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1. Introduction 

Down syndrome (DS) or trisomy 21 (MIM 190685) is the most common genetic disorder 
with a prevalence of 1 in 660 live births (Jones, 2006). DS is the leading cause of genetically-
defined intellectual disability (Contestabile et al., 2010) and its phenotype is complex and 
variable among individuals, who may present with a combination of dysmorphic features 
(Ahmed et al., 2005; Pavarino-Bertelli et al., 2009), congenital heart disease (Abbag, 2006), 
neurological abnormalities such as early manifestations of Alzheimer’s disease (Lott & 
Head, 2005), immunological  impairments (Ram & Chinen, 2011), elevated risk of specific 
types of leukemia (Hasle et al., 2000), and other clinical complications (Venail et al., 2004). 
Trisomy 21 can be caused by three types of chromosomal abnormalities: free trisomy, 
translocation, or mosaicism. Mosaicism accounts for the minority of DS cases (about 1%) 
and is characterized by some cells containing 46 chromosomes and others, 47 chromosomes. 
Translocations are attributed to 3-4% of the cases, with Robertsonian translocation involving 
chromosomes 14 and 21 being the most common type. Finally, free trisomy occurs in about 
95% of cases (Ahmed et al., 2005; J.M. Biselli et al., 2008b) and is characterized by the 
presence of three complete copies of chromosome 21. 
Free trisomy, the main chromosomal abnormality leading to DS, is caused by the failure of 
normal chromosome 21 segregation during meiosis (meiotic nondisjunction) (Hassold & 
Hunt, 2000). The parental origin of the extra chromosome 21 is maternal in about 80% of 
cases (Jyothy et al., 2001), and most (about 77%) occur during the first maternal meiotic 
division in the maturing oocyte, before conception (Antonarakis et al., 1992). 

2. Meiosis and chromosomal segregation 

Faithful transmission of a genome from one generation to another depends on the 
mechanism of cell division in which each pair of replicated chromosomes is separated and 
equally distributed to mother and daughter cells. Meiosis generates haploid gametes 
through a specialized cell division process that consists of one round of DNA replication 
followed by two cell divisions. The first division, meiosis I (MI), involves the segregation of 
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homologous chromosomes from each other, whereas meiosis II (MII) involves the 
segregation of the sister chromatids (Hassold & Hunt, 2000).  
Timing of chromosome attachment and loss of cohesion is essential to faithful chromosome 
segregation. During MI, the cohesion between sister chromatid arms assures physical 
attachment by the chiasmata of homologous chromosomes, ensuring their alignment on the 
meiosis-I spindle, and maintains them at the site of recombination. Chiasmata are resolved 
at anaphase I by the loss of cohesion between the arms of sister chromatids in the 
homologous chromosomes; the chromosomes then segregate to opposite poles of the cell. 
Cohesion, however, must be maintained at centromeres between sister chromatids beyond 
meiosis I to prevent premature chromatid separation (predivision) and ensure proper 
attachment of the sister chromatids to opposite spindle poles in meiosis II (Barbero, 2011; 
Sakuno & Watanabe, 2009; Vogt et al., 2008). 
The centromeric cohesion during meiosis I results from the attachment of kinetochores of sister 
chromatids to only one spindle pole (Sakuno & Watanabe, 2009). Kinetochores are situated on 
opposite sides of the centromeric heterochromatin at the centromeres of each sister chromatid 
and they capture and stabilize microtubules for the formation of kinetochore fibers, only then 
they are capable of chromosome bi-orientation during the metaphase and chromosome 
segregation during the anaphase of meiosis (Vogt et al., 2008). 
During cell division, several chromosomal mal-segregation mechanisms can occur. Classical 
nondisjunction is due to the failure to resolve chiasmata between homologous chromosomes, 
whereby both homologues segregate together. In addition, premature resolution of chiasmata 
or the failure to establish a chiasma between a pair of homologues results in the independent 
segregation of homologues at MI, which leads to an error if both segregate to the same pole of 
the MI spindle. A MI error can also involve the segregation of sister chromatids, rather than 
homologous chromosomes, whereby the premature separation of sister chromatids at MI can 
result in the segregation of a whole chromosome and a single chromatid to one of the poles. At 
MII, errors result from the failure of sister chromatid separation (Hassold & Hunt, 2000). 

