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1. Introduction 

For a long time, in plant cells as in animal cells, the nucleus was only considered as the 

organelle in which fundamental mechanisms such as replication and transcription occurred. 

While strong efforts were deployed in order to identify important families of transcription 

factors such as MYB, WRKY or TGA families (Dubos et al., 2010; Rushton et al., 2010), a few 

attention was devoted to our lack of knowledge about their regulation in regard to the 

physiological conditions of the plant cells. Whereas the major importance of post-

translational modification of proteins is well established for several decades regarding 

cytosolic proteins, the last years have been characterized by the discovery that the plant cell 

nucleus also contains all the enzymes necessary to assume these fundamental reactions in 

terms of signal transduction. For example, Mitogen-Activated Protein Kinases (MAPK) are 

well known protein kinases (PKs) involved in response to both biotic and abiotic stresses 

(for review see Dahan et al., 2009). These MAPKs play a crucial role in the regulation of 

specific gene expression by phosphorylating particular transcription factors. However, 

while they are well described in the cytosol, only recently researchers focused on their 

presence and involvement in the nucleus of plant cells challenged by abiotic stresses (for 

example, Ahlfors et al., 2004). Unfortunately, these authors like the other ones involved in 

plant cell nucleus studies did not try to identify the targets of these MAPK. This example 

highlights the fact that our knowledge of the incidence of protein posttranslational 

modifications regarding the cellular activities is still poorly rudimental, and particularly in 

the field of abiotic stress responses.  

Amongst the targets of these post-translational modifications, histones will be a piece of 

choice, being one of the favourite substrates for acetylation or methylation for example. 

Histones are small basic protein associated with DNA to form the chromatin. Chromatin 
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contains histone octamere composed by two copies of each histone H2A, H2B, H3 and H4 to 

form the histone core. Histones composing the histone core are extremely conserved in the 

different kingdoms. For example, histone H3 differs only by two amino acids in its sequence 

in rat and pea. The histone core is rolled by approximately 146 bps of DNA to form a 

nucleosome, the repeating unit of chromatin which provided a first level of DNA 

compaction. Association of nucleosome with other protein like histone H1 creates a 

structure named 30 nm chromatin fiber (Kornberg and  Lorch, 1999; Hayes and  Hansen, 

2001). This fiber can be unfold by several protein grouped under the term chromatin 

remodeling complex to generate a 11 nm fiber, the template for transcription. The 11 nm 

fiber can also be repressive to transcription process but different types of protein complexes 

can affect the chromatin to modulate DNA accessibility to transcriptional machinery and at 

the end gene transcription. Histone tails and globular domains are subjected to a variety of 

posttranslational modifications such as acetylation, methylation, phosphorylation, 

ubiquitination, sumoylation, ADP ribosylation, deimination and proline isomerization. 

These covalent modifications of histones are important in chromatin dynamics (Kouzarides, 

2007). It has been proposed that all the histone postranslationnal modifications constitute a 

code, “the histone code” associating to all the possible combinations of modification a 

particular state allowing biological process such as transcription of gene. This code is 

written by particular proteins: “the writers”, interpreted by other proteins: “the readers” 

and erased by a last class of protein, “the erasers” (Figure 1). Readers could also be able to 

modify histones or to recruit other protein actin on chromatin (Strahl and  Allis, 2000). 
The goal of this book chapter is to summarize our current knowledge of the molecular actors 
and their regulations that lead to posttranslational modifications of nuclear proteins, and in 
fine to the regulation of specific target gene expression. For this purpose, a large number of 
nuclear enzymes that are involved in (de)phosphorylation, (de)acetylation, and 
(de)methylation of nuclear proteins, but also in nuclear protein degradation pathway 
associated with sumoylation and ubiquitination, and in changes of the redox state of the 
nuclear proteins will be presented and their roles illustrated by various but non exhaustive 
cell responses to abiotic stresses. 
 

Writter
Reader

Modification of 

histones

Chromatine 

remodelling

Recruting of other 

proteins

Eraser

Function ( activation or 

repression of transcription…)  

 

Fig. 1. Schematic representation of histone code. Writers can recognize chromatin area and 
add marks on histone (methylation, acetylation…). Theses labeling is dynamic because 
marks can be remove by erasers. They can also be recognized par readers, another group of 
proteins able to act directly or indirectly on chromatin structure. The final consequence can 
be a modification of the gene transcription in concerned loci. 
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2. Nuclear protein phosphorylation / dephosphorylation 

Phosphorylation is probably the most prominent and major posttranslational modification 

in living organisms. This reversible modification consists on the covalent binding of a 

phosphate on aminoacids hydroxyl residues. In eukaryotes, phosphorylation occurs mainly 

on Ser, Thr and Tyr residues. This modification depends on the action of two types of 

enzymes with antagonistic activities: (i) PKs which phosphorylates and (ii) protein 

phosphatases (PPs) which remove phosphoryl groups from target proteins. The binding of 

the phosphoryl group alters the functional properties of target proteins in terms of activity, 

subcellular localization, protein-protein interactions or stability (Cohen, 2000). This 

versatility has made phosphorylation one of the major means for modulation of cellular 

activities, as phosphorylation status can be finely tuned as the result of the balance between 

PKs and PPs activities at a given time point on specific substrates. These enzymes are thus 

involved at every steps of signal transduction, from plasma membrane to final effectors. 

Although numerous studies like the ones regarding brassinosteroids, have investigated PKs, 

PPs and their targets in the plasma membrane and the cytoplasm (Li, 2005), only few ones 

has focused on those localized, temporarily or permanently, in the nuclear compartment, 

despite their involvement in critical processes for cell surviving (Dahan et al., 2009). A recent 

phosphoproteomic analysis of the nuclear proteins from Arabidopsis thaliana showed that the 

identified phosporylated proteins cover a wide range of nuclear activities, indicating an 

equal importance of phosporylation in the modulation of nuclear activities as for the 

cytoplasmic ones (Jones et al., 2009). 

In plants, PKs constitute a superfamily of proteins, and according to their importance in 

cellular homeostasis, it was shown that around 4 % of A. thaliana genome encodes putative 

PKs (Champion et al., 2004). According to their substrate specificities, PKs and PPs can be 

classified into three families: (i) Ser/Thr PKs/PPs, (ii) Tyr PKs/PPs and (iii) dual-specificity 

(Ser/Thr-Tyr) PKs/PPs. In plants, no functional Tyr PK has been described to date, 

although predicted (Miranda-Saavedra and  Barton, 2007). Consistent with this, the relative 

abundance of phosphor-Ser, phosphor-Thr and phosphor-Tyr has been estimated in A. 

thaliana to 85 %, 11 % and 4 % respectively (Sugiyama et al., 2008). Although Tyr 

(de)phosphorylation is thus accomplished through dual-specificity PKs/PPs, to date, the 

vast majority of studies have been focused on Ser/Thr PKs/PPs in plant. 

