where it is used to populate dark matter halos with galaxies, providing realistic
simulations for current and future galaxy surveys.

2.4 Correlation function estimation from galaxy surveys

Both the correlation function and power spectrum have been extensively measured on
galaxy surveys. The power spectrum has the advantage that the different bands are weakly
correlated, which is not the case for the correlation function. On the other hand the correlation
function is more intuitively linked to 3D space. As an illustration, BAOs from the early plasma
stayed frozen at the sound horizon scale rs, which produces an excess of clustering at this
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particular distance. Thus BAOs manifest as a localized bump at the sound horizon scale in
the correlation function, whereas they manifest as an infinite number of wiggles in the power
spectrum.
In this section we decide to focus on the correlation function, explaining details about its
estimation and how it can be used for BAO study.

2.4.1 Correlation function estimation

When estimating the correlation function, there are two types of statistical uncertainties. The
first one comes from cosmic fluctuations due to limited sample volume, and the other one
from the finite number of galaxies which do not trace exactly the underlying field (i.e. shot
noise). In general, estimators of the correlation are subject both to bias and variance. In
practice there is no way to evaluate the bias of the estimator if it exists, and it must be
considered itself as a source of uncertainty, in addition to the variance.
There are various estimators of the correlation function, most using random catalogues with
identical geometry to measure this excess of probability. Let ND and NR be the number of
galaxies respectively in the data and random catalogues. We define DD(r), RR(r) and DR(r)
as the number of pairs at a distance in [r ± dr/2] of respectively data-data, random-random
and data-random galaxies. We also define NDD, NRR and NDR as the total number of
corresponding pairs in the (real or random) catalog. With the convention of counting pairs
only once we have:

NDD =
ND(ND − 1)

2
(11)

NRR =
NR(NR − 1)

2
(12)

NDR = NR ND (13)

(14)

Let us give the expression of 4 of the most commonly used estimators used, from Peebles &
Hauser (1974), Davis & Peebles (1983), Hamilton (1993) and Landy & Szalay (1993)

ξ̂PH(r) =
NRR

NDD

DD(r)

RR(r)
− 1

ξ̂DP(r) =
NDR

NDD

DD(r)

DR(r)
− 1

ξ̂HAM(r) =
NDR

2

NDD NRR

DD(r)RR(r)

[DR(r)]2
− 1

ξ̂LS(r) = 1 +
NRR

NDD

DD(r)

RR(r)
− 2

NRR

NDR

DR(r)

RR(r)

In general, the analysis is complicated by selection effects in the catalogues, with a density
decreasing farther away. One has to consider a mean density varying with the position in the

catalogue ρ̄(x), i.e. fluctuations δ(x) =
ρ(x)−ρ̄(x)

ρ̄(x)
. This is taken into account in the random

catalogues which have the same selection effect as the catalogue. Finally an additional weight
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can be given to the galaxies at different position of the survey (both in the data and random
catalogues) in order to minimize the estimator’s variances (Kaiser (1986)).
Estimating ξ would be easier knowing the exact number of points in the volume expected
from the distribution. In practice we can only estimate it with the empirical quantities ND

and NDD. Let us show that Hamilton and Landy-Szalay only depend on the second order
on this uncertainty in the mean density, and thus perform better. We repeat the calculations
given in Hamilton (1993) in a simple case where the sample is volume-limited (i.e. with a
constant expected density ρ̄ in the sample), so that the optimal strategy is to weight all galaxies
equally. The empirical density in the catalogue ρ is a sum of Dirac functions on the galaxies
of the catalogue. For a volume-limited survey with constant expected density ρ̄, the relative
fluctuation in the sample is given by

δ(x) =
ρ(x)− ρ̄

ρ̄
(15)

We write W the indicator function of the sample volume and 〈.〉 the integration on the volume.
For example 〈W(x) ρ(x)〉 is the integration of the empirical density and thus equals the
number of points in the sample. We introduce the following quantities that have statistical
expectations of 0 for δ̄ and Ψ, and ξ for ξ̂:

δ̄ =
〈W(x) δ(x)〉
〈W(x)〉 (16)

Ψ(r) =
〈δ(x)W(x)W(y)〉r

〈W(x)W(y)〉r
(17)

ξ̂(r) =
〈δ(x)δ(y)W(x)W(y)〉r

〈W(x)W(y)〉r
(18)

where 〈.〉r means a double integration in the volume, restricted to x and y separated by a
distance in [r ± dr/2]. ξ̂ is an unbiased estimator of the real ξ but we cannot calculate it since
we do not know ρ̄ and δ.
With short calculations it is possible to express the different estimators with the quantities ξ̂,
δ̄ and Ψ (Hamilton (1993)):

ξ̂PH(r) =
ξ̂(r) + 2Ψ(r)− 2δ̄ − δ̄2

[1 + δ̄]2
(19)

ξ̂DP(r) =
ξ̂(r) + Ψ(r)− δ̄ − Ψ(r) δ̄

[1 + δ̄] [1 + Ψ(r)]
(20)

ξ̂H(r) =
ξ̂(r)− Ψ(r)2

[1 + Ψ(r)]2
(21)

