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1. Introduction 

Plants accumulate a diverse array of natural products, which are thought to be involved in 
their interactions with the environment. These chemicals function in plant communications 
with microbes, animals, and even other plants, as well as protecting the plant from 
ultraviolet radiation and oxidants. Some compounds may attract beneficial insects or 
microbes, whereas others kill or repel herbivorous. Many of these compounds have been 
referred to as “secondary metabolites” to distinguish them from the “primary metabolites” 
required for the growth of all plants (Theis & Lerdau, 2003). These secondary metabolites, 
however, are likely to be essential for successful competition or reproduction.  
More than 100,000 chemical products are known to be produced by plants and at least 1,700 
of these are known to be volatiles (Dicke & Loreto, 2010). Some of the volatiles considered in 
this chapter are shown in figure 1. Volatile organic compounds (VOCs) are defined as any 
organic compound with vapor pressures high enough under normal conditions to be 
vaporized into the atmosphere (Dicke & Loreto, 2010). The importance of these compounds 
can be deduced by the considerable amount of photoassimilated carbon released back into 
the atmosphere as VOCs (Holopainen, 2004). In fact, it has been estimated that the emission 
of VOCs by terrestrial plants accounts for the 36% of the whole photosynthates (Kesselmeier 
et al., 2002). This emission, therefore, substantially reduces the amount of available carbon 
and consequently affects plant physiology and productivity. Why plants, under stress 
conditions, where carbon availability is a crucial limiting resource, lose such a relevant 
amount of assimilated carbon? 
VOCs are involved in a range of ecological functions, including indirect plant defense against 
insects, pollinator attraction, plant-plant communication, plant-pathogen interactions, 

                                                 
Note:  
This chapter has been written in cooperation with the students of the course “Ecosystems and 
Environmental Stress Physiology” of the ERASMUS MUNDUS - International Master in Horticultural 
Sciences (IMaHS: www.imahs.unibo.it). Dr. Francesco Spinelli, the tenured professor of the course, was 
responsible for the whole chapter structure and for the direction and supervision of the manuscript. Dr. 
Antonio Cellini contributed to the section on nitric oxide. Livia Marchetti (role of light stress on VOCs 
induction), Chiara Piovene (jasmonates) and Karthik Mudigere Nagesh (drought driven emission of 
VOCs) were all students of this master course. 
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Fig 1. Chemical diversity of the different VOCs, and related compounds, present in the 
plant. The low molecular weight compounds (i.e. NO, ET, JA, MJA, ISOPRENE) usually act 
as stress signals. Isoprene, NO and the majority of the other compounds may also directly 
act as antioxidants. 

reactive oxygen species removal, thermo-tolerance and environmental stress adaptation. 
Their evolution is quite complex and it is affected by interactions of plants with biotic and 
abiotic factors in constantly changing environments, at local and global level. 
Stored VOCs may be volatilized into the atmosphere by healthy unwounded plants 

depending on their concentration and physiochemical properties (Niinemets et al., 2004). 

While many plants contain large amounts of stored VOCs, others do not synthesize and 

emit them until an environmental stimulus is perceived (Paré et al., 2005). Induced VOCs 

(IVOCs) may be emitted hours or days after a stress, both from the stressed sites as well as 

systemically from undamaged plant leaves (Paré & Tumlinson, 1997). Most of the 
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constitutive VOCs normally released from healthy intact plants become inducible volatiles 

after foliar damage (Wiens, 1991; Vuorinen, 2004). In contrast to the constitutive VOCs, the 

novel IVOCs are produced only after biotic and abiotic inductions. The advantage of novel 

IVOCs is that they are de novo synthesized only when needed and therefore they optimize 

carbon usage and do not reduce plant fitness (Dicke, 2000).  

The VOCs are important infochemicals and their role in shaping the biotic interactions is 

well known. However, inducible VOCs are also emitted in response to abiotic stress 

perception and they may play a role in stress adaptation or response. Environmental stress 

such as physical damage, nutrient deficiency, salinity, drought and ozone exposure hamper 

the IVOCs emission. Stress in plants could be defined as any change in growth conditions 
that disrupts metabolic homeostasis and requires an adjustment of metabolic pathways 
in a process that is usually referred to as acclimation (Shulaev et al., 2008).  
Plants have an extraordinarily diverse suite of protective mechanisms against abiotic 

stresses, since they must be capable of coping with a variety of changes in light intensity, 

temperature, moisture and other abiotic factors in their environments. When these factors 

shift out of a certain range, plants are subjected to stress; this can lead to decreased growth 

rate, reduced reproduction and even death (Vickers et al., 2009). Moreover, these stresses are 

rarely experienced singularly, but they often occur in combination. 

The most common response to stresses is the production of excess reactive oxygen species 

(ROS), substances continuously produced in plants in normal conditions. Abiotic stress 

factors can perturb the equilibrium between production and scavenging of ROS, causing an 

excessive production of these components that lead to a direct damage to plant cells through 

oxidation of biological components (nucleic acids, proteins and lipids) and can instigate 

chain reactions resulting in accumulation of more ROS and initiation of programmed cell 

death (Apel & Hirt, 2004). Well known example of environmental stresses leading to direct 

ROS accumulation are light excess, which causes photoinhibition and damages to 

photosynthetic reaction centers, and high temperature stress, which denatures proteins and 

causes lipid peroxidation. In addition, these two stresses are often coincident thus 

amplifying one the effect of the other. In this chapter, it will be exposed how the ROS 

accumulation is the common mechanism underlying the volatile emission in response to 

both biotic and abiotic stresses. 

There is a broad diversity of known IVOCs, including alkenes, alkanes, carboxylic acids, 
nitrogen-containing compounds and alcohols, but the dominating compounds tend to be 
isoprene, terpenes and C6 green leaf volatiles (GLVs) (Holopainen & Gershenzon, 2010). The 
emission of VOCs from plants varies extensively depending on the species, organs, 
development stage and environmental conditions (Holopainen & Gershenzon, 2010). GLVs are 
produced via the lipoxygenase (LOX) pathway, and they can account for more 50% of the 
emissions from damaged plant parts. Chemically, GLVs are mostly saturated or 
monounsaturated aldehydes, alcohols and esters, and they can have different configurational 
isomers with different sensory properties (Ruther, 2000). GLVs are typically released only from 
damaged plant organelles within 1–2 seconds of the mechanical damage occurring (Fall et al., 
1999), but some GLVs are released from younger undamaged leaves of herbivore damaged 
plants, indicating that the LOX pathway can be activated in intact leaves. 
The high diversity of IVOCs suggests that plants are capable of disseminating information 
to their environment by using IVOCs and that plants can actively change the growth 
conditions using reactive IVOCs (reviewed by Holopainen, 2004).  
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The present chapter will review the current knowledge on the emission and function of 
IVOCs in response to abiotic stress. The review will also focus on the role of ethylene, nitric 
oxide, jasmonic acid and derivatives (i.e. methyl jasmonate), isoprene and terpens. 