More than half of the putative PKs from the A. thaliana genome fall in the clade of the so-
called Receptor-Like protein Kinases (RLKs), which are transmembrane proteins probably 
acting as receptors of environmental stimuli (Tör et al., 2009). The other part of plant PKs, 
which is of interest in this article, constitutes the clade of the “soluble” ones, and concerns 
all PKs found in the cytoplasm and the nucleus. This clade can be divided into numerous 
families and subfamilies, based on sequence similarities of the kinase domain and features 
of flanking sequences determining regulation properties (Hanks and  Hunter, 1995; 
Champion et al., 2004; Miranda-Saavedra and  Barton, 2007); readers are invited to report to 
these works for more details). Although for a large part studied in the cytoplasm or at the 
plasma membrane level, members from almost all families have been found in the nuclear 
compartment (for a detailed review, see Dahan et al., 2010). The majority of the available 
data on these nuclear PKs comes from subcellular distribution studies. Indeed for most of 
them their nuclear localization has been investigated using chimerical PKs fused to a 
fluorescent reporter, or immunolocalization studies based on specific antibodies. The 
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activity of the PKs in the nucleus has only been assessed in rare cases, impairing our 
understanding of their roles and functionality.  
While the core catalytic domain of PKs derived from a single ancestor (Hanks and  Hunter, 
1995), PPs origins are more diversified (Moorhead et al., 2009). In plants, around 160 sequences 
coding for putative catalytic subunit of PPs have been retrieved (Kerk et al., 2002). They can be 
divided in three main families, based on catalytic domain sequences and enzymatic features: 
(i) the PPP (phophoprotein phosphatase) family, (ii) the PPM (metallodependent protein 
phosphatase) family, and (iii) the PTP (phosphotyrosine phosphatase) including the DSP 
(dual-specificity phosphatase). Readers are invited to refer to other reviews that detailed the 
features of these families (Kerk et al., 2002; Luan, 2003; Moorhead et al., 2009). As for plant PKs, 
PP functionalities in the nucleus have been poorly studied.  
The role of several nuclear PKs in response to different abiotic stresses has been investigated 
in different model plants. To date, and despite the great diversity of PKs, only a few families 
have been shown to be involved in these signaling pathways at a nuclear level. Among 
them, the MAPK family is certainly the most studied family of PKs in the nucleus. MAPK is 
the last component of a cascade of three PKs, which are sequentially activated (Widmann et 
al., 1999). The perception of an environmental stimulus drives the activation of the first PK 
of this transduction module, namely MAPKKK (MAPK kinase kinase). MAPKKK in turn 
activates by phosphorylation on a specific motif a MAPKK (MAPK kinase), which 
phosphorylates MAPK, the final effector, on conserved residues. This chain of 
phosphorylation is thought to take place in the cytoplasm, and the MAPK is then 
translocated upon activation by phosphorylation into the nucleus, where it modulates gene 
expression by acting on transcription factors. However the presence of MAPKK and 
MAPKKK in the nucleus was already reported (Dahan et al., 2009). 
Figure 2 illustrates, although partially, the known nuclear PKs that were shown to be 
involved in response to various abiotic stresses. Even though MAPK was involved in the 
response to many abiotic stresses on the basis of their activation in the cytosol, few of them 
have been demonstrated to localize and to act in the nuclear compartment. In fact in the 
context of abiotic stresses only one study showed the translocation in A. thaliana of two 
MAPKs, AtMPK3 and AtMPK6, following ozone exposure and using immunolocalization of 
the native protein (Ahlfors et al., 2004). However contradictory results were obtained when 
these two MAPKs were expressed fused to GFP, and showed a constitutive nuclear and 
cytoplasmic localization (Yoo et al., 2008). In addition to ozone exposure, these two MAPKs 
are furthermore activated in response to several abiotic stresses, such as cold, salt, drought, 
wounding and touch for AtMPK6 (Ichimura et al., 2000) and osmotic stress for AMPK3 
(Droillard et al., 2002). The orthologs of AtMPK3 and AtMPK6 in tobacco, respectively WIPK 
(Wounding-Induced Protein Kinase) and SIPK (Salicylic acid-Induced Protein Kinase), are 
also activated in response to several environmental cues, such as high salinity and osmotic 
stresses, wouding and ozone exposure (Zhang and  Klessig, 1998; Mikolajczyk et al., 2000; 
Samuel and  Ellis, 2002). They were shown to be nuclear, independently of any stimuli when 
fused to GFP (Menke et al., 2005; Yap et al., 2005), and the activity of SIPK could be retrieved 
in nuclear extracts of osmotically stressed tobacco cells (Dahan et al., 2009), demonstrating 
its functionality in the nuclear compartment in response to environmental stresses.. A few 
substrates of MAPKs have been identified, and so their precise roles in response to abiotic 
stresses remain elusive. For the most part, their known targets are transcription factors. For 
example, SIPK was shown to phosphorylate in vitro the transcription factor WRKY1, 
involved in the expression of defense-related genes (Menke et al., 2005). This suggests that 
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MAPKs, in response to different abiotic stresses, could be involved in the reprogramming of 
transcription patterns to allow the plant to cope with the perceived stresses. Given that, the 
overexpression or knock-out of several MAPKs impairs the outcome of the response to some 
abiotic stresses. The extinction of Atmpk6 expression using RNAi and a loss-of-function 
mutation of Atmpk3 both generate increased sensitivity to ozone leading to cell death, 
implying that these MAPK play an important role in the management of ozone stress by A. 
thaliana (Ahlfors et al., 2004). Another A. thaliana MAPK, AtMPK4, has been shown to reside 
permanently in the nucleus along with the cytoplasm (Andreasson et al., 2005; Kosetsu et al., 
2010). Although more studied for its potential role in cytokinesis (Kosetsu et al., 2010) and its 
involvement in plant defense reactions (Andreasson et al., 2005; Gao et al., 2008), its activity 
is observed upon application of stresses such as cold, salt and osmotic stresses (Droillard et 
al., 2004; Teige et al., 2004). One substrate for this MAPK has been described in vitro: MKS1, 
which is a protein interacting with two WRKY transcription factors (Andreasson et al., 2005). 
The phosphorylation of MKS1 by AtMPK4 is thought to result in the release of the WRKY33, 
which could then play its role as a transcriptional regulator (Qiu et al., 2008). However, this 
interaction takes place in the context of defense reaction, and no data is available regarding 
functionality of AtMPK4 in response to abiotic stresses. 
 

Stress Kinase/phosphatase HDAC/HAT 

Cold MPK6 (Ichimura et al., 2000) 
MPK4 (Droillard et al., 2004; Teige et al., 
2004) 

AtGCN5/HAG1 (Servet et al., 
2010) 
HDA18, HDA19 (Alinsug et al., 
2009) 
SIR2 (Bond et al., 2009) 

Heat  HDA7 (Alinsug et al., 2009) 

Salt MPK6 (Ichimura et al., 2000) 

SnRK2 (Halford and  Hey, 2009) 

MPK4 (Droillard et al., 2004; Teige et al., 

2004) 

HDA6 (Chen et al., 2010) 

HDA19 (Chen and  Wu, 2010) 

HDA2, HDA14 (Alinsug et al., 

2009) 

HD2C (Sridha and  Wu, 2006) 

Osmotic MPK3 (Droillard et al., 2002) 

MPK4 (Droillard et al., 2004; Teige et al., 

2004) 

SnRK2 (Halford and  Hey, 2009) 

 

Drought MPK6 (Ichimura et al., 2000) 

SnRK2 (Halford and  Hey, 2009) 
 

Light  HDA19 (Tian et al., 2003) 

HDA7 (Alinsug et al., 2009) 

GCN5 (Benhamed et al., 2006) 

Ozone MPK3, MPK6 (Ahlfors et al., 2004) 

Wounding MPK6 (Ichimura et al., 2000) HDA19 (Zhou et al., 2005) 

Fig. 2. An overview of nuclear enzymes involved in phosphorylation/dephosphorylation or 

acetylation/deacetylation processes in response to various abiotic stresses. 
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Not only MAPKs are the nuclear crossroads of abiotic stresses. Data that are piling up to put 

PKs and PPs at the centre of the regulation of the adaptative reponses of plant cells to 

osmotic, saline and hydric stresses, in link with ABA (abscisic acid), point out the role of 

other nuclear PK. In particular SnRK2 (for Snf1-Related protein Kinase) family is constituted 

of PKs initially characterized as ABA signalling factors. They can be categorized into three 

subclasses, and subsequent studies on rice and A. thaliana PKs demonstrated that all of the 

subclasses could be activated in response to osmotic stress, with subclasses II and III being 

also responsive to ABA (Halford and  Hey, 2009). ABA is a phytohormone essential for the 

establishment of adaptative responses to drought and salinity stresses. Its accumulation 

leads to expression of ABA-responsive genes helping cells to cope with hydric and osmotic 

variations (Hubbard et al., 2010). It was recently shown that at the heart of its signalling 

pathway in A. thaliana is a core complex composed of three subclass III SnRK2 called 

SnRK2D, E and I, and their cognate PPs PP2C. Indeed SnRK2s are rendered active upon 

phosphorylation on two critical residues in their activation loop (Belin et al., 2006; Burza et 

al., 2006; Boudsocq et al., 2007). Recently, several PPs from the PP2C family have been shown 

to dephosphorylate these residues, thus inactivating the PKs. These partners have been 

colocalized in the nuclear compartment, where they interact in permanence (Umezawa et al., 

2009). Interestingly, the same SnRK2s were also shown to associate in the nucleus with 

AREB1, a transcription factor whose expression occurs during drought (Fujii et al., 2009). A 

triple mutant plant impaired in the expression of SnRK2D, E and I exhibited a strongly 

reduced tolerance to drought, comforting the involvement of these PKs in response to water 

shortage. Accordingly, drastic changes was observed in response to ABA, high salinity 

stress and drought at the transcriptional level, with down-regulation of ABA responsive-

genes as compared to wild type plants (Fujita et al., 2009). Upon perception, water and 

osmotic stresses lead to production of ABA which in turn activates the transduction module 

composed of the PP2Cs and the SnRK2s. The signaling pathway is then achieved by 

phosphorylation of specific transcription factors, controlling a set of stress and ABA-

responsive genes. Likewise, other SnRK2s have been characterized in several plant species 

that can phosphorylate ABA-responsive transcription factors. In wheat, the SnRK2 PKABA1 

has been shown to interact with and phosphorylate in vitro TaABF, an ortholog of AREB1 