3. The origin of maternal chromosome 21 nondisjunction 

The molecular mechanisms involved in meiotic nondisjunction leading to trisomy 21 are still 
poorly understood and the only well-established risk factor for DS is advanced maternal age at 
conception (35 years or older) (Allen et al., 2009; Jyothy et al., 2001; Lamb et al., 2005). Studies 
have suggested many explanations for the maternal age-associated increase in aneuploidy. 
One model attributes the effect of advanced maternal age to the uterine environment, 
indicating that there might be an age-related decline in the ability to recognize and then abort 
trisomic fetuses (Aymé & Lippman-Hand, 1982; Stein et al., 1986). However, the observation 
that the advanced maternal age effect is restricted to chromosome 21 nondisjunction of 
maternal origin, but not associated with cases resulting from sperm or post-zygotic mitotic 
errors, suggests that the uterus is the source of the age effect (Allen et al., 2009). 
On the other hand, Zheng & Byers (1993) proposed that age-dependent trisomy 21 results 
primarily from a mechanism that favors maturation and utilization of euploid oocytes over 
the pre-existing aneuploid products of mitotic (premeiotic) nondisjunction at an early stage 
of the reproductive lifespan. In addition, decreased expression of checkpoint proteins in 
aging oocytes (Vogt et al., 2008) and failure to effectively replace cohesion proteins that are 
lost from chromosomes during aging (Chiang et al., 2010) also are pointed out as risk factors 
for predisposing oocytes to errors in chromosome segregation. 
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A link between altered recombination and maternal age-related nondisjunction has been 
described. It was observed that recombination is reduced among nondisjoined 
chromosomes 21 at MI, and this reduction seems to be age-related (Sherman et al., 1994). 
Lamb et al. (1996) proposed that at least two “hits” are required for chromosome 21 
nondisjuntion: (1) the establishment in the fetal ovary of a susceptible pattern of meiotic 
recombination, and (2) the abnormal processing of susceptible chromosomes in the adult 
ovary. The second “hit” would involve degradation of a meiotic process (e.g., a spindle 
component, a sister chromatid cohesion protein, a meiotic motor protein, a checkpoint 
control protein) that increases the risk of improper segregation for these susceptible 
bivalents (Hassold & Sherman, 2000). Further studies have shown susceptible patterns of 
chromosome 21 meiotic recombination, including pericentromeric and telomeric exchanges, 
described as maternal risk factors for DS even in young DS mothers (Gosh et al., 2009; Lamb 
et al., 2005). 
Besides advanced maternal age, the age of the maternal grandmother at the time of birth of 
the mother has also been pointed out as a risk factor for the occurrence of DS. At an 
advanced age, the grandmother's reproductive system may fail to make the essential 
proteins needed for proper meiotic segregation in the germ cells of her daughter, leading to 
nondisjunction of chromosome 21 during the embryogenesis of DS child’s mother when she 
was in the grandmother's womb (Malini & Ramachandra, 2006). However, more recent 
studies failed to support the suggestion that advanced age of the DS grandmother is 
responsible for meiotic disturbances in her daughter (Allen et al., 2009; Kovaleva et al., 
2010). 
Although the risk of bearing a child with DS increases substantially with increasing 
maternal age, many DS children are born to mothers aged less than 35 years-old, suggesting 
other risk factors influencing DS etiology. In 1999, James et al. produced the first evidence 
that the occurrence of DS independent of maternal age is associated with DNA 
hypomethylation due to impairments in folate metabolism. 

4. Folate metabolism 

Folate represents an essential nutrition component in the human diet, and is involved in many 
metabolic pathways, mainly the folate metabolism, i.e., a single-carbon transfer from one 
molecule to another through a series of interconnected biochemical reactions. Folate is a 
generic term for a family of compounds present in most foods, e.g., legumes, leafy greens, 
some fruits, vegetables (e.g.,  spinach, broccoli, asparagus, and lettuce), liver, milk, and dairy 
products (Lin & Young, 2000). Humans, as all mammals, are unable to synthesize folate, thus 
its ingestion, either from normal diet or nutritional supplements, is very important. After 
intestinal absorption, natural folate, known as polyglutamate, requires reduction into 
monoglutamate by conjugases in the small intestine before it can be absorbed. On the other 
hand, in its synthetic form, folic acid exists as monoglutamate and does not need to be reduced 
for release into the blood and cellular uptake (Bailey & Gregory, 1999; Hall & Solehdin, 1998). 
Another disadvantage of natural  food  folate is its poor stability especially under  typical  
cooking  conditions,  which  can substantially  reduce  the  vitamin  content  before  it  is  even 
ingested, a significant additional factor limiting the ability of natural food folates to  enhance  
folate  status (McNulty & Pentieva, 2004; McNulty & Scott, 2008).  
Folate metabolism is a complex metabolic pathway that involves multiple enzymes and 
water-soluble  B  vitamins such as folate,  vitamin  B6 and  vitamin  B12, that play  key  roles  
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as enzyme cofactors or substrates in this metabolism. It includes two main cycles: purine 
and pyrimidine synthesis, necessary for synthesis and repair of DNA, and DNA 
methylation, an epigenetic process that acts on the control associated with gene expression 
and genomic stability essential for normal cellular methylation reactions (Figure 1). 
 