ξ̂LS(r) =
ξ̂(r)− 2δ̄Ψ(r) + δ̄2

[1 + δ̄]2
(22)

These formulas explain the superiority of Hamilton and Landy-Szalay estimators, with Ψ and
δ̄ terms at the second order in the numerator. Terms in the denominator are not important
since they generate a small relative error, whereas terms in the numerator can generate a high
relative error when their values become non negligible compared to ξ̂. For Hamilton and
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Landy-Szalay estimators, the error is dominated by the one of ξ̂ and not really affected by Ψ

and δ̄, which are linked to the uncertainty in n̄.
The superiority of Hamilton and Landy-Szalay has been observed empirically in different
studies (Labatie et al. (2010), Kerscher et al. (2000), Pons-Bordería et al. (1999)). In Labatie et al.
(2010) it is also shown that these estimators are nearly unbiased for current galaxy surveys.
In particular the integral constraint (caused by the uncertainty in the mean density ρ̄) has
nearly no effect on the estimation. We show in figure 1 results with different estimators when
estimating the correlation function on simulations of the SDSS Luminous Red Galaxies (LRG)
sample. Estimators are nearly unbiased for this survey size and Hamilton and Landy Szalay
estimators show much less variance than the other estimators.

Fig. 1. Estimation of the correlation function on the SDSS LRG catalogue. The different
colored curves show the result for each estimator with error bars showing the standard
deviations of the estimation. They were estimated using 2000 simulations. The real
correlation function is given by the black curve. The small bump in the correlation at scale
r ≈ 105h−1Mpc corresponds to the BAO feature. The bias is negligible for all estimators but
there are great differences in their quality. Bias and uncertainty are important to know the
error when fitting the estimated correlation function to a model correlation function (as in
BAO studies).

As a result, recent studies usually focus on the Landy-Szalay estimator to measure the galaxy
correlation function.

2.4.2 Correlation function and BAO study

Recently a lot of studies using the power spectrum or the correlation function have been
motivated by BAO study. The reason is that BAOs provide a statistical standard ruler, i.e.
a powerful tool to study the geometry of the Universe. Since their absolute size is known with
small uncertainty from measurements in the Cosmic Microwave Background (CMB), their
detection in galaxy surveys gives access to real distances in the catalogue.

181Statistical Study of the Galaxy Distribution
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The primary informations obtained on galaxies are the angular positions of the objects on
the sky, and their redshift. In order to obtain 3D positions, one has to assume a fiducial
cosmological model and convert redshifts into distances. We show in figure 2 how the size of
an object is related to its angular extent θ and its redshift extent dz, using the real cosmological
quantities dA(z) (angular diameter distance) and H(z). The interest of the standard ruler is
that its size is already known, and thus from the angular and redshift extents, it naturally
provides the quantities dA(z) and H(z) at the redshift of the survey.

Fig. 2. Size of a spherical object as a function of its angular extent θ and redshift extent dz,
using the real angular diameter distance dA(z) and Hubble constant H(z) at redshift z of the
survey. Figure adapted from Bassett & Hlozek (2010).

BAOs constrain cosmological parameters through dA(z) and H(z) in a complementary way
with CMB and type Ia supernovae, which explains the recent interest in this field. BAOs were
first convincingly detected in the correlation function of the SDSS survey (Eisenstein et al.
(2005)).
BAO study through correlation can be divided in two different parts. The first one consists in
detecting the BAO feature in the correlation function, which can be done by rejecting the null
hypothesis that there are no BAOs. When the detection is made significantly, the second step
is to determine distances in the survey, which provides the best fit in the BAO peak between
the measured and the model correlation functions.

2.4.2.1 BAO detection and significance

Let us describe more precisely the procedure for the detection. In most BAO studies (for
example Eisenstein et al. (2005), Hütsi (2006), Percival et al. (2010), Blake et al. (2011)), the
χ2 statistic is used. Here the observations are the estimated correlation function values
in different bins (ξ̂i)1≤i≤n = (ξ̂(ri))1≤i≤n. Given the covariance matrix (Ci,j) of this

measurement vector, and the expected value given by the model ξ = (ξi), the χ2 statistic
is defined as

χ2 = (ξ̂ − ξ)TC−1(ξ̂ − ξ)

= ∑
i,j

(ξ̂i − ξi)C
−1
i,j (ξ̂ j − ξ j)

The covariance matrix is usually estimated empirically using mock catalogues, and then
inverted. Assuming that the measurement vector is gaussian, the χ2 statistic follows a
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χ2(n) law, i.e. a chi-square law with n degrees of freedom. The situation is a bit more
complex here because the model correlation function ξ(θ1, ..., θk) depends on cosmological
parameters (θ1, ..., θk), and so the χ2(θ1, ..., θk) statistic also depends on a choice of model. The
method used consists in finding the best fit model (θ0

1 , ..., θ0
k ), i.e. the model with ξ(θ1, ..., θk)

minimizing the χ2 statistic

(θ0
1 , ..., θ0

k ) = argmin
(θ1,...,θk)

χ2(θ1, ..., θk) (23)