(Johnson et al., 2002). Furthermore, three rice SnRK2s were found to phosphorylate and 

activate another ortholog of AREB1, TRAB1 (Kobayashi et al., 2005). However in the last two 

cases, the subcellular partitioning of the PK was not investigated. Recent data suggest that 

the transduction module composed of the SnRK2 and PP2C could be directly activated in 

the nucleus, meaning that the ABA receptor is expected to translocate after binding to its 

ligand. 
Calcium is a well recognized second messenger, and as such its variations in the cytosol 
specifically induced by many stimuli promote specific signal transduction through decoding 
by a panel of Ca2+ sensor molecules (Kudla et al., 2010). It is now well established that apart 
from the cytosol, nucleus is able to generate its own Ca2+ signatures following diverse 
environmental cues (Mazars et al., 2009). Accordingly, Ca2+-binding proteins have been 
localized in the nucleus, where they can decode Ca2+ variations into an appropriate 
response, like modulation of the expression of specific set of genes (Xiong et al., 2006). 
Accordingly, several PKs and PPs potentially regulated by Ca2+ have been localized in the 
nucleus, where they are thought to decode nuclear Ca2+ variations into modifications of 
phosphorylation state of specific target proteins. The concerned PKs are mainly CDPKs 
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(Ca2+-Dependent Protein Kinases) and CIPKs (Calcineurin B-like[CBL]-Interacting Protein 
Kinases). CDPKs are specifics to plant and exhibit in their sequence a CaM-like domain with 
three to four EF-hand Ca2+ binding motifs, rendering them directly dependent on Ca2+ 
binding for their activities (Klimecka and  Muszynska, 2007). A study on the subcellular 
targeting performed for 9 of the 34 putative CDPK in A. thaliana showed that two of them, 
AtCPK3 and AtCPK4 are constitutively cytosolic and nuclear (Dammann et al., 2003). 
AtCPK3 has been shown to be activated at the plasma membrane level following a salt 
stress, and in accordance to this putative involvement knock-out Atcpk3 mutant plant 
exhibited altered resistance to salt stress, whereas it was improved in Atcpk3 overexpressor 
mutant line (Mehlmer et al., 2010). Intriguingly, no transcriptional changes in the expression 
of traditionally salt-stress related genes were observed, raising the question of AtCPK3 
nuclear role (Mehlmer et al., 2010). Apart salt stress, another CDPK, AtCPK32, has been 
found to be involved in ABA signaling, through interaction and phosphorylation with an 
ABA-responsive transcription factors, ABF4. Interestingly these two proteins are colocalized 
in the nucleus (Choi et al., 2005). Whereas most of the CDPK studied show a constitutive 
partitioning between different sublocation and the nucleus, two CDPK from different 
species are suggested to translocate from the plasma membrane to the nucleus upon 
stresses. McCPK1 from Mesembryanthemum crystallinum is transcriptionnaly induced 
following salt- or water deficit stresses and when fused to GFP, translocate from the plasma 
membrane to the nuclear compartment (Chehab et al., 2004). However the mechanisms and 
the functions of this phenomenon are not explained to date. Even if CDPKs are thought to 
have their activities regulated by Ca2+concentrations in the cytosol (Harmon, 2003), recent 
data suggest that they could also be part of phosphorylation cascade, as for NtCDPK2 and 
NtCDPK3, complicating conventional signaling schemes (Witte et al., 2010). Despite recent 
advances in the understanding of the functionality of Ca2+ variations, the ion still constitute 
a missing when it comes down to evaluate its part in the activation of specific signaling 
pathways. 

3. Nuclear protein acetylation / deacetylation 

The first descriptions of a nuclear protein modification by the chemical binding of an acetyl 

group on the amine function of lysine residues was observed on histone proteins (Allfrey et 

al., 1964), explaining why enzymes responsible for the acetylation and deacetylation 

processes were named histone acetyltransferases (HATs; Gallwitz, 1971) and histone 

deacetylases (HDACs; Inoue and  Fujimoto, 1969), respectively. However, based on their 

ability to act on proteins unrelated to histone such as transcription factors or coregulators of 

gene transcription, HATs and HDACs are more generally considered as lysine acetyl 

transferases and lysine deacetylases (Chen and  Tian, 2007). All these proteins were reported 

to be located, exclusively or not, into the nucleus of plant cell. 

3.1 Histone deacetylases (HDACs) 

Concerning HDACs, plant genomes contain members that belong to two different families 

that are common to eukaryotes (Pandey et al., 2002): the RPD3 (Reduced Potassium 

Dependency Protein 3) - HDA1 (Histone Deacetylase 1) superfamily, and SIR2 (Silent 

Information Regulator 2) family. The third family, termed HD2 (type-2 Histone 

Deacetylase), is specific to plant cells (Fu et al., 2007). 
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The first member of the RPD3-HDA1 superfamily was identified in yeast in a 

complementation screen of a mutant for a high affinity potassium transporter (Vidal et al., 

1990). It was latter shown that RPD3 encodes the catalytic subunit of the HDB (Histone 

Deacetylase B) complex activity (Rundlett et al., 1996). The first plant RPD3-HDAC member, 

ZmRpd3, was identified in maize thanks to its ability to functionally complement a yeast 

rpd3 null mutant (Rossi et al., 1998). Among the eleven RPD3 genes identified in the maize 

genome, three of them (ZmHDA101, ZmHDA102 and ZmHDA108) exhibit the same 

expression pattern, suggesting a possible functional redundancy among this gene family 

(Varotto et al., 2003). In term of specificity, ZmRPD3s, like its counterpart in yeast, seem to 

specifically remove the acetyl tail of lysines of histone H4 (H4K5, H4K12) prior to its 

incorporation in chromatin (Lechner et al., 2000). Homologs of ZmRPD3 were also identified 

in A. thaliana and classified in three different clades : Class I for the RPD3 group, Class II for 

the HDA1-like group, and Class IV for the AtHDA2 group (Alinsug et al., 2009). Whereas 18 

RPD3-like genes were identified from the genome analysis data, only AtHD1 (also called 

AtHDA19 or RPD3A) and AtHDA6 were largely characterized. AtHD1, that is constitutively 

expressed, encodes a protein that localises both in the cytoplasm and in the nucleus, but is 

predominantly accumulated in the euchromatic region and excluded from the nucleolus 

(Varotto et al., 2003; Fong et al., 2006). AtHD1 exhibits a histone deacetylase activity that 

removes the acetyl group of histone H3 (H3K9) and H4 (H4K5, H4K8, H4K12, H4K16; Tian 

et al., 2003). AtHDA6, although it is the close homolog of AtHD1, exhibits major differences 

in term of expression and specificity. AtHDA6 is largely accumulated in the nucleoli (Probst 

et al., 2004) and is a broad-specificity HDAC that removes the acetyl group of various lysines 

of histone H3 and H4 (H3K14, H4K5, H4K12; Earley et al., 2006). In agreement with these 

differences in their expression profiles, AtHD1 and AtHDA6 are involved in different 

signalling pathways: AtHD1 regulates several developmental processes such as early 

senescence, floral organ identity or late flowering (Wu et al., 2000; Tian and  Chen, 2001; 

Tian et al., 2005), by controlling the expression of a set of genes involved in protein 

synthesis, ionic homeostasis or plant hormonal regulation (Tian et al., 2005). AtHDA6, due to 

its localisation in the nucleolus, is involved in the inhibition of the NORs (nucleolus 

organisation region; Probst et al., 2004; Earley et al., 2006), and evidences supporting roles in 

silencing transgenes and transposons were also reported (Murfett et al., 2001; Aufsatz et al., 

2002; Lippman et al., 2003; May et al., 2005). In a structural point of view, a huge study was 

conducted with the RPD3-like HDACs of A. thaliana (Alinsug et al., 2009). All members are 

characterized by a variable catalytical domain characterized by a pocket that can either bind 

a Zn2+ cation necessary to ensure the deacetylation reaction, or different inhibitors like 

sodium butyrate or trichostatine A (Finnin et al., 1999). Different members of this family like 

HDA6, HDA7 or HDA19 contain a NLS and / or NES, confirming the nuclear localisation of 

these enzymes, but also that a cytosolic / nuclear shuttling could be of importance for their 

mode of action.  

Several studies, mainly based on the use of mutants in RPD3-HDA1 A. thaliana genes, 
have reported that they play major roles in various biotic and abiotic stress responses 
(Figure 2; Alinsug et al., 2009). Amongst the 18 HDAC A. thaliana genes belonging to the 
RPD3-HDA1 family, most of them appear to be partly or largely involved in response to 
various environmental stresses. For example, in the Class I RP3-HDAC, AtHDA19 that is 
the best characterized member of this family, is highly expressed in germinating and 
imbibed seeds and also strongly accumulated in response to cold stress (Alinsug et al., 
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2009), wounding (Zhou et al., 2005) or light response (Tian et al., 2003; Tian et al., 2005). In 
fact, Tian et al. (2005) showed that approximately 7 % of the Arabidopsis genome is up- or 
down-regulated in athda19 mutants. For example, Tian et al. (2003) showed that hda19 
mutant lines were affected in their flowering process under long day conditions, 
exhibiting the opposite phenotype of mutants altered in the expression of the histone 
acetyltraferase GCN5. Interstingly, the double mutant gcn5:hda19 is characterized by a 
normal phenotype in response to light, suggesting that both HDA19 and GCN5 could 
target the same genes. This was shown by Benhamed et al. (2006): a reduced histone 
acetylation was monitored in the promoter of CAB2, RBCS-1A and IAA3 genes in the gcn5 
mutants, whereas an increase histone acetylation was observed in the promoter of the 
same genes in the hda19 mutants. Furthermore AtHDA19 expression is strongly induced 
in response to wounding and the stress related hormons JA and ethylene, suggesting that 
it could be involved in many abiotic stresses leading to the production of both compounds 
(Zhou et al., 2005). AtHDA19 was also reported to be involved in response to abiotic 
through its interaction with the transcription corepressor LEUNIG by repressing gene 
transcription (Gonzalez et al., 2007). In the same way, overexpression of AtHDA19 in 
Brassica napus demonstrated that it was involved in response to cold stress by interacting 
with bnKCP1, a novel protein containing a putative kinase-inducible domain (Gao et al., 
2003).  
AtHDA6, another RPD3-type histone deacetylase in A. thaliana, is involved in response to 

