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1. Introduction 

As with all organisms, plants thrive within a range of environmental conditions that are 
optimal for their growth and development. They must, however, respond and adapt to 
conditions that deviate from the optimal, such as low/high temperature, dehydration, high 
salinity, oxidative stress, heavy metals and nutrient deficiency; these deviations are often 
responsible for losses in productivity and for spatial (geographical) and temporal (growing 
season) limitations in the cultivation of crops. 
Although plants and animals share some responsive mechanisms to unfavourable 
environmental conditions, plants, as sessile organisms, have developed highly sophisticated 
and efficient strategies of response. 
Because of the great interest for both basic and applied research, many scientific endeavours 
have long addressed the understanding of the mechanisms underlying the stress response 
and the identification of the specific genes/metabolites that are responsible for tolerance 
phenotypes. In recent years, the “omics” approaches have allowed high-throughput 
analyses of the changes that are induced by environmental stresses, confirming data 
previously obtained with targeted analysis and extending the scope of investigation. 
It is noteworthy that the metabolomic changes that have been observed in plants subjected to 
stress conditions depend on different causes; therefore, they have different significance and are 
expected to differently correlate with tolerance/sensitivity phenotypes. Namely, changes in 
the metabolome composition due to adverse environmental conditions may depend on i) the 
stability and catalytic activity of enzymes involved in the production/degradation of specific 
metabolites, ii) the production of abnormal compounds (or abnormal concentrations of normal 
compounds) as a result of cell damage, iii) the adjustment of concentration of some metabolites 
to restore homeostasis and normal metabolic fluxes and iv) the synthesis and/or accumulation 
of compounds involved in mediating tolerance mechanisms. 
The main goal of studying metabolic changes during stress responses is to identify 
metabolites belonging to the (iii) and (iv) groups that are responsible for stress tolerance. 
Upon exposure to osmotic stress as a result of low temperature, drought and high salinity, 

plants accumulate a range of osmolytes with the primary function of turgor maintenance. 
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The solutes accumulated vary among species and include sugars (i.e., sucrose, glucose, 

fructose and trehalose), polyols, betaines and amino acids, such as proline (Shulaev et al., 

2008; Smirnoff, 1998). Many compounds are known to play a role as osmoprotectants, acting 

as low molecular weight chaperones, stabilising the photosystem II complex, protecting the 

structure of enzymes and proteins, maintaining membrane integrity and scavenging the 

reactive oxygen species (ROS). Examples of these molecules are glycine betaine, proline and 

mannitol (Chen & Murata, 2008; Szabados & Savourè, 2010). Other compounds act as 

chelating agents (sequestering toxic metals and ions), redesigners of lipids (optimising the 

structure and fluidity in membranes), energy sources and/or signalling molecules (Alcázar 

et al., 2010; Valluru & Van den Ende, 2008). 

Although the involvement in tolerance phenotypes for some metabolites is inferred on the 
basis of their increase under stress and of their physico-chemical and biological properties, it 
may be very difficult to assign a specific function. 
For some compounds, such as proline and glycine betaine, the exogenous application of 

the molecule or the enhancement of their biosynthesis through the ectopic expression of a 

rate-limiting gene has resulted in a stress tolerance improvement (Chen & Murata, 2008; 

Kishor et al., 1995; Quan et al., 2004; Szabados & Savourè, 2010). Moreover, another 

transgenic approach has included the overexpression of transcription factors involved in 

stress-specific gene regulation, such as DREB or MYB factors, in particular, those 

regulating the synthesis of osmoprotectants (Gosal et al., 2009). However, even if genetic 

engineering offers a good tool for a substantial improvement in a desired trait within a 

short time, it must be considered that most of the transgenic lines obtained thus far have 

not been field-tested (Ashraf, 2010). 

The possibility of monitoring a complete set of metabolites could largely improve the 

understanding of the adaptation mechanisms. This systematic study defined 

“metabolomics” is intended to provide an integrated view of the functional status of an 

organism, significantly contributing to the study of stress biology in plants. Depending on 

the question addressed, specific approaches or their combination can be used in 

metabolomic investigations: metabolic fingerprinting, metabolic profiling and targeted 

analysis. A variety of analytical techniques, such as GC-MS, LC-DAD-MS, FT-IR and NMR, 

are successfully employed for metabolic fingerprinting and profiling, whereas targeted 

analysis is performed using both the above-mentioned techniques (integrated with the use 

of spiking experiments or in vivo labelling) and the more traditional biochemical analyses. 