With k parameters used for the fitting, it can be shown that the χ2 at the best fit value follows
a χ2(n − k) law (under the assumption that one of the model is correct), i.e. a chi-square law
with n − k degrees of freedom. Even though this result is widely used, it is worth noting that
it is subject to regularity assumptions The best fit χ2 statistic is computed with the 2 different
models (with and without BAOs) which leads to a difference ∆χ2 in the best fit χ2 for the two
different models.
This difference ∆χ2 can be used to test between 2 competing model that are nested, i.e. one
model can be obtained by fixing/eliminating parameters in the other model. If we note 1 the
model with fewer parameters, i.e. a higher value of χ2, and 2 the other model, then it can be
shown that the difference χdiff = χ2

1 − χ2
2 follows a χ2(ddi f f ) law (under the assumption that

the restrained model is also correct). Here, ddi f f = d1 − d2 is the difference in the number
of parameters of the two models. In the case we are interested in, an artificial parameter is
introduced to account for the presence or not of BAOs in the correlation function. The global
model then becomes an union of the 2 precedent models and the restrained model contains
only the model without BAOs. Then the χdiff corresponds to the difference ∆χ2, with a value
that can be interpreted in terms of significance.
This methodology has been extensively used, for example in Eisenstein et al. (2005) for the
first BAO detection at the 3.4 σ level (the convention is that a number of σ’s is converted from
a p-value using the relation for a Gaussian distribution). In Cabré & Gaztañaga (2011) it is
used to show with mock catalogues that a detection higher than 3σ is not likely in the SDSS.

2.4.2.2 Constraining cosmological parameters through BAO scale

A later step consists in using the BAO feature in the correlation function to constrain
cosmological parameters. We remind that 3D catalogues are created assuming a fiducial
cosmology to obtain the distance from the observer to the objects. If we change the fiducial
cosmology to the real cosmology, then the objects move and dilate. Spherical objects have
a size which approximately scales as the dilation scale DV(z) = (1 + z)2dA(z)cz/H(z)
(Eisenstein et al. (2005)) . Therefore, the correlation function in the true cosmology is obtained
by dilating it with the ratio of the true to the fiducial dilation scales. When doing the χ2

test this dilation scale is introduced as a parameter, and an estimation of the true dilation
scale is obtained for the best fit. Other cosmological parameters can also be introduced
during the fitting procedure. The dilation scale itself provides constraints since it depends
on cosmological parameters.
In Eisenstein et al. (2005), there are 3 fitted parameters: an overall amplitude A, Ωmh2

and DV(0.35), where z = 0.35 is the mean redshift of the SDSS LRG sample used. The
other parameters intervening in the correlation function are kept fixed because they are well
constrained by other measurements, e.g. on the CMB. The posterior probability on those
parameters is simply equal to the likelihood (assuming a flat prior). This is also directly linked
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to the χ2(A, Ωmh2, DV(0.35)) statistic with the gaussian hypothesis. So the χ2 statistic directly
gives the confidence regions for these parameters as shown in figure 3, where the predictions
of different models are overplotted.

Baryon Acoustic Oscillations

Fig. 3. The likelihood contours of CDM models as a function of Ωmh2 and DV(0.35). The
likelihood has been taken to be proportional to exp(−χ2/2), and contours corresponding to
1σ to 5σ for a 2D Gaussian have been plotted. Overplotted are the model predictions for
fixed Ωm, w and H0. Figure courtesy of Eisenstein et al. (2005).

3. Geometrical analysis of clustering

In the first section we presented the Fourier analysis of clustering based on the second
order statistics which are the power spectrum and its real space equivalent, the 2-point
correlation function. In general a random field is characterized by all its moments and N-point
correlation functions. The 2-point correlation function necessarily presents limitations for
model discrimination and may not be the best tool for some applications. One example
of such application is the geometrical analysis of large-scale structures. Obviously the
2-point correlation function does not provide much geometrical information since it provides
spherically averaged quantities.
In recent galaxy surveys, the Universe appears as a collection of giant bubble-like voids
separated by sheets and filaments of galaxies, with the superclusters appearing as occasional
relatively dense nodes. This network, usually called the "Cosmic Web", is clearly visible in the
2dF Galaxy Redshift Survey and the SDSS survey.
The study of the geometry and topology of large-scale structures can carry useful information
and complement the study of second order clustering. We review different geometrical
methods used for this task and results obtained.

3.1 Minkowski functionals

Minkowski functionals are a very useful tool to describe hypersurfaces of dimension d − 1
in a space of dimension d. Hadwiger theorem states that any function defined on subsets A
of the space that satisfies the properties of translation and rotation invariance, additivity and
continuity can be decomposed as a sum of the Minkowski functionals. In a space of dimension
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d there are d + 1 Minkowski functionals. In the case of the 3D distribution of galaxies, where
d = 3, Minkowski functionals are

V0(A) =
∫

A
d3x

V1(A) =
1

6

∫

δA
dS(x)

V2(A) =
1

6π

∫

δA

(

1

R1(x)
+

1

R2(x)

)

dS(x)

V3(A) =
1

4π

∫

δA

1

R1(x)R2(x)
dS(x)

where R1 and R2 are the principal curvatures of the surface δA.
These functions have intuitive interpretations in the case d = 3. V0 corresponds to the volume
of A, V1 is proportional to the surface of the boundary δA, V2 corresponds to the mean
curvature on the surface δA and V3 is half the Euler characteristic χ of the subset, linked
to the genus G

χ = 2(1 − G) (24)

V3 is a topological measure, which equals 1 for a ball and any analogue convex set. It can be
interpreted as the surface drawn on the unit sphere by the vector normal to the hypersurface,
when covering δA. The surface is counted positively when the product of the curvature radii
is positive and negatively otherwise.
The genus also has a simple interpretation. It corresponds to the number of torus holes, minus
the number of isolated regions, plus 1.