ABA and salt stress. Chen et al. (2010) showed that an AtHDA6 mutant, axe1-5, as well as 

HDA6 RNA-interfering plants are hypersensitive to salt and ABA treatment, due to the 

down-regulation of various abiotic stress responsive genes like ABI1, ABI2, RD29A or 

RD29B. This hypersensitivity to salt stress is correlated with changes in H3 acetylation 

pattern. Without ABA treatment, an increase of H3 acetylation was shown both in the 

promoter and in exons of these genes in the axe1-5 mutant compared to Col0. In response to 

ABA, an increase of H3 acetylation was only monitored in Col0 but not in the axe1-5 mutant, 

indicating that HDA6 is required for the induction of acetylation by ABA and salt treatment. 

A similar phenotype was obtained with the A. thaliana HDA19 T-DNA insertion mutant, 

hda19-1 (Chen and  Wu, 2010). On the contrary, other RPD3 HDAC like AtHDA7 are not 

differentially expressed in regard to developmental stages but are induced in response to 

both biotic (Pseudomonas syringae) and abiotic stimuli such light intensity or heat stress, 

according to microarray data analyses (Alinsug et al., 2009).  

Little information is available regarding the properties of HDA1-like HDACs in plants. The 

study of one member of this family in maize, ZmHDA1, reported that it is expressed in an 

inactive form of high molecular weight (84-kDa) that needs to be processed in an active form 

of 48-kDa by a proteolytic cleavage of the C-terminal end to regulate gene transcription 

(Pipal et al., 2003). According to the data of the sequenced genomes, A. thaliana contains five 

members of the HDA1 group also termed class II. Members of this Class II are also involved 

in response to various environmental stresses: while heat stress seems to upregulate most of 

the Class II HDAs, NaCl treatment only stimulates AtHDA14 and AtHDA2 expression 

(Alinsug et al., 2009). Furthermore, AtHDA18 expression is induced in response to cold 

treatment. Demetriou et al. (2009) reported that members of this HDAC family in Barley are 

also regulated by JA in response to abiotic stresses: whereas HvHDAC1-I-1 is slightly 

reduced after 6 hr of treatment, other genes like HvHDAC1-II-1 or HvHDAC1-IV-1 are 

strongly accumulated after 6 hr.  
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The SIR2-like HDACs are characterised by their NAD-dependent histone deacetylase 

activity. They are homolog to the yeast SIR2 HDAC that is involved in longevity (Imai et al., 

2000). Although the genome of all sequenced plants contains several Sir2-like genes, their 

functions are yet to be determined. A recent study in A. thaliana showed that AtSIR2 

regulates several defence related genes involved in the synthesis of SA, implying potentially 

SIR2 members in plant defence reactions (Wang et al., 2010). To our knowledge, only one 

study recently reported the involvement of SIR2 in response to low temperature in the 

context of vernalization (Bond et al., 2009). SIR2 class of HDAC would repress the expression 

of the MADS box transcription factor FLC (for Flowering Locus C, a central gene in the 

vernalization process) by altering the acetylation pattern of histones H3 and H4. 

The last HDAC family, termed HD2-like, is specific to plants and do not share any sequence 

similarities with other HDAC proteins (Pandey et al., 2002). Three genes HD2 HDAC genes 

/or homologues are coded in maize genome, four in A. thaliana, two in rice and in barley. 

All HD2 display similarities with the FKBP family peptidyl-propyl cis-trans isomerase 

(Aravind and  Koonin, 1998; Dangl et al., 2001) and display the same architecture: a 

conserved EFWG motif in the N-terminal region that comprises the catalytical domain, a 

central acidic domain involved both in enzymatic activity and its regulation, and in the C-

terminal part a NLS and a Zn2+ finger that may be involved in protein/protein or 

protein/DNA interactions. Several members of this family like ZmHD2 in maize and 

AtHD2A in A. thaliana were shown to be localized in the nucleolus and to deacetylate the 

lysine 9 of histone H3, suggesting that they should be involved in the regulation of 

ribosomal RNA expression (Lusser et al., 1997; Earley et al., 2006). However their mode of 

action is still largely unknown; they seem to be mainly involved in plant defence reactions 

(Bourque et al., 2011) and in seed development (Wu et al., 2000). In A. thaliana, Sridha and  

Wu (2006) showed that overexpression of AtHD2C enhances tolerance to salt stress and 

drought compare to wild-type plants by affecting the expression of several abscisic acid-

responsive genes. However, we do not know whether or not it affects the acetylation of 

these genes. 

3.2 Histone acetyltransferases (HATs) 

The action of the HDAC proteins is reversed by the one of the HATs that catalyse the 
transfer of an acetyl group from acetyl~SCoA to the amine function of a lysine residue, 
particularly in histone proteins (Servet et al., 2010). Like HDACs, HATs are divided into 
several groups based on primary homology with yeast and mammalian HATs: GNAT (for 
GCN5-related N-acetyltransferase), MYST (for MOZ, Ybf2/Sas2 and Tip60), p300/CBP (for 
CREB-binding protein) and TAF1 (for TATA-binding protein (TBP)-associated factor 1) 
groups. The GNAT group is usually subdivided into three subfamilies termed GCN5 (for 
General Control Nonderepressive protein 5), ELP3 (for transcriptional ELongator complex 
Protein 3) and HAT1. In a structural point of view, HATs are usually constituted by two 
fundamental domains: the catalytical acetyltransferase domain, and the bromodomain. The 
bromodomain is composed of 110 aminoacids that can bind to acetylated lysine residues 
(Owen et al., 2000). Bromodomains are generally found in proteins that regulate chromatin 
structure and gene expression, such as HATs and the ATPase component of certain 
nucleosomes-remodeling complexes. The mode of recognition of acetyl-lysine by the 
bromodomain is similar to the one of acetyl~SCoA by HATs, since the bromodomain is the 
only domain known to interact with acetylated lysine containing peptides. Among the 
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different HATs expressed in A. thaliana, AtGCN5/HAG1, which belongs to the GNAT HAT 
family, is one of the best characterized in terms of function and is involved both in abiotic 
and developmental responses (see Servet et al., 2010 for a recent review). Regarding its 
specificity, the major targets of this HAT are histone H3 (H3K9, H3K14, H3K18 and H3K27) 
and histone H4 (H4K5, H4K8, H4K12 and H4K16; Zhang et al., 2007). The bromodomain of 
AtGCN5, that was shown to bind to acetylated histone lysine motifs, is probably not 
required for its binding to most of its targets (Benhamed et al., 2008). Among its targets, in 
addition to histones H3 and H4, AtGCN5 also interacts and acetylates other proteins such as 
AtADA2 that could regulate HAT activity (Servet et al., 2010). Furthermore, AtGCN5 
activity could be regulated by phosphorylation/dephosphorylation, since it interacts with 
protein phosphatase 2C in vitro and mutation in PP2C gene increases H3K14 acetylation, one 
of the targets of AtGCN5. The other HAT proteins are less characterized in terms of target 
and mode of action.  
Works in the group of D.X Zhou have shown that AtGN5 is required for light-regulated 
gene expression by promoting the acetylation of the promoter of target genes (Benhamed et 
al., 2006; Benhamed et al., 2008; Servet et al., 2010). Several studies reported that abiotic 
stresses involve the association/regulation of HAT activities with various proteinaceous 
partners in the regulation of specific genes leading to the establishment of the biological 
response. For example, the GCN5 HAT is known to physically interact with the 
transcriptional coactivator Ada2 (Stockinger et al., 2001), this one enhancing the ability of 
GCN5 to acetylate histones in vitro and enabling GCN5 to acetylate nucleosomal histones 
(Mao et al., 2006). Hark et al. (2009) showed that mutants of one of both ADA2 genes, ADA2b, 
display hypersensitive phenotype to salt stress and altered responses to low temperature 
stress, a phenotype close to the one of AtGCN5 mutants. A recent study showed that 
ADA2b and GCN5 interact with a third partner, the coactivator SGF29a, to enhance the 
acetylation in the promoter region of target genes like COR6.6, RAB18, and RD29b (Kaldis et 
al., 2011). In the same vein, Gao et al. (2007) showed that AtGCN5 HAT activity is required 
in response to cold and stress treatment by its physical interaction with the transcription 
factor AtEML. The authors suggest that AtEML would co-ordinates the expression of target 
stress regulated genes through involvement in recruiting AtGCN5 to their promoters. 