 

Fig. 1. Folate metabolism. BHMT = Betaine-homocysteine methyltransferase; B6 = vitamin 
B6; B12 = vitamin B12; CβS = Cystathionine β- synthase; CH3 = Methyl; dATP = 
Deoxyadenosine 5’-triphosphate; dGTP = Deoxyguanosine 5’-triphosphate; dTTP = 
Deoxythymidine 5’-triphosphate; DHF = Dihydrofolate; DHFR = Dihydrofolate reductase; 
Hcy = Homocysteine; MTHFD1 = Methylenetetrahydrofolate dehydrogenase 1; MTHFR = 
Methylenetetrahydrofolate reductase; MTR = Methionine synthase; MTRR = Methionine 
synthase reductase; RFC1 = Reduced folate carrier 1; SAH = S-adenosylhomocysteine; SAM 
= S- adenosylmethionine; cSHMT=  Serine hydroxymethyltransferase; TC2 = 
Transcobalamin 2; THF = Tetrahydrofolate.  

Folate requires several transport systems to enter the cells and the one best characterized is 
the reduced folate carrier (RFC1), an enzyme located on intestinal cell membranes that 
carries out the transport of 5-methyltetrahydrofolate (5-methyl-THF) to the interior of a 
variety of cells, representing an important determinant of folate concentration in the interior 
of cells (Nguyen et al., 1997). In addition to the folate transport system, several genes and 
their respective enzymes play important roles in folate metabolism. The Dihydrofolate 
reductase (DHFR) gene encodes an enzyme that catalyzes the conversion of dihydrofolate 
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(DHF) into tetrahydrofolate (THF) (Stanisiawska-Sachadyn et al., 2008), which is then 
converted into the corresponding 10-formyl, 5,10-methenyl, and 5,10-methylene derivatives 
by Methylenetetrahydrofolate dehydrogenase 1 (MTHFD1), a trifunctional nicotinamide 
adenine dinucleotide phosphate-dependent cytoplasmic enzyme. The donor cofactors for de 
novo purine and pyrimidine biosynthesis and, thus, the biosynthesis of DNA (Hum, 1988) 
are 10-formyl-THF and 5,10-methylene-THF. By an alternative route, THF is converted into 
5,10-methylene-THF and glycine by the cytosolic form of the enzyme Serine 
hydroxymethyltransferase (cSHMT) (Steck et al., 2008). 
Methylenetetrahydrofolate reductase (MTHFR) is responsible for the conversion of 5,10-
methylene-THF to 5-methyl-THF, the main circulating form of folate that donates methyl 
groups for homocysteine (Hcy) remethylation into methionine. This latter reaction is catalyzed 
by the enzyme Methionine synthase (MTR), which requires vitamin B12 or cobalamin (Cbl) as 
a cofactor, and results in the formation of S-adenosylmethionine (SAM), the primary methyl 
(CH3) donor for DNA methylation reactions (Finkelstein & Martin, 2000). SAM is 
demethylated to form S-adenosylhomocysteine (SAH) and then hydrolyzed to form adenine 
and Hcy. The DNA methyltransferase (DNMTs) enzymes catalyze the transfer of the methyl 
group, obtained from conversion of SAM into SAH, to position 5’ of cytosine residues located 
mainly in dinucleotide cytosine-guanine (CpG) (Bestor, 2000; DeAngelis et al., 2008).  
Methionine synthase reductase (MTRR), an enzyme codified by the MTRR gene, is 
responsible for the maintenance of the active form of the enzyme MTR. During 
remethylation of Hcy to methionine, a reaction catalyzed by MTR, methylcob(III)alamine 
acts as a methyl donor. In this reaction, the transfer of a methyl group from 
methylcob(III)alamine results in the formation of highly reactive cob(I)alamine, which is 
oxidized into cob(II)alamine, resulting in MTR inactivation (Yamada et al., 2006). In this 
inactivation process, a complex is formed between the enzymes MTR and MTRR, and 
derivative electrons from the oxidation of nicotinamide adenine dinucleotide phosphate 
(NADPH), catalyzed by MTR, are transferred to the inactive form of MTR. This process 
favors the transfer of methyl from the SAM to the MTR enzyme, resulting in 
methylcob(III)alamine, thus reestablishing MTR activity (Leclerc et al., 1999; Olteanu et al., 
2001, 2002).  
Betaine-homocysteine methyltransferase (BHMT) catalyses the conversion of Hcy to 
methionine by an alternative pathway of remethylation using the amino acid bethaine as 
methyl donor. When the Hcy folate-dependent remethylation catalyzed by the MTR enzyme 
is impaired by genetics or environmental factors, the BHMT enzyme plays an important role 
maintaining the homeostasis of Hcy (Pajares & Pérez-Salab, 2006). 
In the transsulfuration cycle, Hcy is converted into cystathionine by Cystathionine β-
synthase (CβS), a vitamin B6-dependent enzyme, and then into cysteine (Kraus et al., 1998). 
Under normal physical conditions, all Hcy is remethylated into methionine or catalyzed into 
cystathionine. The increase of Hcy concentration represents impairment in folate 
metabolism and thus in methylation reactions (Fenech, 2002).  
Besides the enzymes that act directly on folate metabolism, cobalamin-transporting proteins 
also play an important role in this metabolic pathway, since the MTR enzyme is cobalamin-
dependent. The enzyme Transcobalamin 2 (TC2) is synthesized in the intestinal villi and 
binds itself to Cbl in the interstitial fluid. This formed complex goes into the intestinal villi 
microcirculation and then reaches the systemic circulation. This circulation distributes the 
vitamin to all tissues where specific receptors on cell membranes bind and internalize the 
TC2-Cbl complex by endocytosis (Quadros et al., 1999; Seetharam & Li, 2000).  
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5. Folate metabolism, genomic stability, and maternal risk for chromosome 
21 nondisjunction 