3.1.1 Characterization of random fields

Minkowski functionals can be calculated on scalar fields, for example on realizations of
random fields or on the distribution of galaxies Gott et al. (1986). In this context Minkowski
functionals are calculated on the excursion sets of these fields, i.e. on the isodensity surfaces.
The excursion set of a function for a threshold u is given by the set Fu = {x, Z(x) ≥ u}. It is
more complicated for a point distribution like the galaxy distribution since excursion sets are
not well defined. Thus, the point distribution is usually smoothed at different scales giving a
continuous 3D field, where the Minkowski functionals can be calculated.
An example of isodensity surfaces is given in figure 4 for a Gaussian random field with a
power spectrum P(k) ∼ k smoothed with kernel width s = 3 in a cube of size 128. The
left column shows the lower density regions and the right column the higher density regions
with respective fractions of the volume of 7%, 50% and 93%. The symmetry between high
and low density is clearly seen. Another important aspect of Gaussian field is the sponginess
at median threshold, quantified by a positive genus, which can be seen here and also in the
matter distribution (Gott et al. (1986)).
For random realizations, Minkowski functionals have statistical variations as the field itself.
However if the field is homogeneous above a certain scale (i.e. if it presents an ergodicity
property), Minkowski functional densities (i.e. Minkowski functionals divided by the
volume) converge to their expected value.
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Fig. 4. Isodensity surface of a Gaussian random field smoothed with kernel width s = 3. The
left column shows the lower density regions and the right column the higher density regions
with respective volume fractions of 7%, 50% and 93%.The symmetry between high and low
density is clearly seen, as well as the sponginess of the distribution at the median density
threshold. Figure courtesy of Martínez et al. (2005).

A change of variable is often made to replace the threshold u by a standard variable, ν =
u−µ

σ ,
where µ and σ are respectively the expected value and standard deviation of the field.
Finally the Minkowski functionals are divided by the total volume studied, which gives
functional densities which can be compared between different volumes. A great advantage
of Minkowski functionals is that their values are known for Gaussian fields. The expected
value of the first Minkowski functional V0(u) is given by the cumulative density function of a
standard Gaussian distribution.

E[V0(u)] = Vtot
1√
2πσ

∫

u

∞

e
− (t−µ)2

2σ2 dt (25)

with ν =
u−µ

σ this gives

E[V0(ν)] = Vtot
1√
2π

∫

ν

∞

e−
t2

2 dt (26)

So the functional density is given by
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E[v0(ν)] =
1√
2π

∫

ν

∞

e−
t2

2 dt (27)

In Tomita (1990) the theoretical values of the other Minkowski functional densities are given
in expected value

E[v1(ν)] =
2

3

λ√
2π

exp

(−ν2

2

)

(28)

E[v2(ν)] =
2

3

λ2

√
2π

ν exp

(−ν2

2

)

(29)

E[v3(ν)] =
λ3

√
2π

(ν2 − 1) exp

(−ν2

2

)

(30)

where λ =
√

σ2
1

6πσ2 , σ = E
[

δ2
]1/2

, σ1 = E
[

|∇δ|2
]1/2

, and δ is the fluctuation field.

Note that for gaussian fields, Minkowski functionals are unique up to a multiplicative factor.
This is very useful to test for gaussianity, which was the primary use of Minkowski functionals
(in particular the genus). Since the matter distribution originates from a Gaussian field, it
should also remain gaussian when smoothed at the linear scales of evolution. This overall
picture can be tested by smoothing the field at the linear scales and comparing Minkowski
functionals with the ones expected for a Gaussian field.

3.1.2 Results obtained on galaxy surveys with Minkowski functionals

3.1.2.1 Test of gaussianity

Let us first illustrate how to test the gaussianity of the field using the third Minkowski
functional v3, which is a topology measure. We perform the calculation for a catalogue
described in Martínez et al. (2005). It is a volume limited sample extracted from the 2dF
Galaxy Redshift Survey, which contains 8487 galaxies and has been cut to obtain a rectangular
volume.
We show in figure 5 the v3(ν) curve with a smoothing of the field by gaussian windows with
different sizes s = 1, 2, 4 and 8 h−1Mpc. The smoothing consists in applying a low-pass filter
on the field, and only keeping the low Fourier modes. For s = 4, 8 h−1Mpc the remaining
Fourier modes present a v3 statistic very similar to a gaussian field. This suggests that
non-linear evolution has not much changed the field topology at these scales. On the contrary,
for s = 1, 2 h−1Mpc, there are significant deviations from a gaussian topology.
In Martínez et al. (2005) the galaxy field is first denoised using a multiscale wavelet
decomposition. The idea is to look at the topology of the real continuous field, instead of the
discrete galaxy distribution smoothed at different scales. Results show that the continuous
field has clearly a non-gaussian topology, whereas the galaxy field becomes rapidly gaussian
when increasing the smoothing size. Thus, even though the matter distribution is gaussian at
linear scales, its real global topology is highly non-gaussian.