4. Protein methylation 

Protein methylation involves transfer of a methyl group from S-adenosylmethionine (the 
universal methyl donor in cells) to acceptor groups on substrate proteins (Aletta et al., 1998). 
It commonly occurs on carboxyl groups of glutamate, leucine, and isoprenylated cysteine, or 
on the side-chain nitrogen atoms of lysine, arginine, and histidine residues (Clarke, 1993). In 
eukaryotes nuclei, one of the best known examples of protein methylation is probably 
histone methylation. Like acetylation, histone methylation is considerate as an important 
process regulating the chromatine dynamics and function (Strahl and  Allis, 2000; Jenuwein 
and  Allis, 2001; Zhang and  Reinberg, 2001; Kouzarides, 2002). Histone methylation can 
occur at different residues and on distinct sites. For one residue, different numbers of 
methyl groups can be added. Even if some methylation has been characterized in the 
globular domain of H3 in animals (Feng et al., 2002), methylation seems to concern most of 
the time the N-terminal part of histones (named histone tail) (Bannister and  Kouzarides, 
2005). Histones methylation has been described mainly on histones H3 and H4 and occurs 
on both arginine and lysine residues.  
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4.1 Histone lysine methylations 

Lysine methylation consists on addition of one or more methylgroups to the ε-amino group 
of lysine residues, resulting in mono-, di-, or trimethylated lysine. Unlike acetylation, 
methylation of these residues does not change the charge but progressively increases the 
bulk and hydrophobicity. This may impact intra- or intermolecular hydrogen-bond 
interactions of the amino group or create new sites recognized by reader proteins that bind 
preferentially to the methylated domain (Lee et al., 2005). In eukaryotes, histone lysine 
methylation occurs on histone H3 at lysines 4, 9, 14, 27, 36, and 79 and on histone H4 at 
lysines 20 and 59 (Strahl and  Allis, 2000; Berger, 2002; Zhang et al., 2002; Zhang et al., 2003). 
A recent study provide evidences that methylation can also occurs on Lysine 37 of histone 
H2B in vivo (Gardner et al., 2011). 
In A. thaliana, the best known histone lysine methylation occurs at Lys4 (K4), Lys9 (K9), 

Lys27 (K27), and Lys36 (K36) of histone H3 while methylation on lysine 20 of H4 has only 

been observed with immunostaining. Presence of methylation on H3 K79 which is highly 

conserved in non-plant systems has not been reported in plant. Methylations of lysine are 

catalyzed by HKMTs (histone lysine methyltransferases) that almost all share a SET 

[Su(var), Enhancer of zeste, trithorax] domain, a conserved motif containing approximately 

130 amino acids which was originally identified in Drosophila. This domain is responsible 

for catalysis and binding of cofactor S-adenosyl-lmethionine (Lee et al., 2005). Plant genome 

encodes number of protein with set domain; for example, A. thaliana genome encodes 41 

while grapes encode 32 and maize 37 (http://www.chromdb.org). Function of their 

homology with their Drosophila homologues E(Z), TRX, ASH1 and SU(VAR)3–9, they are 

assigned to four groups (Jenuwein et al., 1998). In A. thaliana, certain families of HKMTs 

seem to catalyse methylation on one particular site. It is the case for HKMTs homologues of 

SU(VAR)3–9 that are acting on H3K9 and for HKMTs relative to E(Z) that methylate H3K27. 

E(z) proteins are associated with other members in PRC2 (polycomb-group repressive 

complex 2) to performed H3K27 methylation. Members of other families seem to be able to 

act at different sites. It is the case of TRX homologue where different members can 

contribute to methylation of H3K4 or H3K27. Also ASH1 (for Absent, Small, or Homeotic 

discs 1) family seems to act on both H3K36 and H3K4. Nevertheless the link between this 

protein and histone methylation can be direct or indirect since methyl transferase activity 

has been not tested for all members of these different families (for review Liu et al., 2010). 

Methylated lysine can be then recognized by protein reader leading in a direct or indirect 

way to a particular function like gene silencing (Schotta et al., 2002; Jackson et al., 2004). 

These proteins comported domain that can recognized methylated lysine such as 

chromolike domains of the royal superfamily (including chromodomain, tudor domain, 

malignant brain tumor (MBT), PWWP, and plant Agenet module), or a plant homeodomain 

finger (PHD) or the WD40 repeat (Taverna et al., 2007). At this time only fews readers are 

known in plants and the way by which they translate the histone marks to direct 

downstream functions it is not fully understood. 

4.2 Stoechiometrie and localization of histone lysine methylation in plant 

In plants like in animals the three degrees of methylation (mono, di et trimethylation) on 
histone H3 at lysines 4, 9, 14, 27, 36 are found but proportions between the different degrees 
change. For example in A. thaliana, higher levels of H3K4 di-methylation (H3K4me2) and 
lower H3K9me2 and H3K9me3 levels have been detected compare to animals (Jackson et al., 
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2004; Guo et al., 2006). Histones methylation profile has mainly be determined in A. thaliana 
thanks to Immunostaining of nuclei, chromatin immunoprecipitation (ChIP) , ChIP coupled 
with high-resolution microarray analysis (ChIP-chip) and mass spectrometry in combination 
with high-performance liquid chromatography (HPLC) separation methods (Liu et al., 2010). 
H3K4me1/2/3 are highly enriched in euchromatin in A. thaliana and about 90 % of 
annotated genes carry one or more of the H3K4 methylation marks, suggesting an important 
role of this histone modification in the control of gene expression (van Dijk et al., 2010). 
H3K9 methylation is critical for maintenance of transcriptional gene silencing and genome 
stability (Vaillant and  Paszkowski, 2007). H3K9me1 and H3K9me2 are predominant and 
enriched in heterochromatin (Johnson et al., 2004) while H3K9me3 is enriched in 
euchromatin (Mathieu et al., 2005; Turck et al., 2007). H3K9me2 is particularly present in 
transposons and repeated sequences according to the repressing transposon activities that 
have been attribute to this histone mark (Lippman et al., 2004; Bernatavichute et al., 2008). 
H3K27me1 and H3K27me2 are enriched in heterochromatin (Mathieu et al., 2005; Fuchs et 
al., 2006) while H3K27me3 is localized in euchromatin (Turck et al., 2007). H3K27me3 is 
found in about 4400 genes and is often localized upstream of promoters and of 5’UTR 
suggesting like for H3K4, an important role of this methylation in controle of gene 
expression in plant (Turck et al., 2007; Zhang et al., 2007). H3K36me1/3 are enriched in 
euchromatin while H3K36me2 is present in both euchromatin and heterochromatin (Lin et 
al., 2008). 

4.3 Histones arginine methylation  

Arginine methylation can impact histone and more generally protein properties. In fact, 

arginine is a positively charged amino acid that has five potential hydrogen bond donors 

positioned for favorable interactions with biological hydrogen bond acceptors (Bedford and  

Clarke, 2009). These biochemical properties give to this amino acid a crucial role for protein 

structure and interaction with other molecules. In proteins interacting with DNA, arginine 

residues are the most frequent hydrogen bond donors to backbone phosphate groups and to 

thymine, adenine, and guanine bases (Luscombe et al., 2001). Protein arginine methylation 

results in the addition of one or two methyl groups to the guanidino nitrogen atoms of 

arginine (Gary and  Clarke, 1998). Each addition of a methyl group to an arginine residue 

changes its form and removes a potential hydrogen bond donor (Bedford and  Clarke, 2009). 

Since no protein able to interact with histone arginine methylation are known, it is possible 

that the only fact of methylate arginine is to impact interaction between histones and DNA, 

leading to an impact of chromatin structure and finally of gene expression.  

In Eukaryotes, the best known arginine methylation concerned Arg2 (R2), Arg8 (R8), Arg17 

(R17), Arg26 (R26) of histone H3, and Arg3 (R3) of histone H4. In A. thaliana, at this time 

only methylation on H4R3 and H3R17 have been detect in vivo. Protein arginine methylation 

is catalyzed by a family of protein named arginine methyltransferases (PRMTs). PRMTs are 

classified into four classes depending of the final methylated product of reaction that they 

can catalyze. Type I and type II enzymes are among others, involved in histone methylation 

and are one of the best characterized (Bedford and  Richard, 2005). Both of them catalyze 

first addition of single methyl group on the terminal nitrogen atom of Arginine to form 

Mono methylated Arginine (MMA). Then, Type I PRMTs form asymmetric di-methylated 

Arg meaning that two methyl groups are added on the same nitrogen atom of the guanidine 

leading to an ω-NG,NG-di-methyl arginine, while type II PRMTs performed symmetric 
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dimethylation of Arg meaning that the two methyl groups are on two different nitrogen 

atome leading to an ω-NG,N_G-d i-methyl arginine (Mitchell et al., 1992). A.thaliana genome 

codes for nine PRMTs (Niu et al., 2007). AtPRMT4a and AtPRMT4b, are homologs of human 

CARM1 and can performed asymmetrically H3R17me2a in vivo. H4R3 can be di-methylated 

symmetrically by AtPRMT5/SKB1 (Pei et al., 2007; Wang et al., 2007; Schmitz et al., 2008) and 

asymmetrically by AtPRMT1a, AtPRMT1b (Yan et al., 2007) and AtPRMT10 (Niu et al., 2007). 