2. Ethylene  

Ethylene is the first gaseous hormone discovered in nature (Bleeker & Kende, 2000). 
Ethylene is a gaseous alkene and it is the simplest in structure among all the plant 
hormones. This 2-carbon olefin is a powerful elicitor of morphological changes during all 
stages of the plant life cycle from development, to fruit ripening and senescence. In 
addition, a variety of stresses such as wounding, pathogen attack, flooding, drought, 
hypoxia, temperature shifts, physical loads and noxious chemicals (i.e. ozone and sulfur 
dioxide) induce ethylene production (Yang & Hoffman 1984; Abeles et al., 1992; Bleecker & 
Kende 2000, Tscharntke et al., 2001, Overmyer et al., 2003; Vahala et al., 2003). Furthermore, 
there is extensive crosstalk between the ethylene response pathway and other signaling 
networks (Johnson & Ecker 1998) (Fig. 2).  
This complex and multifaceted regulatory network has not yet been completely elucidated. 
Nonetheless it is well known that ET induces diverse effects in plants throughout their life 
cycle from seed germination, floral differentiation to senescence. In order to achieve the 
myriad of effects it elicits in numerous physiological process, ET response must be precisely 
regulated at multiple levels, from hormone synthesis and perception to signal transduction 
and transcriptional regulation. However, even if ET has a central role in many fundamental 
processes, some evidences suggest that ET acts more as a potentiator or enhancer and it is 
not strictly required for survival. Failure to perceive ethylene is apparently not essential for 
survival in the laboratory setting, but ethylene signaling undoubtedly contributes to the 
hardiness of plants in the wild (Johnson & Ecker 1998).  
Ethylene also gave an example of plant-to-plant signalling, probably unrelated to a role in 
defence: normally, the leaves of wild-type tobacco plants tend to stop growing as they 
approach neighbouring tobacco plants, this may stop them wasting energy producing leaves 
that would be shaded from useful light. 
Plants in the vegetative growth phase, flowers, and immature fruits produce barely detectable 
levels of ethylene until they are subjected to stress or undergo maturation events, after which 
ethylene production accelerates in a spatially and temporally specific pattern (Johnson & Ecker 
1998). All vascular plants analyzed to date synthesize ethylene via the Yang cycle, wherein S-
adenosyl methionine is diverted from alternative fates to make the ethylene precursor 1-
aminocyclopropane-1-carboxylic acid (ACC) (Yang & Hoffman, 1984) (fig. 3).  
Expression of the enzyme catalyzing this reaction, ACC synthase, is induced by stimuli that 
lead to increased ethylene production, suggesting that ACC synthase activity is rate-limiting 
for ethylene synthesis (fig. 3). ACC can be readily converted to ethylene, CO2, and HCN by 
ACC oxidase, or it can be conjugated to a malonyl or glutamyl group to limit its availability 
for ethylene production. ACS is encoded by a multigene family, and different members 
show distinct patterns of expression during growth and development, and in response to 
various external cues. In addition to this transcriptional control, the stability of the ACS 
protein is also highly regulated (Argueso et al., 2007). Although control of ethylene 
production is largely attributed to ACC synthase, the differential expression patterns of 
ACC oxidase (ACO) genes suggest that oxidases contribute to regulation of ethylene 
production as well. Periods of ACO induction correlate with ethylene-regulated events in 
several instances, including senescence, fruit ripening, and wounding.  
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Fig. 2. Overview of the signalling events and reactions following the perception of stress. As 
a primary consequence, an oxidative burst occurs, due to the production of Reactive Oxygen 
Species (ROS). This early event causes oxidative damage and trigger the signal cascades 
leading to stress tolerance. The plant reacts to the ROS accumulation through two possible 
ways. On one side (green path), the interplay of ROS and Reactive Nitrogen Species (RNS) 
allows the induction of programmed cell death, the modulation of ion fluxes (including 
Ca2+), and the direct killing of noncompatible pathogens. Salicylic (SA) and abscisic acid 
(ABA) are long-ranged hormones mediating these responses in feedback with ROS and 
RNS. Several stressing agents, both abiotic and biotic, stimulate this pathway. A distinct and 
partially antagonistic signal cascade (orange path) involves the production of ethylene (ET) 
and jasmonates (JA). These hormones are required for the resistance to necrotrophic 
pathogens. Notably, the production of isoprene and terpenoids is stimulated by JA, and 
contributes to thermotolerance and stress mitigation. Apart from their role as signal 
molecules, isoprenoids can also act as quenching molecules of ROS. The volatile messengers 
in the described processed, namely NO (the precursor of RNS), ET, JA, isoprene and 
terpenoids are evidenced in the dashed frame. 
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Fig. 3. The ethylene biosynthetic pathway and signalling showing the different enzymes 
involved in the process. The diverse stimuli promoting ET synthesis are also reported. In 
some plants, not only ACC and ACO are affected, but also AdoMet synthase. Finally, stress 
ethylene may also relate to stress symptoms through hydrogen cyanide, a by-product of 
ACC oxidase. Polyamine biosynthesis that start from AdoMet may interact with ethylene 
biosynthesis and responses to stress (After Argueso et al., 2007) 