Based  on evidence that stable centromeric DNA chromatin may depend on the epigenetic 
inheritance of specific centromeric methylation patterns and on the binding of specific methyl-
sensitive proteins to maintain the higher order DNA architecture necessary for kinetochore 
assembly (Karpen & Allshire, 1997), James et al. (1999) hypothesized that pericentromeric 
hypomethylation, resulting from impaired folate metabolism secondary to polymorphism of 
the MTHFR gene, could impair chromosomal segregation and increase the risk for 
chromosome 21 nondisjunction in young mothers. They observed that the risk of having a 
child with DS was 2.6-fold higher in mothers with 677 C→T substitution in one or both alleles 
of the MTHFR gene than in mothers without the 677 C→T substitution. In addition, DS 
mothers displayed a significant increase in plasma Hcy concentrations and lymphocyte 
methotrexate cytotoxicity, consistent with abnormal folate and methyl metabolism. 
As described above, the MTHFR enzyme plays an important role in regulating DNA 
methylation through the reduction of 5,10-methylene-THF to 5-methyl-THF (Figure 1). The 677 
C→T polymorphism is known to decrease the affinity of the enzyme for the flavin-adenine-
dinucleotide (FAD) cofactor, decreasing enzyme activity (Guenther et al., 1999; Yamada et al., 
2001). The MTHFR 677 CT genotype seems to reduce enzyme activity by about 35% and the 
homozygous TT genotype by 70% (Frosst et al., 1995). Since the study by James et al. (1999), 
polymorphisms in the MTHFR gene are the most frequently investigated in attempt to clarify 
the role of folate and methyl metabolism in the maternal risk for DS (Martínez-Frías et  al.,  
2008). Several  studies  have  associated  the MTHFR 677CT polymorphism and the risk of 
bearing a child with DS (da Silva et al., 2005; Meguid et al., 2008; Sadiq et al., 2011; Wang et al., 
2008) as well as with increasing plasma Hcy concentration (P.M. Biselli et al., 2007; da Silva et 
al., 2005; Narayanan et al., 2004; Ulvik et al., 2007).  
Another common polymorphism in the MTHFR gene, the substitution of alanine for 
cytosine at the 1298 position, was already associated with DS risk and increased plasma Hcy 
concentration (Martínez-Frías et al., 2006; Meguid et al., 2008; Narayanan et al., 2004, Rai et 
al., 2006; Scala et al., 2006; Weisberg et al., 2001). This polymorphism proved to have an 
impact on enzyme activity resulting in an even more pronounced decrease in its activity in 
homozygous 1298 CC compared to the heterozygous individuals (van der Putt et al., 1998). 
In addition to the MTHFR gene, other genetic polymorphisms involved in the folate 
pathway seem to modulate the maternal risk for bearing a child with DS (Bosco et al., 2003; 
J.M. Biselli et al., 2008a; Meguid et al., 2008; Pozzi et al., 2009; Sadiq et al., 2011; Scala et al., 
2006; Wang et al., 2008) as well as the concentrations of metabolites involved in the folate 
pathway (Ananth et al. 2007; Barbosa et al., 2008; Cheng et al., 2010; Devos et al., 2008). The 
MTR 2756 A→G polymorphism has been associated with increased maternal risk  for DS in 
the presence of AG or GG genotypes, as well as when combined with polymorphisms 
MTRR 66 A→G (MTR 2756AG/MTRR 66AG) (Bosco et al., 2003) and MTHFR 677 C→T 
(MTHFR 677TT/MTR 2756AA). In addition, the allele MTR 2756 G proved to be more 
frequent, both in homozygosis and heterozygosis, in DS mothers as compared to mothers of 
individuals without the syndrome (Pozzi et al., 2009). Concerning its influence on Hcy 
concentrations, studies have shown conflicting results, since some have associated the MTR 
2756 A allele to increased Hcy concentration (Fredriksen et al., 2007; Harmon et al., 1999), 