4.4 Histones demethylation  

Histone methylation has been considered as irreversible until the discovery in 2004 of LSD1 
(lysine-specific demethylase 1) in animals (Shi et al., 2004). This discovery proved that 
histone methylation is a dynamic process regulated by HMTs (the writers) but also histones 
demethylases (the erasers). Two types of demethylases exist with distinct mechanisms to 
remove lysine methylation: Flavin adenine dinucleotide (FAD)-dependent KDM1/LSD act by 
amine oxidation and need the cofactor Flavin adenine dinucleotide. JmjC domain–containing 
proteins act by hydroxylation and most of them use Fe(II) and α-ketoglutarate (Shi et al., 2004; 
Tsukada et al., 2006). These two classes of enzymes act on different substrates: Flavin adenine 
dinucleotide (FAD)-dependent KDM1/LSD1 are able to demethylate mono and dimethylation 
while JmjC domain–containing proteins demethylase act one mono-di and tri methylated 
lysines (Klose and  Yi, 2007). In A. thaliana, potential histone demethylases have been predicted 
based on conservation of cofactor-binding amino acids (Lu et al., 2008). There are four 
KDM1/LSD1 homologs in A. thaliana and one of them, LDL1, has been shown to demethylate 
di- and mono-methylated H3K4 (Spedaletti et al., 2008). A. thaliana genome also contains 21 
JmjC domain–containing proteins (JMJs). These JMJs are grouped into five subfamilies 
according to sequence similarities. The biochemical properties and biological functions of 
histone demethylases are emerging and how these enzymes work, are recruited to their target 
loci, and play roles are still largely unknown (Liu et al., 2010). 
In animals, H3 and H4 arginines can be desiminate by PADI4 (peptidyl arginine deiminase 4). 
Deimination could be antagonist of arginine methylation since citrulline prevents arginine 
from being methylated (Cuthbert et al., 2004). Moreover it could be a way to remove 
methylation of arginine. In fact, monomethylated arginine could be converted to citrullin by 
PADI4 (Wang et al., 2004). In addition a family of amine oxidases may be able to demethylate 
arginine residues using a similar mechanism as they demethylate lysine residues (Bedford and  
Richard, 2005). In plant, arginine demethylation process is still unknown. 

4.5 Histone methylation in responses to abiotic stresses  

Abiotic stresses modulate expression of different genes. As it has been explained before, 
gene regulation can be due to chromatin remodeling involving histone modification. In 
plants, modification of histone methylation occurs during stress responses even if the mode 
of action and consequence of these changes are still not well understand. These 
modifications could control stress relative genes. For example, hundreds of stress-
responsive genes are targets for H3K27me3 in A. thaliana (Zhang et al., 2007).  
During a cold stress, methylation of H3K27me3 gradually decreases at the loci of two cold-

responsive genes, COR15A and AtGolS3 while expressions of genes increase. Even if Tri-

methylation of histone H3 Lys27 (H3K27me3) is generally considered as a negative marker 

of transcription (Zhang et al., 2007), the link between reduction of H3K27me3 and increase of 

transcription seems to be not obvious in this case : first COR15A and ATGOLS3 are not 
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targets for LHP1 (Zhang et al., 2007), an A. thaliana protein that binds H3K27me3 in vitro 

(Zhang et al., 2007; Exner et al., 2009) and that has been shown to be required for silencing of 

genes with H3K27me3 (Mylne et al., 2006; Sung et al., 2006; Zhang et al., 2007; Exner et al., 

2009). Also, when cold-exposed plants are returned to normal growth conditions, 

transcription of COR15A and ATGOLS3 was repressed to the initial level before cold 

exposure while decrease in H3K27me3 is still maintained. Also, this decrease does not 

enhance the induction of transcription when plants are returned to cold temperatures 

(Kwon et al., 2009). According to these results, it has been proposed that H3K27me3 could 

act as a memory marker for recent transcriptional activity in A. thaliana. In this case, 

previous exposure of plants to certain environmental stresses may negatively affect the level 

of H3K27me3 and lower the chance of stress-responsive genes being silenced.  

Dehydration stress also induces variations on histone methylation. In fact, histone H3 

modifications at the coding regions of four dehydration stress responsive genes, RD29A, 

RD29B, RD20, and an AP2 transcription factor have been reported during a drought stress 

in A. thaliana (Kim et al., 2008), characterized by an enrichment of H3K4me3 and H3K9ac (a 

positive marker of gene activation) at these four loci. Another study presents the whole-

genome distribution patterns of histone H3 H3K4me1, H3K4me2, and H3K4me3 and its 

modification after a drought stress in A. thaliana.  While H3K4me1 and H3K4me2 levels 

changed modestly during dehydration stress, drastic changes in the H3K4me3 levels are 

observed. These changes are correlated with modification in level of transcription of 

responding genes: a large increase of H3K4me3 level was found on nucleosomes of the 

genes which had a high expression and a large decrease in H3K4me3 levels has been 

reported in highly down-regulated genes (van Dijk et al., 2010). By analyzing the H3K4me3 

distribution profiles on nucleosomes of stress-induced genes, this study provided specific 

chromatin pattern associated with many genes involved in dehydration stress response and 

confirm the putative role of H3K4me3 in transcription activation. 

The A. thaliana SKB1 protein is a type II Arg methyltransferase homologue to PRMT5 in 

mammals that catalyzes Arg symmetric dimethylation H4R3sme2. SKB1 is associated to 

chromatin region of FLC promoting flowering by suppressing its expression through 

H4R3sme2 (Wang et al., 2007; Schmitz et al., 2008). SKB1 is also associated in chromatin of 

other genes involving among others in stress responses like HAB1, who is really important 

in ABA and salt stress (Saez et al., 2004; Saez et al., 2006) where it represses transcription 

through H4R3sme2. Salt stress and ABA treatment (that is accumulated under a salt stress) 

lead to dissociation of SKB1 from chromatin leading to a reduced level of H4R3sme2 and to 

an higher expression of genes in ABA and salt response like HAB1, suggesting a direct 

mechanism by which salt and ABA impact gene transcription (Figure 3). This theory is 

supporting by the fact that SKB1 invalidation leads to a decrease of H4R3sme2 levels, an 

increase of HAB1 and some other stress-responsive gene expression and a bigger 

susceptibility to salt stress (Zhang et al., 2011). During a salt stress, SKB1 not only leaves 

chromatin of some loci but also methylates U6 small nuclear ribonucleoprotein (snRNP)–

specific Sm-like protein LSM4. SKB1 invalidation leads to splicing defects in hundreds of 

genes that are involved in many biological processes, including the abiotic stress responses. 

Furthermore, lsm4 mutant, similarly to Skb1, is hypersensitive to salt and shows similar 

splicing defects in some genes (Zhang et al., 2011). In conclusion, SKB1 plays a dual role in 

salt response by altering the methylation status of H4R3sme2 and LSM4.  
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Fig. 3. Involvement of methylation in salt stress responses. A : Without stress, SKB1 a PRMT 
is associated to  the chromatin of some stress related genes where it methylates histone on 
H4R3sme2. These methylations are repressive mark leading to transcription inactivation of 
these genes. B: During a salt stress, there is a chromatin dissociation of SKB1. This 
dissociation has a dual role in stress related gene control to insure an adapted response:  
Firstly SKB1 do not maintains H3R4sme2 in the loci where it was associated leading to an 
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higher expression of many stress relative genes. Secondly, SKB1 will methylated another 
protein LMS4 connected to splicing. This last methylation leads to an activation of 
premRNA splicing and /or synthesis of splice variant of some other genes connected to 
stress responses.  

5. Redox modification of nuclear proteins 

5.1 ROS and RNS in the nucleus 

Reactive oxygen species (ROS) are chemically reactive species of oxygen formed by 

successive one-electron reduction of molecular oxygen. It includes superoxide anion (O2.-), 

hydrogen peroxide (H2O2), perhydroxyl radical (HO2.) and the highly reactive hydroxyl 

radical (OH.) (Apel and Hirt, 2004). ROS is produced in different organelles such as 

mitochondria, chloroplast, peroxizome, endoplasmic reticulum and in the cytosol (Gill and  

Tuteja, 2010) but to our knowledge, only one study has described ROS accumulation in the 

nucleus, in response to an elicitor of plant defense (Ashtamker et al., 2007). However, recent 

data indicate that plant cell nucleus possesses antioxidant redox system to control ROS 

homeostasis (Pulido et al., 2009a; Pulido et al., 2009b). Furthermore, ROS production in other 

cellular compartments results in changes in gene expression, indicating that ROS production 

can influence gene transcription in the nucleus. Another reactive radical, Nitric Oxide (NO), 

has been known for years as a signaling molecule in animal and plant cells (Besson-Bard et 

al., 2008). Reactive Nitrogen Species (RNS) contains all the NO derived molecules and their 

chemistry have been documented elsewhere (Stamler et al., 1992). For instance, NO can be 

oxidized or reduced to NO+ or NO- or can react with O2�- to form the strong oxidant 

peroxynitrite (ONOO-). Through its different chemical forms, NO can react with a great 

variety of molecules including proteins, lipids, metals, molecular oxygen or nucleic acids. 