Ethylene emission increases under drought stress (McKeon et al. 1982). In this kind of 
stress ethylene may act as a signal molecule, but it is possible protective role is still unclear. 
The literature collectively suggests that the production of ethylene in water-stressed plants 
depends on the rapidity of the decrease of plant water potential, the duration of the stress 
and the recovery conditions. In addition, plants that have previously experienced mild 
drought, can be hardened by former stress episodes (Morgan & Drew, 1997). One of the first 
reactions to water deficit is the stomata closure that is regulated by the hormone abscisic 
acid (ABA). Water stress induces the root synthesis of ABA which in turn induces ACC 
synthesis, and conversion of the ACC to ethylene in leaves (Morgan & Drew, 1997). Stomata 
closure prevent further lack of water from the plant thus avoiding wilting and more severe 
damages. Ethylene seems to antagonize this effect. In fact, ACC application or the use of the 
Arabidopsis ethylene overproducing mutant eto1 leads to decreased stomata closure after 
ABA application, indicating that ethylene inhibits ABA-induced response (Tanaka et al., 
2006). In addition, inhibition of ethylene synthesis in wheat inhibits chlorophyll loss 
associated with drought-induced senescence (Beltrano et al., 1999).  
Ethylene is also induced in osmotic stress, and, again, its role is not well understood. ACS 
activity in tomato cells is increased after osmotic shock (Felix et al., 2000). Transgenic 
tobacco plants overexpressing an ethylene receptor show increased salt sensitivity 
compared to wild-type plants (Cao et al., 2006). On the other hand, overexpression of the 
ethylene-responsive transcription factor increased salt tolerance (Huang et al., 2004 – 
Reviewed by Argueso et al., 2007). 
Drought stress is often accompanied by high temperature which can additionally promote 
ethylene production. Very high temperatures often occur at the edge of tree canopy under the 
sun. The temperature of an individual plant cell can change much more rapidly than other 
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factors that cause stress (e.g. water levels or salt levels). Thus, plants have evolved strategies 
for preventing damage caused by rapid changes in temperature and for repairing what 
damage is unavoidable. Heat stress results in the production of specific families of proteins 
known as heat shock proteins (HSPs) (Howarth & Ougham, 1993). Despite the ubiquitous 
nature of the heat shock response, little is known about how the plant senses an increase in 
temperature or the signaling pathways resulting in HSPs. There is considerable evidence that 
oxidative stress induces pathways resulting in accumulation of some HSPs (Dat et al., 1998). 
Even under optimal conditions, dangerous active oxygen species are synthesized at very high 
rates from electron transport chains involved in respiration and photosynthesis (Noctor & 
Foyer, 1998). Once damage is done to the photosystems by extreme temperature and/or light 
conditions, the production of these potentially damaging molecules increases, and these are 
the likely cause of the light-dependent, heat-induced oxidative damage (Noctor & Foyer, 
1998). Given that high temperature, light excess and drought often occur simultaneously, their 
damages to the plants are usually cumulative. High temperature can induce ethylene 
emission, up to a limit (about 35°C) after which production is inhibited (Abeles et al, 1992). 
In Arabidopsis, calcium, abscisic acid (ABA), ethylene, and salicylic acid are involved in the 
protection against heat-induced oxidative damage. In fact, exogenous applications of SA, ACC 
and ABA protect plants from heat-induced oxidative damage. In addition, the ethylene-
insensitive mutant etr-1, the ABA-insensitive mutant abi-1, and a transgenic line expressing 
nahG (consequently inhibited in SA production) showed increased susceptibility to heat 
(Larkindale & Knight, 2002).  
Ethylene may also be involved in the regulation of plant responses to low oxygen 
conditions, or hypoxia. Hypoxia primarily occurs when the soil is flooded or water logged. 
Ethylene is highly induced when roots face a low oxygen environment. In these conditions, 
in Arabidopsis, the mRNA levels of a number of genes of the ACS family (i.e. ACS2, ACS6, 
ACS7, and ACS9) are upregulated (Peng et al., 2005). Under conditions of oxygen 
deficiency, ethylene is implicated in the triggering of a large number of responses that assist 
plants in avoiding stress. Among these responses are the accelerated elongation of 
submerged stems and leaf petioles, promotion of adventitious rooting on stems at or above 
the water line, leaf epinasty and hypertrophy of lenticels on stems and woody roots. One of 
the effects of hypoxia is the formation of aerenchymatic tissues. This kind of tissue in 
produced by programmed cell death that leave empty spaces inside the roots facilitating the 
gas diffusion. Ethylene may work as a signal regulating programmed cell death and 
lysigenous aerenchyma formation. A possible explanation reside on a production of 
cyanide. This toxic compound is produced in the ethylene biosynthetic pathway in 
stoichiometrically equivalent amounts to ethylene. It has been suggested that HCN may 
have a role in cell death in a variety of circumstances where ethylene synthesis is strongly 
stimulated. Induction of aerenchyma formation by ethylene is closely associated with 
increases in activity of cellulase (He et al, 1994), and also with expression of a putative cell 
wall metabolism gene, a xyloglucan endo-transglycosylase (XET) (Saab & Sachs 1996).  It 
seems likely that cellulase, XET, and other potentially wall-degrading enzymes contribute to 
the rapid dissolution of dead cortical cells to give rise to aerenchyma. 
Pollutants such as heavy metals or O3 also induce ethylene emission. For example, lithium 
ion induces ACS gene expression and activity in various plant species (Tsuchisaka & 
Theologis 2004).  

Ozone (O3) is presently a major phytotoxic air pollutant, and exposure of plants to O3, or to 
other pollutants such as SO, or HF, or NOx, leads to stress ethylene production. It has been 
recognized for many years that there is a broad correlation between stress ethylene 
formation and sensitivity of different species and varieties to O3 (see Wang et al, 1990). 
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Experimental application of high levels of ozone to plants induces a burst of ethylene 
(Mehlhorn & Wellburn 1987), promoting ozone-induced cell death (Overmyer et al., 2003) 
through a mechanism that might involve the biosynthesis and accumulation of salicylic acid 
(SA) (Ogawa et al., 2005) and suppression of the cell-protective action of JA (Tuominen et 
al., 2004). In Arabidopsis, ozone treatment elevates the steady-state level of ACS6 gene, one of 
the numerous genes of the ACS family (Vahala et al., 1998). Suppression of ACS activity in 
plants increases tolerance to oxidative stress and diminishes the damage caused by ozone 
treatment (Sinn et al., 2004). 
Finally, ethylene is stimulated by cold damages. However, it is still not clear whether 
additional ethylene production is only a symptom of injury, or it has special significance in 
relation to acclimation or tolerance of chilling stress. As a generalization, greater stress 
ethylene production is indicative of greater chilling sensitivity (Morgan & Drew, 1997).  
Ethylene seems to have a role as a switch by reducing the production of constitutive defence 
compounds after herbivore damage and stimulating the production of jasmonic acid and 
IVOCs (Kahl et al., 2000). Intriguingly, JA has been found to be conjugated to ACC in 
Arabidopsis plants, suggesting that JA–ACC conjugates could be involved in the co-
regulation and crosstalk between JA- and ethylene-dependent pathways in plants (Staswick 
& Tiryaki 2004). Three endogenous plant signalling molecules: salicylic acid (SA), jasmonic 
acid (JA) and ethylene regulate plant defences in response to microbial attack (Dong, 1998). 
There is a growing body of literature that reports that the NO, JA, SA and ET defence 
signalling pathways do not work independently but rather influence each other through a 
complex network of regulatory interactions (fig.2).  
A greater understanding of the NO, SA, JA and ET signalling pathways and their reciprocal 
modulation should provide insight into the mechanisms underlying the activation and 
regulation of plant responses to biotic and abiotic stress. While the SA and JA signalling 
pathways are mutually antagonistic, several studies provide evidence for positive 
interactions between the JA and ET signalling pathways. Both JA and ET signalling are 
required for the expression of the defence-related genes even when applied exogenously. 
This regulatory cross-talk may have evolved to allow plants to fine-tune the induction of 
their defences in response to different plant pathogens (reviewed by Kunkel & Brooks, 
2002). NO generally counteracts the effects of ethylene by delaying senescence, flowering 
and ripening (Leshem & Wills, 1998). Methionine adenosyltransferase and S-adenosyl 
homocysteine hydrolase, required for ethylene biosynthesis, are inactivated by S-
nitrosylation and nitration, respectively (Lindermayr et al, 2006). It is reported in a wide 
variety of fruits, both climacteric and non climacteric, that NO emission is higher before 
ripening, whereas it drops along with the ethylene increase during maturation or 
senescence; nitrous oxide (N2O) fumigations were successfully employed to extend the 
postharvest life of crops (Leshem & Wills, 1998). 