The huge volumes of data generated by these approaches require advanced multivariate 

statistical analysis (supervised or unsupervised) to increase the knowledge base. Moreover, 

in the last years, metabolomics data handling has been improved because of the 

development of publicly available bioinformatic tools and databases. 

Here, we review the recent progress in this field, highlighting the advantages and 
limitations of the above-mentioned approaches and techniques. We will focus on metabolite 
changes induced by abiotic stresses and discuss the meaning of specific and non-specific 
responses to different stresses. Moreover, a comparison of metabolite profiling among 
species and/or cultivars differing in their stress tolerance, as well as the metabolic content of 
wild type plants versus mutants or transgenics, will be reported to highlight qualitative 
and/or quantitative differences correlating with the phenotypes. 
The differences in the metabolite content can also represent good predictors for stress 
tolerance phenotypes both in screening of varieties and in plant breeding programs. 
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Finally, we will discuss the potentiality of the global analysis of data obtained with different 
“omics” approaches, such as an integrated metabolome, transcriptome and proteome 
analysis, as a valuable strategy to attain a holistic view of mechanisms sustaining stress 
tolerance in plants. 

2. Analytical techniques 

It has been estimated that hundreds of thousands of different metabolites are present in 
plants, with various chemical structures and, for many of them, with well-established 
bioactivities (Verpoorte, 1998). The analysis, chemical characterisation and quantification of 
these metabolites usually involves a multidisciplinary approach, based on different 
analytical techniques. 
Metabolomics studies have been applied to different fields (Krastanov, 2010), ranging from 
environmental science, food science, human safety and plant biology (Bundy et al., 2008; 
Cevallos-Cevallos et al., 2009; Fukushima et al., 2009). 
The aim of the metabolomic approach is to identify a much larger possible number of 
metabolites to better understand the biological system under investigation. Recently, 
(Dettmer et al., 2007) several terms have been used for metabolomics related definitions, 
such as metabolic profiling, metabolic fingerprinting and  metabolic footprinting. These 
three  approaches  are fully integrated into the metabolomic investigations.  
Metabolite identification is a real challenge, where many factors play a relevant role, 
including the analytical tool used, the sample preparation, the bio-computational tool for the 
data mining and the quality of the acquired data. Sample preparation is the most 
underestimated problematic part of the metabolomics analysis; a wide chemical diversity of 
compounds is present with a very high range of concentrations that could be present 
simultaneously. Appropriate extraction procedures need to be evaluated to obtain the 
maximum number of chemical components within the same sample. In this respect, the 
chemical classes of compounds could require specific separation processes involving 
solvents with different polarity. Furthermore, especially when NMR analysis is performed, 
the presence of buffered solutions (to control small shifts of NMR signals due to different 
pH values) or  deuterated solvents is required. Detailed sample preparation procedures can 
be found in a recent review (Schripsema, 2010). Extraction procedures can be followed by 
chromatographic techniques, including TLC, HPLC, UPLC, HILIC (Hydrophilic Interaction 
LIquid Chromatography) (Bajad & Shulaev, 2011) and GC to eliminate possible 
contaminants  and to obtain selected fractions. The commonly accepted analytical platforms 
to investigate plant metabolome are MS- and NMR-based systems, and, even more 
frequently, these two approaches have been combined to address the identification of 
metabolites in complex extracts (Moco et al., 2007). In Scheme 1, a pictorial diagram of 
different platforms used in metabolite identification is represented. MS-based approaches 
are often limited by separation and derivatisation protocols, as well as the detection 
capability, which usually allows single metabolite detection and quantification. 
Furthermore, the physico-chemical properties of metabolites (e.g., volatibility, low 
ionisability, lack of chromophores) could limit the determination; in such cases, only limited 
metabolic profiling can be performed. Other techniques, such as NMR and all of its technical 
modifications, do not require any derivatisation and limited (liquid state) or no extraction 
procedures of the sample (solid state), thus, allowing for the identification and 
quantification of different kinds of metabolites from the same sample in the shortest time.  
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This technique is partially limited by the relatively low sensibility when compared to MS 
spectrometry (the detection limit in the sub-microgram region at 14.1 T). As a matter of fact, 
with the advent of new ultra-high field magnets (1 GHz is now commercially available) and 
cooled probes, NMR methods have experienced a dramatic increase in sensibility and, thus, 
have become a valid alternative to mass spectrometry, reaching almost the same sensitivity 
(ppb). Moreover, the advent of NMR microprobes, with active volume as low as 1.5 µL, have 
provided new possibilities for analysing molecules in very low volumes, increasing 
concentration of the analyte without compromising the Signal/Noise ratio. 
 