while others found the same association, but with the polymorphic 2756 G alelle (Feix et al., 
2001; Fillon-Emery et al., 2004). 
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As to the MTRR 66 A→G polymorphism, some studies have supported an independent role 
for this polymorphism in the maternal risk for DS in the presence of the homozygous MTRR 
66 GG genotype (Hobbs et al., 2000; Pozzi et al., 2009; Wang et al., 2008). Most of the studies 
have associated this polymorphism with the risk of DS and increased Hcy concentration 
when combined to other polymorphisms, such as MTHFR 677 C→T (Hobbs et al., 2000; 
Martínez-Frías et  al.,  2006; O’Leary et al, 2002; Yang  et  al.,  2008). Additionally, a steady 
state kinetic analysis showed a significantly decreased affinity of MTRR for MTR 
accompanying substitution 66 A→G, revealing a significant difference in the relative 
efficacies of  the  MTRR enzyme (Olteanu et al., 2002). However, several studies have failed 
to find association between DS risk and the MTRR 66 A→G polymorphism, whether alone 
or combined with other genetic variants (Coppedè et al., 2009; Chango et al., 2005; Scala et 
al., 2006). 
The RFC1 gene is polymorphic at nucleotide 80 (A→G), and investigation of the impact of 
this polymorphism on protein function have demonstrated a difference in its affinity for 
subtracts and/or efficiency in transport in comparison with the wild type enzyme 
(Whetstine et al., 2001). Few studies have evaluated the influence of the RFC1  80 A→G 
polymorphism on DS risk (J.M. Biselli, 2008a, 2008c; Chango et al., 2005; Coppedè et al., 
2006). Some studies have found no association between this polymorphism and DS (Chango 
et al. 2005; Fintelman-Rodrigues et al., 2009); however, Coppedè et al. (2006) and J.M. Biselli  
et al. (2008a) suggest a role for this polymorphism when combined with other 
polymorphisms in genes involved in folate metabolism. Supporting this hypothesis, the 
combined RFC1 80 GG/MTHFR 677 TT genotype has been associated with  increased Hcy 
concentration and the RFC1 80 AA/MTHFR 677 CT combined genotype with higher plasma 
folate concentration (Chango et al., 2000). 
A common polymorphism in the CβS gene, 68-base pair (bp) insertion at nucleotide position 
844 (844ins68), is also investigated in the risk for DS, but there is no evidence that this 
variant plays an independent role on this risk (da Silva et al., 2005; Chango et al., 2005; Scala 
et al., 2006). The CβS 844ins68 polymorphism has been associated with reduction of Hcy 
concentration in the presence of the insertion (Tsai et al., 1996; Tsai et al., 1999; Tsai et al., 
2000), and it is believed that this insertion is related to increased enzyme activity (Tsai et al., 
1996, Tsai et al., 1999). This variant is always found to be associated in cis with an additional 
polymorphism in the CβS gene, a thymine-to-cytosine transition at nucleotide position 833, 
which causes a threonine-to-isoleucine amino acid substitution, and is reported, together 
with CβS 844ins68, as a 833 T→C/844ins68 in cis double mutation (Pepe et al., 1999; Vyletal 
et al., 2007). Da Silva et al., (2005) observed that the 844ins68 polymorphism, in association 
with other polymorphisms of the folate pathway, is related to increased risk for DS. 
Concerning its influence on folate metabolite concentrations, such as folate, Hcy, and 
vitamin B12, the CS 844ins68 polymorphism showed no significant association with any of 
the biochemical variables involved in folate metabolism (Bowron et al., 2005; Kumar et al., 
2010; Summers et al., 2008). 
The MTHFD1 gene presents a functional polymorphism, a guanine-to-adenine substitution 
at position 1958 (1958 G→A), that has been shown to reduce the activity and stability of the 