3. Nitric oxide (NO) 

Nitrogen monoxide (more commonly named nitric oxide, NO) is one of the chemical signals 
shared by all the kingdoms, and it can therefore be involved in interorganism communications. 
However, NO is also abundantly originated by antropic activities, such as fossil fuel combustion, 
nitrogen fertilization and it has long been considered only as a pollutant. The formation of 
photochemical smog involves NO, that drives the synthesis of ozone, either photochemically in 
presence of O2, or by oxidizing volatile compounds (Pinto et al., 2010; Lindroth, 2010). This 
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process increases the amount of ozone in the troposphere thus affecting the composition of 
cuticolar waxes and volatile emissions and impacting on the regulation of ecological relations 
(insects and host plants, predators and parasitoids) (Lindroth, 2010). 
Since early 1990s, NO has been characterized as an actively produced physiological 
regulator in plants. Nonetheless, its metabolism is not easy to study, because of several, 
uncommon biochemical features of the NO molecule. In fact, unlike most signalling 
molecules, NO is a small, ubiquitous, unstable radical gas, freely diffusible both in aqueous 
and lipidic media. The unpaired electron is delocalized between the N and O atoms in an 
anti-bond π molecular orbital. This fact grants the NO molecule a relatively high stability, 
and in the same time explains its typical reactivity. Other compounds biochemically related 
to NO, and possibly mediating its effects, are collectively named reactive nitrogen species 
(RNS) and include N2O, NO2, N2O3 and peroxynitrite.  
As a radical molecule, NO is highly reactive to other radicals. Due to its lipophilic nature, 
NO is supposed to quench effectively the lipid peroxidation chain reaction. The reaction 
with superoxide (O2-·) is nearly diffusion-limited, and yields peroxynitrite (ONOO-). 
Peroxynitrite deserves a mention for its high reactivity and its powerful oxidizing 
(nitrating) activity toward phenolic compounds, such as tyrosine. In physiological 
conditions, very little superoxide is produced and not removed by superoxide dismutase: 
therefore, the occurrence of tyrosine nitration is proposed as a stress marker. Protonation 
of peroxynitrite yields the highly reactive nitrogen dioxide and hydroxyl radicals, further 
contributing to oxidative stress and disruption of cell structures. An overview of NO 
chemistry is shown in fig. 4.  
NO is produced in plant in a number of possible ways such as the non-enzymatic 
reduction of NO2- to NO and the dismutation of nitrous acid to NO (Stöhr & Ullrich, 2002; 
Bethke et al., 2004), the NO synthase-like activity (“NOS-like activity”) (del Río et al., 
2004) and the enzymatic biosynthesis  mediated by nitrate reductase (Yamasaki,  2005). 
Many other biochemical routes leading to production of NO have been described. 
Polyamines, salicylhydroxamic acid, hydroxylamine, hydroxyurea and hydroxyarginine 
were shown to act as NO precursors, possibly in association with reactive oxygen species 
(Arasimowicz-Jelonek et al., 2009; Rümer et al., 2009; Tun et al., 2006); NO2 can be 
photooxidized to NO by carotenoids. Among the enzymatic candidates for NO 
production, heme-proteins like peroxidases, cytochrome P450, hemoglobin and catalase, 
have been proposed. Xanthine oxidase, according to O2 availability, is reported to 
produce either O2-· or NO (del Río et al., 2004). 
Considering the role of reactive oxygen species in signalling, and how NO reacts with them, 
NO can be considered a mediator of ROS signalling. Plant cell death, for example induced 
by salicylic acid in the hypersensitive response, requires definite rates between H2O2 and 
NO (Delledonne et al., 2001). If superoxide is not converted to H2O2, peroxynitrite will be 
formed, which has no effect in plant cell death, but may be toxic for an invading pathogen. 
In general, the causal relations may not be clear, since NO is reported both to promote ROS 
synthesis (stimulating the plasma membrane NADPH oxidase) (Zhang et al., 2007) and to 
act downstreams of H2O2 (e. g. in ABA stomata closure signal) (Bright et al., 2006).  
The effects of H2O2 and NO are partially overlapping, for what concerns the regulation of 

ion channels (notably Ca2+), the activation of H+:ATPase and H+:pyrophosphatase, and 

second messenger cascade of the phospholipase products. 
Most of the NO-modulated genes in Arabidopsis thaliana respond to abiotic or biotic 
stress conditions, and are involved in signal transduction, cell death, defence, 
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Fig. 4. Chemistry of NO. (1) Nitrosation of thiols (R-SH) by nitrosonium. (2) Production of 
peroxynitrite. (3) Nitration of a phenolic group. (4) Formation of a dinitrosyl-iron 
compound. (5) Oxidation reactions to nitric and nitrous acid. (6) Reduction to nitroxyl. 

generation or detoxification of ROS, photosynthetic processes, intracellular trafficking, and 
basic metabolism; only a few among the classified ones can be directly linked to stress defence, 
but a dose-dependence to NO emerges for many genes, pointing to a form of signal specificity.  
Apart from these functions, similarly to the traditional plant hormones, NO has also a 

variety of effects on plant developments and morphogenesis. For example, NO, acting 

downstream to auxins, mediates their effects on root architecture, promoting the formation 

of lateral roots against the elongation of the primary root (Correa-Aragunde et al., 2004) and 

root hair development (Lombardo et al., 2006). NO acts as a mediator in photoperiod 

sensing, delaying the floral transition (He et al., 2004). Along with other light-dependent 

responses, such as de-etiolation and internodal growth, NO affects seed germination 

overcoming light requirement, similarly to gibberellic acid, and possibly sharing the same 

cGMP signalling pathway (Beligni & Lamattina, 2000). While ABA is essential for the 

establishment and maintenance of dormancy, a NO donor renders arabidopsis seeds 

insensitive to ABA (Bethke et al., 2006).  