 

Scheme 1. Example of possible analytical technologies and databases that can be used to 
identify rutin. (Reproduced with permission from Moco et al., 2007). 

The development of the so-called “hyphenated techniques” take advantage of the separation 

and detection processes performed continuously in a single step; these techniques range 

from the basic LC-MS and GC-MS approaches recently reviewed by T’Kindt et al. (2009). It 

has been demonstrated that combination of high-end analytical technologies facilitates the 

structure elucidation process of small mass molecules present in minute quantities in 

valuable samples. In this respect, several applications have been recently developed, such as  

LC-SPE-NMR or the more efficient LC-SPE-NMR-MS set up which overcomes the limitation 

of direct coupling between LC and NMR (Schlotterbeck & Ceccarelli, 2009; Yang et al., 2009; 

Van Beek et al., 2009). The instrumental setup of these techniques implies the physical joint 

of chromatographic-based instruments to spectroscopic detection-based instrumentations, 

making these systems not easily affordable to standard research laboratories. Nevertheless, 

improvements have been obtained either with the introduction of reproducible strategies for 

metabolite identifications or with the exchange of identifications among laboratories. The 

introduction of the concept of Mass Spectral Tag (MST), defined as ensemble of properties 
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(molecular mass to charge ratio, chromatographic retention index and the induced mass 

fragmentation pattern) (Kopka, 2006), enhanced the GC-MS data exchange and then the 

identification of compounds. The term “hyphenated techniques”, first introduced by 

Hirschfeld et al. (1980), has experienced a progressive evolution among differently 

combined techniques selected to tackle challenging problems. The theoretical application of 

multiple hyphenation steps, usually called “hyphernation” (e.g., LC-DAD UV-NMR/MS-

MS method), is technically very difficult and not applicable due to the high cost. These 

approaches have been reviewed and discussed previously (Wilson & Brinkman, 2003). 

2.1 Hyphenated chromatographic techniques 

Chromatographic techniques, usually adopted to select chemically equivalent 
compounds, are essentially based on two different phases: liquid and gas. With recent 
technological improvements (e.g., long narrow bore capillary columns, capillary 
columns), the liquid phase techniques can reach sensitivity magnitudes on the order of 
nano-g. In the gas phase, sensitivity is largely affected by the ionisation source conditions 
because ion production is the basic requirement for this type of analysis. The detection 
limit can be as low as a few ng/L. 
Based on the different mobile phases adopted in the chromatographic techniques, an arsenal 

of different methods has grown during recent years, and all of them took the advantage of 

the combination of techniques, due to the fact that both quantification and identification are 

important in metabolomic research. Techniques, such as HPLC-MS, GC-MS, CE-UV and 

HPTLC, or multi-combined techniques, such as LC-MS-NMR, GC-IT-MS-MS and LC-MS-

MDF, are adopted almost routinely in current plants metabolomic studies (Abou-Donia et 

al., 2007; Gotti et al., 2006; Llop et al., 2010). Recently, Berkov et al. (2011) developed and 

validated a new GC-MS method for the rapid determination of galanthamine in Leucojum 

aestivum, a study that also focused on the determination of the origin of the plant. This 

method, with the aid of Principal Component Analysis (PCA), was rather informative 

(metabolomic based), providing information not only on the galanthamine content but also 

on alkaloid profiles; these data could be successfully correlated with the plant species, plant 

organs and the geographical origin of the plant. 