3.1.2.2 Model discrimination

A second application of Minkowski functionals, and in particular the genus, is the power of
discrimination between models. In Sheth et al. (2003), Minkowski functionals are calculated
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Fig. 5. v3(ν) statistic on the 2dF survey. The different curves show v3(ν) obtained when
smoothing the galaxy field at different scales s = 1, 2, 4, 6 and 8 h−1Mpc (color curves). We
also show the v3(ν) expected for a Gaussian field from equation (30) (black curve). Each
curve has been globally rescaled to make the comparison possible. We see the curves
approaching the gaussian result when increasing the smoothing radius. This supports the
fact that the galaxy field becomes gaussian at large scale.

on cosmological simulations of the Virgo consortium, using SURFGEN. Calculations are made
on 3 rival cosmological models - a ΛCDM model with Ωm = 0.3, a Standard-CDM (SCDM)
model of a flat Universe with Ωm = 1, and a τCDM model also flat and with decaying massive
τ neutrino as the dark matter constituent. The models show very distinct morphologies,
which can be easily distinguished through their Minkowski functionals.
In Hikage et al. (2003) Minkowski functionals are calculated on the SDSS Early Data
Release showing an agreement (up to statistical uncertainties) between estimated Minkowski
functionals in galaxy catalogues and Minkowski functionals obtained from ΛCDM N-body
simulations. Results also show a clear incompatibility with simulations in the SCDM model.

3.1.2.3 Constraining cosmological parameters

Minkowski functionals can also be used to infer real distances of the survey. As for BAOs, the
topology of large-scale structures (quantified by the genus statistic) can provide a standard
ruler. Up to statistical uncertainties, survey distances can be adjusted to obtain a measured
genus that matches the one expected for a given cosmological model. This approach has been
first proposed in Park & Kim (2010), and applied in Zunckel et al. (2011) to show how it
could constrain the equation of state of the dark energy for the upcoming Baryon Oscillation
Spectroscopic Survey (BOSS, www.sdss3.org). They show that BOSS could constrain a
constant parameter w in the equation of state with a 5% uncertainty, using this approach.
The quality of a standard ruler depends on the precision in the knowledge of its real size, and
also on the uncertainty of the measure. Here, the knowledge of the expected genus may not
be as good as the knowledge of the baryon acoustic scale. Yet the genus has the advantage
that it can be applied at different scales in the distribution, thus decreasing the measurement
uncertainty. Therefore it could be very useful in order to cross-check results obtained using
BAOs.
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4. Fractal analysis

4.1 The concept of fractal

The idea of a fractal Universe is very old, and already in the eighteenth century Immanuel
Kant and Johann Lambert imagined the Universe as an infinite hierarchy of worlds. Later
this type of Universe was also invoked to explain Olbert’s paradox that the sky is dark at
night, in contradiction with the assumption of an infinite number of stars. The mathematical
description of fractals only came with Mandelbrot (Mandelbrot (1982)), that reinterpreted
them with the concepts of self-similarity and scale-invariance. The denomination of fractal
by Mandelbrot comes from the latin word fractus which means break. An exact definition of a
fractal is difficult since it would exclude possible interesting cases. In Falconer (1990) a loose
definition is given for a fractal F:

" 1. F has a fine structure, i.e. details on arbitrary small scales.
2. F is too irregular to be described in traditional geometrical language, both locally and globally.
3. Often F has some form of self-similarity, perhaps approximate or statistical.
4. Usually, the ’fractal dimension’ of F (defined in some way) is greater than its topological dimension.
5. In most cases of interest F is defined in a very simple way, perhaps recursively. "

Fractals can be either deterministic, i.e. constructed by an iterative process or recursion, or
they can be random, i.e. generated by a stochastic process. Usually, only fractals constructed
using an iterative process, rigorously present a self-similarity property. Random fractals are
the most used in practice, and can describe numerous irregular objects in the real world, for
example clouds, mountains, coastlines or turbulent fluids.

4.1.1 Fractal dimensions

Fractal dimension are extensions of traditional notions of dimensions, that exist for simple
usual objects as lines, surfaces, and volumes. A first dimension is the box-counting dimension
(also called Minkowski-Bouligand or Minkowski dimension). It is calculated by filling the
space with small cubes of size δ, and counting the number of cubes that intersect the object
(figure 6). For a line of length l, the number of such cubes N(δ) will be roughly N(δ) ≈ l

δ , and

for a surface of area A the number will be roughly N(δ) ≈ A
δ2 .

Fig. 6. Measuring the box-counting dimension of a line (left panel) and a surface (right
panel). For a line the number of intersecting cubes of size δ scales as 1

δ , and for a surface it

scales as 1
δ2 . Figure courtesy of Feder (1988).