NO plays also a crucial role in the abiotic stress signaling and tolerance. NO function in 
abiotic stress tolerance may be carried out by a signal cascade, or by direct detoxification. 
Plants improve their health status in response to many kinds of environmental stress, when 
exposed to low NO concentrations. Thus, NO could be considered a generalized stress 

signal. To prove this, several works were carried out adopting different species and tissues 
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and an array of stressing conditions (Corpas et al., 2008; Gould et al., 2003; Huang et al., 
2004). As a result, increases in NO contents were observed in some, but not all the 
treatments, although its occurrence varies among species, and possibly on the basis of 
tissue-specific mechanisms. For example, NO has a role in the plant response to drought 
and salinity stress. One of the first responses to these stresses is the ABA-mediated stomata 
closure. A simplified model for the process, not accounting for self-amplification and 
feedback effects, is the cascade H2O2 → NO → cGMP-cADPR → release of Ca2+. The K+- 
intaking channels are inactivated by Ca2+, whereas the outwards K+ channels open in 
response to H2O2. As a result, the rise in water potential causes the guard cell to collapse 
and close the stoma (Bright et al., 2006). Salinity and osmotic stress share a common basis, so 
it is reasonable that plant adopt similar mechanisms to cope with them, consisting in the 
regulation of the water loss by transpiration, and of Na+ uptake, transport and 
redistribution. Proton concentration provides energy for Na+ sequestration in the apoplast 
or in the vacuole, carried out by a H+:Na+ antiport; NO activates the H+:ATPase and 
H+:pyrophosphatase activities, in concert with H2O2 and Ca2+ (Tanou et al., 2009; Zhang et 
al., 2006; Zhang et al., 2007; Zhao et al., 2007). 
NO is involved also in the response to hypoxia. Seeds and roots face oxygen deprivation 
mainly when the soil is saturated with water. In such conditions, nitrite accumulation and 
NO production are often reported. NO lowers O2 consumption by repressing cytochrome C 
oxigenase (COX), and shifts the metabolism toward fermentation, as a mechanism for 
hypoxic stress avoidance (Borisjuk et al., 2007). A class of plant stress-induced hemoglobins 
might help the de-repression of COX, or prevent PCD in the short term, allowing the 
development of adventitious root primordia (Dordas et al., 2003). 
The reaction to the metal ions excess also involves NO. Metal ions, including heavy metal 
pollutants, can induce plant stress in several ways, such as the Fenton reaction (in which 
highly oxidizing ROS are produced), substitution of physiological metal cofactors, and 
effects on nucleus activity, hormonal signalling and photosynthetic apparatus. The oxidative 
stress symptoms can be reverted by NO (Laspina et al., 2005), or are associated to a reduced 
NO content (Rodríguez-Serrano et al., 2006; Tian et al., 2007). NO might act by chelation of 
the metal ions, preventing them to react with sensitive targets. 
Finally, NO ha an important function also in the ecological interactions such as symbiosis 
and pathogenesis. For example, NO regulated genes are crucial for the establishment of 
symbiotic root interactions between plants and host-specific bacteria, such as 
legumes/rhizobia or Alnus firma/Frankia spp. (Nagata et al., 2008; Perazzolli et al., 2006; 
Sasakura et al., 2006).  
In addition, NO interplays with salicylic acid (SA), ethylene and jasmonate are known to act 
in the plant responses to invading pathogens. The reaction to avirulent pathogens required 
NO for the induction of phenylpropanoid metabolism genes, through the cGMP-cADPR 
pathway (Durner et al., 1998), and of hypersensitive response, together with H2O2. 
Furthermore, the production of peroxynitrite is suggested as a protective reaction aimed to 
killing the invader (Delledonne et al., 2001). The recognition of a potential pathogen causes a 
NO and ROS burst, which stimulates the synthesis of salicylic acid. In turn, SA promotes 
NO- and ROS-mediated redox signalling, in a positive feedback. Direct consequences of NO 
are the release of Ca2+ in the cytosol and the activation of protein-kinase cascades (Zottini et 
al., 2007). The programmed cell death is triggered by definite rates of NO and H2O2, 
whereas the absence of either one, or other RNS different from NO give no effect on cell 
viability (Delledonne et al., 2001).  
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4. Jasmonates 

Jasmonates group includes jasmonic acid (JA) and its esters, such as methyl and n-propyl 
jasmonate (respectively, MJ and PJ). The fragrant compound methyl jasmonate has been 
mostly studied for its role as a volatile signal in the regulation of pathogenesis-related gene 
expression (Farmer & Ryan, 1990; Farmer et al., 1992; Schweizer et al., 1997) and up-
regulation of VOCs (Martin et al., 2003). The role of JA in priming plant defences against 
pests and pathogens and its interactions with other signals and hormones (e.g. ET, SA, 
NO, IAA, ABA) has been widely studied (fig. 2). The accumulation of jasmonic acid is 
caused by wounding, and it is followed by induction of a number of pathogenesis related 
genes (Schweizer et al., 1998).  
Since jasmonates are derived from polyunsaturated C18 fatty acids, the corresponding 
signalling pathway has been referred to as the octadecanoid pathway (Sembdner & Parthier, 
1993) which has been identified as one of the major signalling pathways in plant defence 
(Farmer & Ryan, 1990).  
The major functions of JA and its various metabolites is regulating plant responses to 
abiotic and biotic stresses as well as plant growth and development. 
Jasmonates have been shown to stimulate growth and development, including flower 
development, tuber formation, tendril coiling, nyctinastic movements, trichome formation 
and senescence, and it inhibits root and leaf growth and seed germination (Onkokesung 
2010). Moreover, JA levels in plants rapidly and transiently increase in response to 
wounding, water deficit, mechanical stimulation, elicitors and it also mediates some of 
the UV-induced defense responses (Xiang 1998). 
Interestingly, the JA-dependent plant defenses which are activated in response to 
herbivores or pathogens are also triggered by abiotic stresses such as wounding, UV 
irradiation or O3. This observation suggests that the JA signal activates common, 
unspecific stress-defensive mechanisms. One of this mechanisms is the increase of 
glutathione (GSH) level (Xiang 1998). GSH is an essential component of the glutathione-
ascorbate cycle, which is the major metabolic pathway responsible for reduction and 
detoxification of hydrogen peroxide (H2O2) (Noctor & Foyer, 1998). In addition, oligomeres 
of GSH form the phytochelatins that chelate toxic heavy metals (Ha, 1999). Finally, GSH is 
used as substrate by glutaredoxins which are oxidoreductases involved in flower 
development, salicylic acid metabolism and plant defense signaling (Rouhier et al., 2008).  
If JA is involved in the tolerance to the oxidative stress, how is this stress perceived and how 
does it stimulate the JA-mediated reaction? Oxidative species and O3 react primarily with 
the plasma membrane, causing alterations in lipid composition and increasing the 
production of linoleic acid, which is the precursor of JA biosynthesis.  
Thus, it is possible that reactive oxygen species (ROS) and, especially, O3 directly trigger JA 
biosynthesis and that JA function as a signal in the cascade of plant reaction to oxidative 
stress–generating stimuli. In addition, JA synthesis and signaling are interlinked by a 
positive feedback loop whereby jasmonates stimulate their own synthesis (Sasaki et al., 
2001; Acosta & Farmer, 2010). 
Jasmonic acid is also involved in the response to wounding. JA biosynthesis is initiated by a 