2.2 Hyphenated spectroscopic techniques 

The possible combination of a high performance chromatographic technique with a high 
characterisation technique is probably one of the best possible approaches for the 
quantification and characterisation of metabolite composition. As a matter of fact, 
hyphenated LC-MS, HPLC-MS, GC-MS and HILIC-LC-MS have been largely adopted in 
plant metabolite profiling (Allwood et al., 2009; Allwood & Goodacre, 2010; Cubbon et al., 
2010) for their performance for selectivity and sensitivity in targeted analysis, enabling the 
detection of very low abundant and/or volatile compounds. In contrast, NMR hyphenated 
techniques take the advantage of a non-targeted analysis performed in a quantitative 
fashion to detect most of the highly abundant primary and secondary metabolites, with 
relevant structural information. A comparison between MS and NMR techniques have been 
reviewed by Krishnan et al. (2005). More recently Dai et al. (2010a, 2010b) successfully 
applied and combined NMR and LC-DAD-MS analysis to investigate the metabolic 
variations of three cultivars of Salvia milthiorrhiza Bunge (SMB), as well as changes induced 
by water depletion. The combination of these two analytical techniques has allowed the 
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detection of both the primary and secondary metabolites content. In particular, the authors 
have found that the metabolome of SMB is dominated by 28 primary metabolites (sugars, 
amino acids and carboxylic acids) and 4 secondary metabolites (polyphenols) (Figs 1 and 2). 
 

 

Fig. 1. 1H NMR spectra (600 MHz) of Salvia milthiorrhiza Bunge extracts from four different 
geographical origins: A) Zhongjiang, Sichuan B) Wuhan, Hubei C) Anding, Hebei D) 
Nanyang, Henan (Reproduced with permission from Dai et al., 2010a). 

 

 

Fig. 2. 1H NMR spectra (600 MHz) of three different cultivars from Salvia milthiorrhiza 
Bunge: SF) Folium SA) Sativa SI) Silcestris (Reproduced with permission from Dai et al., 
2010a). 
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The systematic analysis of the metabolite composition of these three cultivars of SMB, 
grown in four geographical areas, allowed the assessment of differences among ecotypes 
and growing-location effects for the same cultivars. 

3. Data treatment 

3.1 Chemometrics 
The increased specificity and sensitivity of the analytical tools has offered the feasibility of 
obtaining a wide range of information with a single experiment. This technological 
breakthrough has allowed large dataset collections, enabling the possibility to evaluate 
similarities/differences among samples not possible in earlier studies. This approach, 
known under the general term ‘‘metabolomics,’’ properly refers to the collection of small 
molecules that can be found in a cell, organ, or organism. The metabolomic approach can be 
created by the following two different schools of thought: i) the chemometric approach, in 
which the chemical compounds are not identified, but their spectral patterns are statistically 
analysed to identify relevant spectral features that could differentiate samples and ii) the 
targeted or comprehensive profiling approach, in which the aim is firstly to identify and 
quantify most of the chemical compounds and secondly to perform statistical methods to 
identify relevant biomarkers. In Scheme 2, a pictorial representation of the flowchart used 
for metabolite identification is represented. 
The term “chemometrics” is largely accepted today as a general statistical approach coupled 
to analytical techniques. The statistical approaches could be represented into two different 
classes: monovariate statistical analysis and multivariate statistical analysis. 
 

 

Scheme 2. Schematic representation of the processes in metabolite analysis. Filled, dashed 
and empty arrows indicate the routes for GC–MS, chromatographic (LC/HPLC/CE) and 
NMR based metabolomics, respectively. 
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3.1.1 Monovariate statistical analysis 

Significant amounts of data are obtained by measuring many variables on an ensemble of 

chemical samples or by recording many signals from an industrial process to track its 

behaviour. A data collection task, whether in science, business, or engineering, typically 

involves many measurements made on several samples. The unavoidable data variability 

has traditionally been analysed using one or two variables at a time. However, to discover 

the relationships among all of the samples and variables efficiently, all of the data must be 

processed simultaneously. Chemometrics is intended to extract information in multivariate 

chemical data, using the tools of statistics and mathematics. It is typically used for three 

primary purposes: to explore the patterns of similarities in the data, to track the properties 

of materials on a continuous basis, and to prepare and use multivariate classification 

models. In general, the algorithms applied have demonstrated significant capacity in 

analysing and modelling a wide variety of data types for an even more diverse set of 

applications. Different mathematical methods can be used to explore experimental data, 

based on the different possible targets; this phase provides information about statistical 

parameters of each variable and correlations among variables, reducing the data 

dimensionality. Among the possible systems, the analysis of variance, ANOVA (Miller & 

Miller, 1993), is used to select the variables that are most significant in the sample 

differentiation. This univariate statistical technique is used for testing the null hypothesis 

when two or more samples are drawn from the same population; high values of the F-test 

suggest that the null hypothesis can be discarded. This technique is no longer used for large 

data sets (especially in the case of spectroscopic data). The extension of ANOVA is called 

‘‘multivariate data analysis’’ (MANOVA), and it is used whenever more than one correlated 

variable is concerned and they cannot be simply combined. MANOVA selects discriminant 

variables with high indices of reliability. 