The box-counting dimension of a set F is defined as
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dimbox(F) = lim
δ→0

log(N(δ))

log(1/δ)
(31)

If the limit does not exist, one must talk about the upper box dimension (dimupperbox) and
lower box dimensions (dimlowerbox) as the upper and lower limits.
Another important dimension is the Hausdorff dimension. A r-cover of F is a countable
collection of sets A =

⋃

i Ai which all have a diameter less than r, and such that F is totally
covered by this collection. The d-dimensional Hausdorff measure of S is defined as

Hd(F) = lim
r→0

inf
A

∞

∑
i=0

diam(Ai)
d (32)

The Hausdorff dimension dH is defined such that

Hd(F) →
{

0 for d > dH(F)

∞ for d < dH(F)
(33)

It can be shown that the Hausdorff dimension is always less than the box-counting dimensions

dH(F) ≤ dimlowerbox ≤ dimupperbox (34)

Another fractal dimension, which is well adapted to describe random point patterns, is the
correlation dimension. In particular, it is very useful for measuring the fractality of the galaxy
distribution. Noting N(< r) the number of neighbors that a point has in average within a
distance r, the point pattern is said to be fractal with the correlation dimension D2 when

N(< r) ∝ rD2 (35)

In other terms, D2 is defined as

D2 =
d(log N(< r))

d(log r)
(36)

Such a measure is locally self-similar, i.e. the number of points varies a power law around
every point. Intuitively, D2 gives a local description of the measure linked to the point process.
If D2 = 1 then the points will be located on structures that are locally filamentary, and if
D2 = 2 these local structures will be planar.
For many well behaved fractals, all these dimensions are equal. For usual geometrical objects
(lines, surfaces, volumes), they are integers, thus representing very particular cases. For
purely fractal sets however, the Hausdorff dimension can be non integer. Let us give an
example of such a case. Figure 7 shows the construction of the von Koch curve F, with
segments of the curve each time subdivided into 4 new sub-segments. For this set, the fractal
dimensions agree and are equal to ln 3

ln 2 . Concerning the length of the curve Ek at iteration k,

it is equal to
(

4
3

)k
, and thus the limit curve has infinite length. On the other hand, the curve

occupies zero area in the plane, so neither its length nor its area are useful descriptors.
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Fig. 7. Successive iterations in the construction of the von Koch curve F. Figure courtesy of
Falconer (1990)

4.2 Multifractal measures

A multifractal measure µ on a set A is a generalization of a fractal. It is used when a single
exponent (the fractal dimension) is not enough to describe the measure. It is everywhere
self-similar, i.e. it varies locally as a power law at every point of its support.

4.2.0.1 Hölder exponent

The Hölder exponent or singularity exponent at a point x0 is defined

α(x0) = lim
δ→0

log µ(Bxo (δ))

log δ
(37)

where Bx0 (δ) is a ball centered on x0 of radius δ. We have

µ(Bxo (δ)) ∝ δα(x0) (38)

The smaller the value of α(x0), the less the measure is regular around x0.

4.2.0.2 Singularity Spectrum

As previously mentioned, a multifractal measure is not characterized by a single exponent.
For each value of α, a quantity of interest is the fractal dimension f (α) of the set of points that
share this singularity exponent α

f (α) = dF ({x0 ∈ A | α(x0) = α}) (39)

The function f (α) is denoted as the singularity spectrum of µ. The singularity spectrum
describes the fraction of points with a given exponent. So if we cover A with boxes of size

δ, the number of boxes containing a point with exponent α will scale as Nα(δ) ∝ δ− f (α),
for small δ. The function f (α) is usually a single-humped function with its maximum at
maxα f (α) = D, where D is the dimension of the measure support. In the simple case of a
monofractal, the function f (α) is reduced to a single point.
In order to calculate the singularity spectrum, the box-counting method consists in calculating
the partition function
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Z(q, δ) =
N(δ)

∑
i=0

(µi(δ))
q (40)

where N(δ) is the number of boxes of size δ intersecting the measure support, and we denoted
µi(δ) = µ(Bi(δ)). If the measure µ is multifractal, Z(q, δ) follows a power law in the limit
δ → 0 with

Z(q, δ) ∝ δτ(q) (41)

The function τ(q) is related to the singularity spectrum by a Legendre transform

f (α) = min
q

(q.α − τ(q)) (42)

In the case of a monofractal, one has α = f (α) = D, with D the fractal dimension of µ (because
the set of points with exponent α is the support of the measure itself). In terms of the Legendre
transform this corresponds to τ(q) = D(q − 1), i.e. the behavior of τ(q) versus q is a straight
line with a slope given by the fractal dimension.
Some years ago, a new method based on wavelets, called Wavelet Transform Modulus
Maxima (Muzy et al. (1994)), has shown to provide a more precise method for calculating
the singularity spectrum.