wound-mediated release of α-linolenic acid from chloroplastic membranes, followed by the 
activity of several chloroplast-located enzymes, including 13-lipoxygenase. The combination 
of JA deficiency and ET insensitivity resulted in a novel growth phenotype characterized by 
massive cell expansion around wounds, suggesting that both JA and ET may repress local 
growth after wounding and/or herbivore attack (Onkokesung 2010). 
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These evidences suggest that both JA and ET, while mediating inducible defenses, may 
also function as major switches between growth and defenses and the associated changes 
in resource allocations . Given that wounding and herbivory reduce leaf growth, both cell 
division and cell expansion could be possible targets of JA and ET action in preventing 
additional growth, putatively enhancing the accumulation of various defense metabolites 
used against herbivores. Exogenously applied JA inhibits tobacco BY-2 cell proliferation 
by arresting the cells in the G1 phase, thus suggesting that the JA and ET effects in 
primarily on cell division. Increasing endogenous JA levels in vivo caused by continuous 
wounding of Arabidopsis plants reduced their growth by suppressing mitosis in the young 
leaves (Zhang & Turner, 2008). 
However, the leaf growth inhibition is also associated with a smaller leaf size as well as 
reduced fresh mass, but not dry mass, of leaves, suggesting that a decrease in cell expansion 
is additionally responsible for the observed growth differences (Onkokesung 2010). 
Finally, jasmonates also influence the emission of other stress-related IVOCS. The 
biosynthesis and emission of the volatiles is, like many other chemical defenses, under the 
control of the octadecanoid signalling pathway, and is effectively stimulated by free 
jasmonic acid (Krumma et al., 1995). Treatment of plants with exogenous JA or MJ has been 
reported to induce volatile emission similar to herbivore induction, extrafloral nectar 
production, increased levels of endogenous secondary metabolites, increased VOCs-
mediated attraction of predators and parasitoids, and enhanced parasitism rates of 
herbivores for a wide variety of plant species (Bruinsma et al., 2009).  
The role of jasmonate in regulating other VOCs emission is confirmed in the tomato mutant 
def-1, which is deficient in inducing jasmonic acid accumulation upon wounding or 
herbivory. The application of exogenous JA restored the emission of volatile methyl 

salicylate (MeSA) and volatile terpenes by spider mite-infested def-1 mutants increased 
significantly after the plants had been treated with exogenous JA (Ament et al., 2004). 

5. Isoprene and terpenes1  

The functional diversity of chemicals within plants is best demonstrated by terpenoids 
(Theis & Lerdau, 2003). More than 30,000 terpenoids have been identified (Buckingham 
1998). Terpenoids, also known as isoprenoids, are functionally diverse, comprising both 
primary and secondary metabolites. These compounds include hormones, such as 
gibberellins and abscisic acid, electron carriers, such as plastoquinone and ubiquinone, 
terpene-derived compounds that form structural parts of membranes such as 
phytosterols, photosynthetic and photoprotective pigments such as carotenoids (Theis & 
Lerdau, 2003), the phytyl side chain of chlorophyll (Paiva, 2000), toxins, membrane-bound 
sugar carriers and heat stress resistance compounds (Sharkey & Singsaas, 1995). Volatile 
terpenoids are important compounds for plant biology and atmospheric chemistry 
because of their role in plant protection (e.g. in the protection of photosynthesis against 
thermal and oxidative stresses) and in direct and indirect defense against herbivores. 
Although the majority of volatiles emitted by damaged plants are GLVs, when the plants 
is intact, the emission of volatile isoprenoids is estimated to account for more than half of 

                                                 
1 Terpenes are derived biosynthetically from the polymerization isoprene units, whereas, terpenoids 
derive from chemical modification (e.g. oxidation, rearrangement) of the basic terpenes structure. In this 
chapter, a broad definition of terpenes which includes also terpenoids is used. 
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the total emission of VOCs and is constitutively ten times higher than other emissions 
(Loreto & Schnitzler, 2010).  
All isoprenoids are produced from the precursor dimethylallyl diphosphate (DMAPP) and 
its isomer isopentenyl diphosphate (IPP), which are synthesized by the deoxyxylulose-5-
phosphate (DXP) pathway in the chloroplasts and by the mevalonate pathway in the 
cytoplasm (Lichtenthaler, 1999). Isoprenoids carbon skeletons are composed of five-carbon 
building blocks that may be assembled in a variety of formations and contain many different 
modifications. The five-carbon building blocks are added together to make 10-carbon, 15-
carbon, and even 2000–500000 carbon chains, as in the case of rubber.  
On the other hand, in the case of isoprene (2-methyl 1,3-butadiene), the five-carbon 
molecules are formed by the elimination of a phosphate group from dimethylallyl 
pyrophosphate (DMAPP), either in an acid-catalyzed or an enzyme-catalyzed reaction 
(Harley et al., 1996).  
IPP can condense with one, two, or three molecules of DMAPP to form geranyl 
pyrophosphate (GPP) the 10-carbon precursor of monoterpenes, farnesyl pyrophosphate 
(FPP) the 15-carbon precursor of sesquiterpenes, or geranylgeranyl pyrophosphate (GGPP) 
the precursor of hundreds of diterpenes, including the growth hormone gibberellic acid. 
IPP or DMAPP can also serve as the source of the prenyl side of a number of natural 
products, including cytokinins (Paiva, 2000).  
Two routes to IPP have been demonstrated in plants: the mevalonate (MVA) pathways and 
the recently discovered 2-deoxyxylulose 5-phosphate/2-methylerythritol 4-phosphate 
(MEP) pathway (Rohmer, 1993, Theis & Lerdau, 2003; Degenhardt & Lincoln, 2006). The 
mevalonate pathway appears to function in the cytoplasm, whereas MEP pathway is 
responsible for most, and probably all, isoprenoids made in plastids (Lichtenthaler et al., 
1997; Paiva, 2000; Dudareva et al., 2004), although studies are still in progress to localize the 
enzymes involved conclusively.  
Terpenoids induce the expression of a number of defence genes (Arimura et al., 2000). 
Terpenes also act as band aids by sealing a plant wound. Once plant tissue is exposed to the 
air, the volatile terpene portion evaporates leaving a semi-hardened mass (Phillips & 
Croteau 1999). Concentrations of terpenoids are generally higher in reproductive structures 
and typically highest in the foliage during, and immediately following, flowering 
(Rapparini et al., 2001). Young leaves are more important to a plant than older leaves, and 
thus the highest levels of terpenoids are found in the young organs (Fischbach et al., 2002). 
Finally, terpenes emission is strongly increased by temperature increase. This effect is due 
to the immediate stimulation of temperature on the activity of the enzymes that catalyze the 
synthesis of many VOCs (Loreto & Schnitzler, 2010). 