Evidences for NO production in the nucleus of various plant cell types (stomata guard cells, 

stomata subsidiary cells, epidermal cells) have been documented in some studies in 

response to different stimuli such as heat stress, green light, osmotic stress, plant defense 

elicitors (Foissner et al., 2000; Gould et al., 2003; Vitecek et al., 2008). As observed for ROS, 

NO can have an impact on gene expression (Palmieri et al., 2008).  

5.2 Redox-based post-translational modification in plant cell nuclei  

ROS and RNS could affect gene expression through different mechanisms. These reactive 

compounds can activate components of signaling pathways controlling gene expression or 

can directly affect the DNA binding activity of several kinds of transcription factors. Heat 

shock transcription factors (HSF) bind to a consensus sequence found in the promoter of 

many stress-responsive genes. HSF transcription factors have been thought to be ROS 

sensors as reviewed by (Miller and  Mittler, 2006). Other transcription factors are regulated 

in a redox dependent manner through a dithiol/disulfide exchange and some examples are 

detailed bellow.  

The activity of transcription factors from the R2R3 MYB family have been shown to be 
involved in abiotic stress responses including salt stress, drought stress (Jung et al., 2008). 
Using the typical R2R3 MYB protein P1 from Zea mays, Heine et al. (2004) have shown that 
DNA binding of this transcription factor is redox-dependent. More precisely, the two 
cysteines residues 49 and 53 are necessary for DNA binding and under non-reducing 
conditions, they formed a disulfide bridge that prevents DNA binding. Another R2R3 MYB 
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plant transcription factor of A. thaliana, AtMYB2, has been shown to be redox-modulated 
(Serpa et al., 2007). AtMYB2 has been suggested to play a role in response to stresses that 
induce NO production such as ABA or salt treatment. Contrary to P1, cystein 49 is absent in 
AtMYB2 (Heine et al., 2004) and the S-nitrosylation of Cys 53 by NO donors blocks its 
binding to a specific DNA sequence (Serpa et al., 2007). In this case, it indicates that the S-
nitrosylation of AtMYB2 could be a mechanism to turn off the activity of this protein. 
However, the role of the redox regulation of R2R3 MYB transcription family protein needs 
to be addressed in vivo in response to abiotic stresses.  
The DNA binding of RAP2.4a (At1g36060), a AP2/DREB-type transcription factors, to the 

promoter of 2-Cys peroxiredoxin-A gene (2CPA) is redox-regulated by dithiol/disulfide 

transition of regularoty cysteinyl residues (Wormuth et al., 2007; Shaikhali et al., 2008). 

Reducing conditions lead to the monomerisation of RAP2.4a whereas oxidizing conditions 

dimerize or oligomerize RAP2.4a proteins through the formation of disulfide bridges which 

increased binding affinity of the protein to DNA. Loss-of-function of RAP2.4a affects the 

adaptation of plants to changes in environmental conditions such as naturally fluctuating 

light conditions. Furthermore, RAP2.4a transcription factor regulates the expression of 

genes known to be induced by ROS and involved in abiotic stress tolerance such as ZAT 10 

(Mittler et al., 2006). A closed homologue, RAP2.4b (At1g78080) has also been involved in 

stress response. Mutations in RAP2.4b cause altered expression of light and drought-

responsive genes and defects in developmental processes or drought tolerance. However, its 

redox control as observed with RAP2.4a has not been investigated.  

In the last decades, studies in the animal field have indicated that the main mode of action 
of NO is based on the post-translational modification of proteins. Firstly, S-nitrosylation 
consists of the oxidation by NO of reduced sulfidryl groups of cysteyls residues of proteins 
thus forming a nitrosothiol (SNO). Secondly, tyrosine nitration is based on the addition of a 
NO2 group on a tyrosyl residue of a protein. And thirdly, NO can bind covalently transition 
metal of metalloproteins. This last process is called metal nitrosation. These NO-based post-
translational modifications of proteins finally affect the activity of the modified proteins. 
While thousand proteins have been identified in animals to be modified by NO, only a few 
have been characterized in plants (Astier et al., 2011; Seth and  Stamler, 2011). Among them, 
some are linked with the nucleus function. The best example on the role of NO in the 
modification of proteins associated with nuclear functions is the transcription coactivator 
NPR1 (for Non-expressor of Pathogenesis Related-1) in A. thaliana. Although data indicate 
that NPR1 is important for plant resistance to abiotic stresses (Quilis et al., 2008; Yasuda et 
al., 2008; Rao et al., 2002), its mode of action and its regulation have been discovered in 
plants infected by avirulent pathogens or treated by elicitors of plant defense reactions. In 
untreated cells, NPR1 forms a homo multimeric complex that is sequestered in the cytosol 
and stabilized by intermolecular disulphide bonds (Mou et al., 2003). In this case, NPR1 
monomers still exist. To prevent target gene activation in the absence of inducing stimulus, 
they are translocated to the nucleus at low rate and finally targeted to the proteasome (Spoel 
et al., 2010). A role of NO in this process has been recently discovered. It was reported that S-
nitrosylation of NPR1 by S-nitrosoglutathione (GSNO) at cysteine-156 facilitates its 
oligomerization and blocks its nuclear translocation (Tada et al., 2008). After the perception 
of stimuli such as pathogen infection, redox changes dependent on the production of 
salicylic acid occur. Multimeric NPR1 is reduced to monomers by thioredoxins and NPR1 
monomers are then translocated to the nucleus where their interaction with transcription 
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factors allowed the regulation of the expression of several genes (Despres et al., 2003; Tada et 
al., 2008; Fan and  Dong, 2002; Boyle et al., 2009). Particularly, NPR1 activates the binding of 
the b-ZIP transcription factor TGA1 to the activation sequence-1 (as-1) element of the 
promoter region of defense genes. Disulfide bridge formation involving cysteyl residues 260 
and 266 precludes the interaction of TGA1 with NPR1 and then prevents binding of TGA1 
to its target DNA element (Despres et al., 2003). Recent mass spectrometry analysis indicated 
that these cysteyl residues of TGA1 are S-nitrosylated and S-glutathionylated after GSNO 
treatment (Lindermayr et al., 2010). Furthermore, GSNO enhanced the DNA binding activity 
of TGA1 to its DNA element in the presence of NPR1. It can be the consequence of 
conformational changes of both proteins which allow a more effective TGA1-NPR1 
interaction and finally a more effective DNA-binding of TGA1. Interestingly, a GSNO-
induced nuclear translocation of NPR1 has also been observed by these authors. It could be 
due to SA-mediated redox-changes since NO induced SA production (Durner et al., 1998; 
Huang et al., 2004). All these results indicate that NO has a major regulatory role of NPR1 
functions by controlling its translocation from the cytosol to the nucleus and by affecting the 
NPR1/TGA1 complex and downstream dependent responses. Other proteins might be 
involved in this process. The small oxidoreductases glutaredoxins that mediate redox 
regulation of proteins through the reduction of disulphide bridges or the glutathionylation 
of cysteyl residues (Dalle-Donne et al., 2009; Rouhier et al., 2010) has been recently shown to 
interact with transcription factors from the TGA family in the nucleus of plant cells 
(Ndamukong et al., 2007; Li et al., 2009). However, the role of GRX in TGA function has not 
been described yet.  
Another protein is redox-modified by NO. In a recent paper, Wawer et al. (2010) have shown 
that Nicotiana tabacum GAPDH (glyceraldehyde-3-phosphate dehydrogenase) localized in 
the nucleus and in the cytosol of plant cells. GAPDH was transiently S-nitrosylated after the 
salt treatment of N. tabacum cell suspensions but the role of this NO-dependent modification 
is not known. 