4.2.0.3 Rényi dimension

The generalized fractal dimension also called Rényi dimension of order q is given by

Dq =
τ(q)

q − 1
(43)

D0 corresponds to the Hausdorff dimension, D1 is called the information dimension and D2

is the correlation dimension, already defined in equation (36).
In practice, because of the limits in resolution and noise, the exponents can only be computed
for a limited range of scales. Thus Rényi dimensions depend on the range of scales considered.
In the example of the distribution of galaxies, the partition function can be written in a slightly
different way

Z(q, r) =
1

N

N

∑
i=0

ni(r)
q−1 (44)

where ni(r) is the numbers of neighbours of point labeled by i within a sphere of radius r.
Scale-dependent Rényi dimensions Dq(r) are defined as

Dq(r) =
1

q − 1
.τ(q, r) =

1

q − 1

d log Z(q, r)

d log r
(45)

We show section 4.3.2 how these dimensions can be used in order to test the homogeneity of
the galaxy distribution at different scales.

4.3 Fractality of large-scale structures

While it is clear that the distribution of galaxies is fairly inhomogeneous at small scales,
the homogenization at larger scales has long been an debated question. This was due to

192 Advances in Modern Cosmology

www.intechopen.com



Statistical Study of the Galaxy Distribution 19

the lack of data to provide a definitive answer. For a detailed discussion on this matter
at that period of time, we refer to Davis (1997). This is an important question, since the
Friedmann-Robertson-Walker metric presumes large scale homogeneity and isotropy of the
Universe (the cosmological principle). This is the simplest cosmological model and the
cornerstone of modern cosmology, so it is a fair question to ask the degree to which it is
supported by the observational evidence.
Due to the fractality over a wide range of scales, early redshift surveys did not show a trend
to homogenization, and revealed always larger coherent structures (e.g. the CfA stickman, da
Costa et al. (1994)). As we show section 4.3.1, the correlation function is not a well-defined
quantity for a fractal distribution. Indeed it presupposes the existence of a mean density ρ̄,
which is not the case for a fractal distribution. So when estimating the correlation function
on a fractal distribution, the expected result will have a systematic change with the sample
size. In particular, the correlation length r0 (defined such that ξ(r0) = 1) increases linearly
with the sample size. This systematic change in r0 was observed in early galaxy surveys,
which supported the fractality of the distribution. Another argument in favor of a fractal
Universe was given by more luminous galaxies and clusters. They have been found to be
more correlated than standard galaxies, and therefore to form larger coherent structures.
While all these arguments are valid, they are also explained in the standard model, that
assumes an homogenization at large scale. The unstable behavior of r0 is explained by the
small scale fractality of the distribution, whereas the difference of clustering of different object
populations is explained by the ’bias’ of rare events, luminosity bias, and environmental
effects. On the other hand, there are solid arguments in favor of an homogenization of the
distribution. This phenomenon is referred as the End of Greatness, i.e. scales where no
coherent structures can be observed anymore (thus one does not have to find new superlatives
to describe structures).
Let us briefly present the numerous observations in favor of the standard picture, with a
large-scale homogeneity of the matter distribution. The first type of observations is given
by 2-dimensional data sets on the celestial sphere, including X-ray counts, radio sources
counts, γ-ray bursts and CMB, which all present a remarkable degree of isotropy. If we do
not assume our position to be special in the Universe, this 2D isotropy is a strong indication of
homogeneity. Indeed, it is not clear at all, how random fractal distributions could have such
isotropic 2D projections.
The second type of observations is given by 3-dimensional data, in particular the most recent
redshift surveys, the 2dF and SDSS, which present a high degree of homogeneity at large
scales. As an example of test, in Hogg et al. (2005) the mean number of points at distance R
of LRG galaxies is studied and found to vary as N(R) ∝ R3 for scales R > 70h−1Mpc. This is
not compatible with a strictly fractal model, where this number would scale as N(R) ∝ RD,
with D < 3 the fractal dimension. Another type of 3D data is given by the Lyman-α absorption
lines, observed in the spectra of quasars, due to intervening clouds of neutral hydrogen. These
clouds are found to be ubiquitous and nearly uniformly distributed in space.

4.3.1 Fractility and correlation function

There is a basic assumption behind the notion of correlation function, that the distribution
has a well defined mean density ρ̄. Indeed the correlation function measures the excess of
probability to find a point at distance r of another given point, compared to an unclustered
random distribution. The probability dPr to find a galaxy in a volume dV which is separated
by r of a given galaxy is
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dPr = ρ̄(1 + ξ(r))dV (46)

For a fractal field, the mean density ρ̄ is not a well defined concept, thus the correlation
function is also not well defined. As we show, if we still try to estimate the ’correlation
function’ of a fractal field, the expected result will depend on the volume size. Indeed, it can
be proven that for a fractal of dimension D, the estimated ’correlation function’ in a sphere of
size Rs is given by (Sylos Labini et al. (1998))

ξ(r) =
D

3

(

r

Rs

)D−3

− 1 (47)

This behavior is observed, but only at small scales, when measuring the correlation function
on redshift surveys with ξ(r) ∝ r−γ and γ ≈ 1.7.
The correlation length r0 is defined as the distance where ξ(r0) = 1, i.e. the transition from
strong to weak clustering. When estimating ξ on a fractal, the correlation length depends on
the size of the volume (Pietronero (1987)). Using formula (47) we get

r0 =

(

6

D

)1/D−3

Rs (48)

The correlation length is thus proportional to the volume size Rs. This behavior was observed
in early galaxy surveys but more recent redshift surveys, from the Infrared Astronomical
Satellite (IRAS, Neugebauer et al. (1984)) to the 2dF and SDSS, have contradicted this trend.
The correlation length has become very stable for a given galaxy population (r0 ≈ 5 − 6h−1

Mpc).