6. Monoterpenes 

Monoterpenes include many volatile flavours and aroma components (Sharkey & Yeh, 
2001). Some compounds play a major role in plant defence being involved in plant-insect 
interactions as toxins and deterrents. Representative monoterpenes include the mildly 
antimicrobial menthol, aroma components citral and geraniol, insect repellent citronellal, 
parasitoid wasp attractant linalool, and allelopathic camphor (Paiva, 2000). Monoterpenes 
non-storing species synthesize and emit these compounds in a light, temperature and 
damage-dependent way. Whereas, the storing species have a special structure for 
monoterpenes accumulation such as glandular cells on the leaf surface (Paiva, 2000; 
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Holopainen, 2004). In these species, emission of monoterpenes generally origins from pools 
of hydrocarbon stored in resin ducts, glands, or trichomes (Loreto et al., 1996). 
Monoterpenes emission is therefore dependent in large measure on their volatility (Lerdau, 
1991) and on damage of leaves (Tingey et al., 1980; Tingey et al., 1991; Litvak et al., 1998). 
Only in a few cases, trees emit some monoterpenes as a result of de novo synthesis (Sharkey 
& Yeh, 2001): for example linalool is synthesized after herbivore damage and released 
systemically from the whole plant (Holopainen, 2004).  
Monoterpenes, such as eucalyptol, linalool, camphor, ǂ-pinene, ǃ-pinene, ǂ-terpineol, 

borneol and many others, are the principal components of plant volatile oils (Dorman & 

Deans, 2000, Candan et al., 2003). These are principally present in the aromatic plants 

(storing species). Several works observed that volatile essential oils are involved in 

antimicrobial and antioxidant activity (Candan et al 2003; Cimanga et al., 2002ab; Kuhnt et 

al., 1995; Setzer et al., 1999; Dorman & Deans, 2000).  

Many SESQUITERPENES are typical fragrances emitted from flowers (Chen et al., 2003). A 

considerable amount of sesquiterpenes is also emitted from the herbivore-damaged foliage 

(Vuorinen et al., 2004), whereas in intact plants, the emission is lower (Wiens et al., 1991). 

High levels of sesquiterpenes are produced after O3 exposure. The speed of sesquiterpenes 

release is related to the resistance of the plant thus demonstrating their role in O3-defence 

(Heiden et al., 1999). Sesquiterpenes are among the most studied class of phytoalexins. In 

the case of the phytoalexins and other toxins, the plant product is not only toxic to the 

microbial pathogen, but also potentially toxic to the plant cells. Many of the phytoalexin 

biosynthetic genes are not expressed until the plant senses the presence of the pathogen, 

when complex signal transduction mechanisms activate transcription of each of the 

biosynthetic steps (Paiva, 2000).  

ISOPRENE (C5H8, 2-methyl 1,3-butadiene) is a natural product of many organisms (Sharkey, 

1996). Sanadze and Kursunov discovered isoprene emission from plants in the 1950s 

(Sanadze & Kursanov, 1966).  
The global isoprene emission is now estimated to be about 500 Tg C yr -1, making it the 
dominant hydrocarbon that moves from plants to the air, roughly equal to the flux of 
methane to the atmosphere (Guenther et al., 1995; Wang & Shallcross, 2000). Isoprene 
drains a considerable percentage of the carbon fixed through photosynthesis out of the 
pathway forming structural and storage sugars, especially in stressed leaves: in major 
emitting plant species such as oak and aspen its synthesis is typically 2% of photosynthesis 
at 30°C (Sharkey & Yeh, 2001). 
Isoprene is a hemiterpene produced from DMAPP by the isoprene synthase (Silver & Fall, 

1991). This enzyme has a relatively high pH optimum and a requirement for Mg2+ 

(Schnitzler et al., 1996; Silver & Fall, 1995), consistent with its location inside chloroplasts 

(Mgaloblishvili et al., 1979; Wildermuth & Fall, 1996; Wildermuth & Fall, 1998). The energy 

cost of isoprene emission using the MVA pathway is 9 carbon atoms, 24 ATP, and 14 

NADPH. However, the MEP pathway is more efficient than the MVA pathway in 

photosynthetic organisms, and isoprene emission based on the MEP pathway costs only 6 

carbon atoms, 20 ATP, and 14 NADPH.  

Therefore, the cost of isoprene production is substantial, and any benefits ascribed to its 

emission will have to be weighed against this cost in terms of carbon and energy. Isoprene 

emission is a common but not universal plant trait (Kesselmeier & Staudt, 1999). Nearly all 

plant species emit very low levels of isoprene, but only about one third of angiosperm 
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species tested emit isoprene at substantial rates (Hanson et al., 1999). Given the cost, plants 

that do not emit would out-compete those that do emit, unless isoprene emission provides a 

benefit that exceeds the cost of emission. What benefit, if any, do plants derive from 

isoprene emission? In other words, why do plants make isoprene? Some of the reasons 

suggested for isoprene emission include a leaf thermoprotector, a flowering hormone (Terry 

et al., 1995), an antioxidant (Zeidler et al., 1997), and a metabolite overflow to get rid of 

excess carbon (Logan et al., 2000; Wagner et al., 1999). 

Although the isoprenoids are very well known, much less is known about biological 

isoprene production because isoprene is not an intermediate in isoprenoid production. 

Unlike monoterpenes, it is not stored within the leaf, but emitted through the stomata 

immediately upon its production. Thus, isoprene emission requires de novo synthesis (Fall & 

Monson, 1992; Loreto et al., 1998). For this reason, in plants, isoprene synthesis is 

dependent on photosynthesis. Fall and Wildermuth (1998) reported that changes in pH and 

Mg2+ that normally occur in thylakoids in response to light can cause an 11-fold stimulation 

in isoprene synthase activity. Therefore, the factors affecting photosynthesis, such as 

nitrogen deficiency, water stress, light and temperature excesses usually influence also 

isoprene emission.  

Isoprene emission is very sensitive to temperature, although the temperature dependence of 

isoprene emission is different from that of photosynthesis. In Quercus spp., an increase of 

temperature from ± 30 °C to ± 40 °C does not affect photosynthesis or slightly reduce it, whilst, 

it increases isoprene emission from typically 2% to 15% of carbon fixed by photosynthesis 

(Sharkey et al., 1996). On the contrary,  photosynthesis is highly sensitive to CO2 but isoprene 

is relatively insensitive. Isoprene emission in CO2-free air can be 50% of maximal rates; but if 

oxygen is also removed, isoprene emission stops. The interpretation of this phenomenon is 

that isoprene emission requires  photosynthetic activity (Loreto & Sharkey, 1990).  
Isoprene emission can be also affected by nitrogen nutrition (Harley et al., 1994; Litvak et 
al., 1996). Trees with low nitrogen availability had lower rates of isoprene emission than did 
trees with higher nitrogen nutrition. This effect interacted with light. Trees grown in sun or 
shade but with low nitrogen availability had similar, low rates of isoprene emission; but 
trees with high nitrogen availability emitted substantially more isoprene when grown in the 
sun than when grown in the shade. On the other hand, isoprene emission seem to be only 

marginally effected by water-stress. Drought directly affects stomatal conductance and 
produce diffusive and biochemical limitations of photosynthesis (Fall et al., 1999). Both the 
reduction of photosynthesis and the stomatal closure are expected to negatively impact on 
biogenic volatile organic compounds emission by altering the carbon supply into the MEP 
pathway and by increasing resistance to their emission (Fall. et al., 1999). However, isoprene 
emission changed little, even when photosynthesis is inactivated by a total and prolonged 
stomata closure (Tingey et al., 1981). In addition, upon rewatering, isoprene emission 
increased several fold above the pre-stress rate and stayed high for several weeks (Sharkey 
& Loreto, 1993). Nonetheless, the effect of drought, like other stressors on plant VOC 
emissions, can depend on the level of stress or damage caused to the plant by drought. 
Thus, severe drought might largely decrease emissions, whereas mild drought stress might 
increase emissions (reviewed by Peňuelas & Staudt, 2010). Similarly to isoprene, also 
terpenes and terpenoids are negatively affected by severe drought (Lerdau et al., 1994). 
The role of isoprene in thermotolerance has been extensively studied. Since the 90s, several 

experiments indicated that isoprene has some effect on the temperature tolerance of the 
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photosynthesis (Sharkey & Singsaas, 1995; Seemann et al., 1984; Singsaas et al., 1997). 