variant enzyme (Christensen et al., 2008). There are only two studies to date on the influence 
of this polymorphism on maternal risk for DS. Scala et al. (2006) showed an association of 
the MTHFD1 1958 AA genotype with DS risk, but only when combined with the RFC1 80 
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GG genotype; however, more recently, Neagos et al. (2010) failed to find association. Thus, 
further investigations are necessary to clarify the role of MTHFD1 1958 G→A in the 
chromosome 21 nondisjunction. 
Johnson et al. (2004) described a 19-base pair (bp) deletion polymorphism in intron-1 of the 
DHFR gene and hypothesized that this polymorphism could be functional since the deletion 
removes a possible transcription factor binding site that affects gene regulation. A study 
with mothers of individuals with spina bifida showed that the expression  of the messenger  
ribonucleic  acid  (mRNA) from the DHFR gene was 50% higher  in  the presence of del/del 
genotype than in the ins/ins genotype (Parle-McDermott  et  al.,  2007). This polymorphism 
has been associated with the modulation of metabolites’ concentrations involved in the 
folate pathway. Gellekink et al. (2007) reported association between the del/del genotype 
and reduction of plasma Hcy concentration, but found no association between this genotype 
and concentrations of serum and erythrocyte folate. Another study found no effect on Hcy 
concentration, but found increased plasma and erythrocyte folate levels in del/del 
individuals (Stanislawska-Sachadyn et al., 2008). The results of the only study that 
investigated the 19-bp deletion polymorphism of DHFR gene in DS mothers did not support 
an association between this variant and the maternal risk for DS. In addition, the 
polymorphism was not associated with variations in serum folate and plasma Hcy and 
methylmalonic acid (MMA) concentrations in the study population (Mendes et al., 2010). 
The TC2 gene, which codifies a transporting protein required for the cellular uptake of 
vitamin B12 (Seetharam &Li, 2000), is polymorphic at nucleotide position 776 (C→G). There is 
evidence that the presence of  the TC2 776 CC genotype may be more efficient in delivering 
vitamin B12 to tissues, resulting in enhanced B12 functional status (Miller et al., 2002; Namour 
et al., 1998). In other studies, the presence of the TC2 776 GG genotype was shown to affect 
negatively the serum concentration of the TC2 protein-vitamin B12 complex (von Castel-
Dunwoody et al., 2005) and was associated with low concentrations of SAM in childbearing-
age women (Barbosa et al., 2008). Considering that SAM is the major methyl donor for DNA 
methylation reactions,  it  was hypothesized that the variant TC2 776 C→G could influence 
the maternal risk for DS by modifying the DNA methylation pattern. This polymorphism 
has only been investigated in DS risk by two groups to date (J.M. Biselli et al., 2008c; 
Fintelman-Rodrigues et al., 2009), but no association has been found. 
The conflicting results shown by literature have raised the suggestion that the presence of 
individual polymorphisms in genes involved in folate metabolism might not increase the 
risk of having a child with DS, although the effect of combined risk genotypes might modify 
their individual effect and increase DS risk (J.M., Biselli et al., 2008a; Brandalize et al., 2010; 
Coppedè et al., 2006; Coppedè et al., 2009; da Silva et al., 2005; Martínez-Frías, et al., 2006; 
Scala et al., 2006; Wang et al., 2008). Moreover, there is evidence that the significance of 
genetic polymorphisms seems to depend on interactions with nutritional factors 
(Papoutsakis et al., 2010; Stover & Caudill, 2008). 