4.3.2 Multifractality and transition to homogeneity

The multifractal approach has been applied to the distribution of galaxies for this first time in
Jones et al. (1988). In this study made on the CfA survey, the distribution of galaxies is found
to be better described by a multifractal than by a monofractal. Thus, even for a small survey
size, where the galaxy distribution is very inhomogeneous, it did not appear to be purely
fractal.
More recent works have applied the multifractal formalism on the SDSS survey and SDSS
mock catalogues. The method of analysis consists in studying the Rényi dimensions Dq(r)
as defined equation (45) for different scales r. If the exponents are found to be constant and
equal to the euclidian dimension, this means that the galaxy distribution is homogeneous for
the scales considered.
In Yadav et al. (2005) the exponents Dq(r) are calculated on 2D slices of the SDSS Data Release
1 as well as ΛCDM mock galaxy catalogues, with different mass-luminosity bias (see section
2.3). Calculated in the range of scales from 60 − 70 h−1Mpc to 150 h−1Mpc, exponents Dq(r)
are found to vary between 1.7 and 2.2, i.e. close to a constant value equal to the dimension
of the 2D slices. Furthermore, these results have been found to be consistent with the biased
mock galaxy catalogues.
In Sarkar et al. (2009) the same analysis is performed on SDSS Data Release 6, but this time
using the full 3D survey. This enables to reduce uncertainties in the estimation of the Rényi
dimensions Dq(r). Results at two different scales r = 60 h−1Mpc and r = 70 h−1Mpc are

shown in figure 8. At scale r = 60 h−1Mpc, Rényi dimensions show small deviations from
the constant value D = 3 equal to the dimension of the space. They are not consistent with
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random catalogues (i.e. with randomly located points, homogeneous by construction) at the
1σ level. However at scale r = 70 h−1Mpc, the Rényi dimensions are nearly constant with q
and close to the value D = 3. They also become consistent with results obtained on random
catalogues. The conclusion of these studies is that the galaxy distribution is homogeneous at
large scale, with a transition to homogeneity at around 70 h−1Mpc.

Fig. 8. The Rényi dimensions Dq(r) as a function of q for r = 60 h−1Mpc (left panel) and

r = 70 h−1Mpc (right panel). The figure shows the SDSS data (red points), random data
(green solid line), N-body (blue dashed) and Millennium N-body simulation (pink dotted).
Five independent N-body realizations are used to estimate the 1σ error bars shown on the
SDSS data. Figure courtesy of Sarkar et al. (2009)

We conclude this section by quoting Davis (1997), which sums up the current accepted view
of the galaxy distribution having a fractal behavior at small scale, and at the same time getting
homogeneous at large scales:
"The observed galaxy distribution, being a real physical system rather than a mathematical
idealization, is a beautiful example of a limited-scale fractal joined onto sensible, dynamically
evolving outer boundary conditions."

5. Conclusion

We have presented several methods for studying the galaxy distribution, which are sensitive
to different aspects of it. They should not be directly compared, but rather be considered as
complementary. Their goal is to test cosmological models, and constrain parameters inside
them. Ideally, the statistics are given by analytic formulas for each model, which can be
compared to data results. N-body simulations can also be used for this task, but one has
to trust these simulations, which are usually done for a single set of cosmological parameters.
The most popular method is Fourier analysis, based on the second order statistics, which are
the correlation function and power spectrum. One advantage is that they can be analytically
predicted at linear scales, for usual ΛCDM and wCDM models. Another advantage is that
BAOs have their signature directly imprinted in these statistics, as they manifest by an excess
of clustering at the sound horizon scale. BAOs in the correlation function (or power spectrum)
confirms the usual cosmological paradigm of linear gravitational evolution from redshift z ≈
1000, and the existence of dark energy. They also provide a standard ruler to quantify the
evolution of distances, i.e. constrain cosmological parameters.

195Statistical Study of the Galaxy Distribution

www.intechopen.com



22 Will-be-set-by-IN-TECH

A second type of methods studies the global morphology and topology of the galaxy field,
through Minkowski functionals. They can also be analytically predicted at linear scales where
the matter distribution is gaussian. They were first used to determine the transition from
linear to non-linear regimes, where the field becomes non gaussian. Recently they have been
used as a standard ruler to constrain cosmological parameters, since their value per unit
volume is predicted analytically. They have also been used to distinguish between models
with different morphologies, that are well differentiated by Minkowski functionals.
Finally we presented the fractal analysis of the galaxy distribution, also probing the global
morphology of the field. Fractality of the galaxy distribution is well-established at small
scales. On the other hand, observations confirm large-scale homogeneity, as required by
the cosmological principle which is the cornerstone of modern cosmology. One has to
turn to multifractal analysis to model the galaxy distribution and study this transition to
homogeneity. This is done by studying the scaling exponents of the distribution, which
are found to approach the dimension of the space at scales around 70h−1Mpc, indicating
large-scale homogeneity.
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