Isoprene resulted to have a role mainly in the protection against short high-temperature 

episodes (Singsaas & Sharkey, 1998). As leaves can be subjected to dozens of high-

temperature episodes each day, the increased recovery from each episode allowed by 

isoprene could become very important to the plant (Singsaas & Sharkey, 1998). The 

mechanism underlying the increased thermotolerance is still partially unknown and it has 

been attributed to the stabilization of membrane lipid bilayer by enhancing the hydrophobic 

interactions (Gounaris et al., 1984). In fact, the lipid membranes are particularly sensitive to 

exposure to high temperatures and often they get damaged or denatured unless protection 

mechanisms occur. Isoprene has been supposed to stabilize exclusively the tylakoids 

membranes of chloroplast in which it is formed (Sharkey, 1996; Sharkey & Yeh, 2001). 

However, no enhancement of stabilization by isoprene has been observed by using artificial 

membranes (Logan et al., 1999). Monoterpenes emitted in a light-dependent manner also 

provide this type of thermoprotection. Repeated cycles of high-temperature stress reduced 

the recovery in leaves without isoprene or monoterpene, although leaves with isoprene or 

monoterpene maintain high rates of photosynthesis, especially after repeated periods of 

high temperature (Loreto et al., 1998; Sharkey, 1996).  

The thermotolerance hypothesis largely explains what plants may gain from isoprene 

emission, and the effect can be large compared to the cost of emission. This hypothesis 

suggests that plants suffering short high-temperature episodes, but not long term, constant 

high-temperature exposure, should emit isoprene. Trees often fit this description: the leaves 

at the tops of the canopy are exposed to full sun and they heat substantially up if the air is 

still (Ehleringer, 1991). On the other hand, desert plants, which are adapted to prolonged 

high temperatures, generally, do not emit isoprene. In fact, in desert plants, the leaves are 

absent or very small leaves so that the boundary layer is small and the leaves cannot heat up 

much above air temperature. A common mechanism to reduce the leaf temperature is 

transpiration that is regulated by stomata opening and air relative humidity. However, 

where the air relative humidity is very high, such as in humid tropical environments, 

transpiration is highly reduced and other mechanisms should account for the thermo-

protection of leaves. In fact, tropical plants usually emit relatively more isoprene than most 

of the plants in temperate or cool climates (Keller & Lerdau, 1999).  

Hanson et al. (1999) speculated that isoprene emission might have been an important step in 
the evolution of land plants. As plant progenitors started to stand up in the air, the low heat 
capacity of air caused plant temperatures to vary in a greater range than when the organisms 
were in water. Thus, the isoprene emission may have played a role in land colonization by the 
first terrestrial plants such as Bryophyta. Isoprene emission is, in fact, common in mosses but 
absent in algae (Hanson et al., 1999, reviewed by Sharkey & Yeh, 2001). 
Isoprene may play an important role also as antioxidant in leaves. This idea is normally put 
forward on the basis of the rapid reaction of isoprene with ozone and hydroxyl radicals. Isoprene 
can dramatically reduce the damage caused by acute and short (3 h, 300 nL L-1) or relatively low 
and long (8h, 100 nL L-1) ozone treatments in leaves (Loreto et al., 2001; Loreto & Velikova, 2001). 
This effect may is perhaps related also to the membrane strengthening action of this compound. 
However, isoprene may also effectively react with ozone forming hydroxymethyl hydroperoxide 
and aggravating the ozone induced damage (Salter & Hewitt, 1992).  
Isoprene emission is a sensitive indicator of wound signals that can travel through plants 
(Loreto & Sharkey, 1993). In a number of studies, wounding was inflicted by puncturing, 
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smashing, cutting and burning leaves. By wounding one leaf while monitoring isoprene 
emission from a different leaf, researchers could show the transmission of a signal. The time 
between wounding one leaf and a change in rate of isoprene emission of a different leaf was 
linearly related to the distance between the two leaves, allowing a calculation of travel rate 
of the signal. The signal travelled about 2 mm s-1, which is likely to result from electrical 
signals travelling through the plant. The calcium chelator EGTA substantially delayed the 
wound signal effect on isoprene emission, indicating that the electrical signal may have 
caused calcium fluxes that ultimately affected isoprene emission.  

7. Conclusions 

The development and survival of all living things relies on the ability of organisms to 
perceive and respond to their environment. Responses to internal and external signals are 
frequently elicited by hormones, promoting changes in morphology to accommodate an 
ever-changing habitat. Figure 5 summarizes the VOCs emitted in response to different biotic 
and abiotic stresses.  
 

 

Fig. 5. All the abiotic stresses affecting plant trigger complexes responses aiming to increase 
the stress tolerance. The responses include the emission of VOCs. The VOCs produced in 
response to the different stresses are reported in green. A common mechanism links 
together the different stresses: all causes oxidative stress and hamper the production of 
reactive oxygen species (see also fig. 2). Excess light and heat, as well as exposure to 
oxidizing air pollutants, cause direct accumulation of ROS which crucially contributes to for 
initiate the stress-related signal cascades (see Fig. 2) - (After Vickers et al., 2009) 
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All kinds of stresses induce in the plants the production of ROS which will result in 
oxidative stress. Therefore, the complex network of reactions protecting the plant from 
stress is strictly linked with the response to oxidative stress. Changes in volatile emission 
under stress conditions supply provide evidence that VOCs are linked with the plant 
responses to stress. Their emissions often increase under abiotic stress conditions, 
particularly under leaf damage, water, heat and light stress (Vickers et al., 2009). Some of the 
volatiles, such as ethylene and NO, are primarily acting as stress messenger that allows the 
plant to trigger the stress induced defenses. On the other hand, other volatiles, such as 
isoprene and isoprenoids, and NO as well, play an important role in a direct protection 
against several of these stresses. The common mechanism underlying the protective effect of 
these VOCs is their general antioxidant role (Calfapietra et al., 2009).  
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