6. Folate metabolism, genomic stability, and genetic polymorphisms 

Both in vitro and in vivo studies have shown that DNA methylation is an important 
mechanism for the maintenance of genomic stability. Literature provides several examples 
that genome-wide DNA hypomethylation enhances the occurrence of aneuploidy and 
chromosomal rearrangements (Herrera et al., 2008), loss of heterozygosity (Matsuzaki et al., 
2005), and chromosome malsegregation (Fenech et al., 2011). Folate and vitamin B12 are 
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among the most important minerals and vitamins required for DNA maintenance and 
prevention of DNA damage that could be induced by inadequate intake of these 
antimutagenic vitamins (Fenech, 2002). In human cells, folate deficiency is associated with 
DNA hypomethylation (Chang et al., 2011; Linhart et al., 2009), DNA instability (strand 
breakage, uracil misincorporation) (Linhart et al., 2009; Williams & Jacobson, 2010), 
aneuploidy of chromosomes 17 and 21 (Beetstra et al., 2005; Wang et al., 2004), apoptosis (Li 
et al., 2003), and necrosis (Beetstra et al., 2005). Low vitamin B12 status is also associated with 
DNA hypomethylation (Brunaud et al., 2003) and genetic instability (Andreassi et al., 2003; 
Botto et al., 2003). 
There is increasing evidence of association between polymorphisms in folate and Hcy 
metabolizing genes and levels of chromosome damage. The MTHFR 677 C→T 
polymorphism is associated with diminished levels of 5-methylcytosine and DNA 
hypomethylation (Chen et al., 2010; Friso et al., 2002; Paz et al., 2002), micronucleus 
formation (Andreassi et al., 2003; Botto et al., 2003), and microsatellite instability 
(Naghibalhossaini et al., 2010) in the presence of the variant T allele. The homozygous 
variant genotype of another polymorphism of the MTHFR gene, 1298 A→C, was more 
frequent in patients with Turner syndrome (de Oliveira et al., 2008), and a higher frequency 
of the C allele was observed in spontaneous abortions with fetal chromosomal aneuploidy 
as compared to those with normal fetal karyotypes (Kim et al., 2011), suggesting its 
involvement in the origin of chromosomal imbalances. The MTR 2756 A→G polymorphism 
was associated  with reduced  number  of  hypermethylated  CpG  islands  of  suppressor  
tumor genes and with higher micronucleus rates in the presence of the MTRR 66 GG variant 
genotype (Botto et al., 2003; Paz et al., 2002; Zijno et al., 2003).  
The polymorphism RFC1 80 A→G has been associated with reduced percentage of 5-
methylcytosine in the DNA of mothers of children with autism in the presence of 
homozygous and heterozygous genotypes for the G allele as compared to AA genotype 
(James et al., 2010); however, the presence of the A allele was recently associated with 
increased oxidative DNA damage, while the cSHMT 1420 C→T polymorphism was 
associated with reduced oxidative DNA damage (CC>CT>TT) (Mohammad et al., 2011). 
Moreover, Piskac-Collier et al. (2011) recently demonstrated that lymphocytes from lung 
cancer patients showed a considerably increased frequency of cytogenetic damage in the 
presence of MTHFR 677 C→T, MTHFR 1298 A→C, and cSHMT 435 C→T allelic variants, 
suggesting that interactions between genetic polymorphisms may also have a significant 
impact on genetic instability. 

7. Predisposition to chromosome malsegregation in young DS mothers and 
its association with folate-metabolizing gene polymorphisms 