6. Ubiquitin and ubuquitin-like post-ranslationnal modifications  

Protein post-translational modifications by ubiquitin and ubiquitin-like proteins are 
essential for a plethora of cell functions in eukaryotic cells and are involved in development 
processes but also in the responses to biotic and abiotic stresses (Fu et al., 2010; Miura and  
Hasegawa, 2010; Trujillo and  Shirasu, 2010). Ubiquitination is a post-translational 
modification of proteins corresponding to the reversible attachment of the 76-amino acid 
protein ubiquitin to target proteins through a well-characterized process (Fu et al., 2010). 
This three-step enzymatic cascade is catalyzed by ubiquitin-activating enzyme (E1), 
ubiquitin-conjugating enzyme (E2) and ubiquitin ligase enzyme (E3). A major function of 
protein ubiquitination is to address proteins to the proteasome for their degradation. 
However, it can also control intracellular localization of proteins, transcription of DNA and 
cell cycle. Thus, ubiquitination regulates a great number of cellular processes. There are 
evidences that the ubiquitination system is involved in regulating signaling pathways 
controlling plant adaptation to stresses and especially abiotic stresses. Some proteins 
belonging to the ubiquitination enzymatic machinery and involved in abiotic stress 
tolerance have been shown to localized in the nucleus of plant cell. AtHOS1, a E3-ubiquitin 
ligase that control cold tolerance in A. thaliana have been shown to localized in the nucleus 
after cold stress (Lee et al., 2001, see below). Furthermore, AtDRIP1 and AtDRIP2 (DREB2A-
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interacting protein) are two E3-ubiquitin ligase (Qin et al., 2008). AtDRIP1 is localized in the 
nucleus of A. thaliana cells where it interact with AtDREB2A (Dehydratation-responsive 
element binding protein 2A), a transcription factor that is important for drought tolerance 
and controls the expression of water deficit-inducible gene expression. As proposed by (Qin 
et al., 2008), the ubiquitination of AtDREB2A may occur in a no-stress condition leading to 
its degradation by the proteasome. However, during drought stress, AtDREB2A is activated 
by an unknown mechanism. It is possible that the ubiquitination and degradation of 
AtDREB2A is blocked leading to the accumulation of effective AtDREB2A protein that in 
turn activate the expression of drought-responsive genes. This result highlights the 
importance of ubiquitination process in controlling gene transcription in the nucleus.  
In addition to ubiquitin, post-translational modification of proteins by ubiquitin-like 

proteins (Ubls) such as SUMO (small ubiquitin-like modifier), RUB (related to ubiquitin), 

NEDD8 (neural precursor cell expressed, developmentally down-regulated), ATG8 and 

ATG12 (autophagy 8 and 12) have been shown to be functional in plants and to control 

essential cellular processes as observed in other eukaryotes (reviewed by (Miura and  

Hasegawa, 2010). Among them, modification of proteins by SUMO (SUMOylation) has been 

one of the most described Ubl-post-translational modifications in plants. SUMO proteins are 

synthesized as precursors that need to be cleaved by specific proteases to expose a glycyl 

residue necessary for their ligation to target proteins. The addition of SUMO proteins to a 

lysyl residue of the target protein is catalyzed in a three-step enzymatic reaction similar to 

ubiquitinylation (Kurepa et al., 2003).  

In A. thaliana, genetic analysis of SUMOylation process indicates that this post-translational 

modification of proteins is essential for plant development. Thus, mutation in the gene 

coding AtSCE1 (Arabidopis Sumo-conjugating Enzyme1) or AtSAE2 (Arabidopsis Sumo-

activating Enzyme 2) proteins results in embryo lethality (Saracco et al., 2007). The same 

phenotype was observed in plants in which the genes coding both AtSUMO1 and AtSUMO2 

proteins were mutated (Saracco et al., 2007). Number of proteins modified by SUMO have 

been shown to increase in planta after abiotic stresses including heat, oxidative stress, 

ethanol, phosphate starvation, salt and cold stress (Kurepa et al., 2003; Miura et al., 2005; Yoo 

et al., 2006; Miura et al., 2007; Conti et al., 2008; Miller et al., 2010). Furthermore, mutants 

defective in proteins of the SUMO-conjugating pathway such as AtSIZ1 (arabidopsis SUMO 

E3 ligase) are impaired in stress responses such as thermotolerance and have been shown to 

exhibit exaggerated phosphate starvation responses (Miura et al., 2005; Miura et al., 2007) 

indicating that SUMOylation of proteins is an essential process mediating stress acclimation. 

As observed in other eukaryotic cells, SUMOylation enzymes (e.g. AtSCEA and SUMO1/2) 

localized in the nucleus in Arabidopsis (Lois et al., 2003) indicating a role of SUMOylation in 

controlling many aspects of nuclear function. In rice (Oryza sativa), SUMO-conjugating 

enzyme (OsSCE1) has been shown to localize in the nucleus. Yeast-two hybrid experiments 

indicated that OsSCE1 interacts with the heat-inducible pyrophosphatase (PPIase) 

OsFKBP20, a class of proteins that assist molecular chaperones in reactions associated with 

protein folding and protein transport across membrane. It was proposed that OsSCE1 and 

OsFKBP20 proteins mediate in concert the stress response of rice plants (Nigam et al., 2008). 

In Arabidopsis, heat stress dramatically increased the pool of SUMO conjugates which were 

mainly detected in the nucleus (Saracco et al., 2007). In a recent proteomic analyses, Miller et 

al. (2010) have identified 357 SUMOylated proteins in Arabidopsis. Many of them are 

nuclear proteins that participate in a wide range of processes related to nuclear function, 
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such as chromatin modification, DNA maintenance/repair or gene transcription. 

Furthermore, nuclear SUMOylated proteins identified in non-stressed plants were enriched 

in oxidative and/or heat-stressed plants. Among the nuclear SUMO conjugates, some 

transcription factors have been identified (Miura and  Hasegawa, 2010). For instance the 

SUMOylation of AtICE1, a MYC transcription factor involved in cold stress responses in 

Arabidopsis has been characterized (see below). Protein SUMOylation is a reversible process 

and de-SUMOylation is catalyzed by SUMO proteases a class of enzymes that is also 

involved in the generation of mature SUMO proteins. Recently, the Arabidopsis mutants 

overly tolerant to salt 1 (ots1) and 2 (ots2) has been shown to be mutated in two SUMO 

proteases OTS1 and OTS2 that act redundantly to regulate salt stress response (Conti et al., 

2008). Both proteins are localized in the nucleus indicating that 

SUMOylation/deSUMOylation of nuclear proteins is likely to control essential processes 

required for salt stress responses.  

It has been shown recently that both ubiquitination and SUMOylation can affect the same 

protein. During cold stress, Arabidopsis cold responsive genes are induced transiently 

indicating that their expression is finely regulated. Among the transcription factors that 

controls cold-gene expression and cold stress tolerance, AtICE1 is a MYC transcription 

factor that is constitutively expressed. It controls the cold induction of other transcription 

factors such as AtCBF3 which in turn drive the expression of cold responsive genes. On the 

contrary, AtMYB15 is a repressor of such genes (Agarwal et al., 2006). ICE1 is post 

translationnally modified by both ubiquitynation and SUMOylation processes and these 

processes are thought to provide a fine-tuning for the expression of cold-responsive genes. 

More precisely, the nuclear-localized SUMO E3 ligase AtSIZ1 (Cheong et al., 2009) mediate 

the SUMOylation of AtICE1. SUMOylation of AtICE1 is thought to stabilize or activate the 

protein, leading to the expression of genes required for low temperature tolerance, such as 

AtCBF3 (Miura et al., 2007). Furthermore, the RING-E3-ubiquitin ligase HOS1 (for high 

expression of osmotically responsive gene) have been shown to relocalize to the nucleus after a 

cold treatment (Lee et al., 2001) where it interacts with ICE1. HOS1 mediates the 

polyubiquitination of ICE1 targeting this transcription factor for degradation by the 

proteasome (Dong et al., 2006). This leads to the repression of cold responsive genes such as 

CBF3 by the transcription factor AtMYB15. A model for the opposite role of ubiquitination 

and SUMOylation in the control of cold-responsive genes during cold episode has been 

proposed (Miura et al., 2007; Miura and Hasegawa, 2010).  

7. Conclusion 

As we illustrate in this review using studies reporting the involvement of nuclear 

posttranslational modifications in response to numerous environmental changes, almost all 

known major abiotic stresses induce one or more nuclear protein modifications to regulate 

the expression of specific target genes.  

After reading this chapter, three main conclusions emerge. Firstly, histone modifications 

and associated chromatin and gene expression changes appear to be a critical point 

necessary for establishment of an appropriate biological response. Understanding the 

regulation of histone modifications, competitions that can occur between different 

posttranslational modifications (the famous “histone code”) and interpretation of these 
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modifications by readers proteins is being initiated and should greatly highlight our 

comprehension of gene expression regulation in response to stresses in the coming years. 

 Secondly, we should keep in mind that protein modifications do not occur only on histones, 
but also concern many others proteins such as transcription regulators. However the 
number of non-histone proteins targeted by the nuclear posttranslational modification 
machinery remains sparse probably due to the technical difficulties for identification and 
purification of these very low abundant proteins in the nuclear compartment.  
Thirdly, in almost all cases, the chemical and / or physical signals leading to nuclear 
machinery through the nuclear envelop are still unknown. Here too our knowledge about 
nuclear pore channels functioning in plant is emerging, but recent discoveries in this field 
should extend our understanding of how nuclear protein posttranslational modifications are 
controlled and lead the plant in an appropriate response to stress. 
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