Studies with women who have a DS child at a young age have suggested that they present 
genetic predispositions to chromosome malsegregation in both somatic and germ line cells. 
Migliore et al. (2006) observed increased frequency of binucleated-micronucleated 
lymphocytes in women who had a DS child before 35 years of age, and fluorescence in situ 
hybridization analysis revealed that micronuclei were mainly originating from 
chromosomal malsegregation events, including chromosome 21 malsegregation. Further 
studies from their group confirmed increased chromosome damage in blood cells of young 
DS mothers and showed a significant correlation between micronucleated cells and both 
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MTHFR   677C→T   and  1298A→C polymorphisms. The mean frequency of binucleated-
micronucleated cells increased significantly with the increasing number of MTHFR 677 T 
alleles, and MTHFR 1298 AA women have significantly higher binucleated-micronucleated 
cells frequency than do MTHFR 1298 AC + CC carriers (Coppedè et al., 2007; Coppedè, 
2009). In addition, mothers who had a DS child at a young age showed increased frequency 
(of about 5-fold) of Alzheimer’s disease (AD) (Schupf, et al., 2001). A unifying hypothesis 
trying to relate DS, trisomy 21, and AD has proposed that trisomy 21 mosaicism at the germ 
cell level or in brain cells could account for the familial aggregation of AD and DS (Potter, 
1991). Together, these results suggest that young DS mothers are more prone to 
chromosome malsegregation, which could be true both for somatic (peripheral blood 
lymphocytes, brain) and for germ cells and, importantly, folate-metabolizing gene 
polymorphisms seem to play an important role on this susceptibility to aneuploidy. 

8. Folate supplementation and DS prevention 

Two important emerging areas of nutrition science are nutrigenomics, which refers to the 
effect of diet on DNA stability, and nutrigenetics, which refers to the impact of genetic 
differences between individuals on their response to a specific dietary pattern, functional 
food, or supplement for a specific health outcome. On these terms, two premises are 
important: (a) inappropriate nutrient supply can cause considerable levels of genome 
mutation and alter the expression of genes required for  genome  maintenance, and  (b)  
common  genetic  polymorphisms may alter the activity of genes that affect the 
bioavailability  of  micronutrients  and/or  the  affinity  for micronutrient cofactors in key 
enzymes involved in DNA metabolism or  repair, resulting in a lower or higher reaction rate 
(Bull & Fenech, 2008; Fenech, 2005). 
As mentioned before, the folate-dependent biosynthesis of nucleotide precursors for DNA 
synthesis and genome methylation is dependent on the availability of many vitamins, 
including B12, B6, niacin, riboflavin, and minerals (zinc, cobalt), and is subject to regulation 
by other nutrients, such as  iron and  vitamin A, not  directly  involved  in  DNA  or  SAM  
biosynthesis (Stover, & Caudill 2008). Therefore, impairments in one-carbon metabolism, 
and the SAM cycle in particular, induced by nutritional deficiencies and/or genetic 
polymorphisms that encode folate-dependent enzymes, alter genome methylation patterns 
and gene expression levels (Stover, 2004; Stover, & Caudill 2008).  
Since 1992, supplementation with 0.4 mg/daily of folic acid is recommended for women of 
childbearing age for the prevention of neural tube defects (Centers for Disease Control, 
1992). Barkai et al. (2003) observed that families at risk for neural tube defects present with a 
higher frequency of DS cases and vice-versa, suggesting that both disorders are influenced 
by the same folate-related risk factors. However, two issues ought to be considered in the 
prevention of DS by folic acid: the dose and the timing of folic acid intake (Scala et al., 2006). 
It has been proposed that genomic instability is reduced at plasma folate concentrations 
above 34 nmol/L and Hcy concentrations below 7.5 mol/L; these concentrations can only 
be reached with the ingestion of more than 0.4 mg/day of folic acid (Fenech, 2002). A report 
of a decreased occurrence of DS offspring in mothers supplemented with high doses of folic 
acid (6 mg/day) (Czeizel & Puho, 2005) supports the hypothesis of an involvement of folate 
in the etiology of DS. Concerning the timing of folate intake, it should be remembered that 
maternal MI errors in the primary oocyte may occur in a process that begins during fetal life 
and ends at the time of ovulation, whereas MII errors occur at the time of fertilization (Yoon 
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et al., 1996). Therefore, it is likely that only MII errors would be immediately affected by 
folic acid intake in adult women (Ray et al., 2003).  

9. Conclusion 

Currently available literature suggests that abnormal folate metabolism is associated with 
increased maternal risk for DS, with a complex interaction between genetic polymorphisms, 
environmental factors (i.e., nutritional factors), and epigenetic processes. However, given 
the complexity of the folate pathway, these complex interactions cannot be easily 
understood and none of the polymorphisms studied so far can be used in genetic counseling 
to predict the maternal risk for having a DS child (Coppedè et al., 2009). However, 
nutrigenetics and nutrigenomics are promising areas for evaluating the possibility of DS 
prevention with folic acid supplementation associated with susceptible genotypes. Thus, 
further large-scale studies are necessary to better understand the complex association 
between chromosomal 21 nondisjunction and folate metabolism. 
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