3.1.2 Multivariate statistical analysis 

Unlike monovariate methods, where only one variable is considered, in multivariate 
statistical analysis, correlations among more variables are concerned. Multivariate data 
analysis is frequently used to address the following aspects: i) data overview ii) 
classification and or discrimination among groups of observations and iii) regression 
modelling between two blocks of data (X and Y). These applications reflect the main stages 
of multivariate analysis. One of the aims of this technique is to reduce the system 
dimensionality. Among the so-called ‘‘compression techniques’’, PCA (Geladi & Kowalski, 
1986; Jackson, 1991) is widely used and recognised as the main ‘‘unsupervised’’ technique 
for the primary analysis of data. This method finds linear combinations of the variables in 
the original data, called PCs, which are orthogonally related and describe the major trends 
in the data. When the minimum meaningful number of PCs has been found, by means of 
loadings and score matrices, the original data matrix can be rebuilt. Inspection of the 
loadings gives indications on how the PCs are obtained from the original variables and how 
much the variable has in common with that PC. Scores show how the observations are 
clustered together on the basis of their variables. 
Another compression technique, member of the so-called ‘‘classification methods’’, is the 
cluster analysis (CA) (Romesburg, 1984), that is applied to evaluate similarities and 
clusters among samples. This approach based on ‘‘similarities’’ or ‘‘classification’’ 
methods can also be split into hierarchical or non-hierarchical approaches. Commonly, 
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two types of clustering are used: K-Mean and Tree Clustering, named TCA. These 
classification methods are without a priori hypotheses in finding meaningful groups, and 
the result is often used for further statistical analysis. Dendrograms are usually adopted 
as graphical representation tools to visualise the data clustering. The same representation 
could be used to visualise the results of Hierarchical Clustering Analysis (HCA), included 
in the so called “segmentation methods”, which group samples in dataset by their 
similarities according to their distances. These distances can be measured by different 
methods: Euclidean, Manhattan distances or correlations. 
Another clustering method is the K-mean, which uses a fixed number (K) of groups. In this 
case, a metric distance should be defined to govern the clustering but the way of making 
groups is different. Several other clustering algorithms exist, essentially consisting of small 
theme variations, but none of them is best for a specific problem. As a matter of fact, these 
clustering methods are no longer used because more sophisticated and precise grouping 
methods have been developed. 
Discriminant analysis (DA), also called ‘‘discriminant function analysis’’, performs sample 
classification with a priori hypothesis. This hypothesis could be based on a previously 
determined TCA or other CA protocols. The natural extension of DA is the “multiple 
discriminant analysis” (MDA), which sometimes is named ‘‘discriminant factor analysis’’ or 
“canonical discriminant analysis” (CDA). Among these type of analyses, “linear discriminant 
analysis” (LDA) has been largely used to enforce differences among samples classes. 
Another classification method is called “quadratic discriminant analysis” (QDA) (Frank & 
Friedman, 1989) and consists of an extension of LDA. Another method, named “regularised 
discriminant analysis” (RDA), works better with various class distribution and in the case of 
high-dimensional data, is a compromise between LDA and QDA. More recently, 
“independent component analysis” (ICA) has been developed for the analysis of signals 
from complex mixtures (Comon, 1994). In this approach, the coefficients of the linear 
expansion of the data vectors must be mutually independent; this requires higher order 
statistics in determining the ICA expansion and some non-linearities must also be used in 
the learning phase, thus, resulting in a more meaningful data representation with respect to 
PCA. “Generalised discriminant analysis” (GDA) (McLachland, 1992) is used to determine 
whether a given classification of samples into a group is appropriate. Therefore, each sample 
is assigned to a group and a model is searched and computed to maximise the classification. 
The general aim is to find out a mathematical model with high predictive capacity for a 
variable obtained from known values derived from the ensemble of independent variables; 
these types of protocols are called ‘‘regression methods.’’ The simplest model describes the 
Y variable that is linearly dependent on the X variable; this casual dependence is a linear 
regression. Science often involves controllable variables (factor or predictor variables) to 
explain, to regulate, or to predict the behaviour of other variables (response variables). 
When factors are few, not significantly redundant (collinear), and show a correct 
relationship to the responses, the multiple regression can be the proper means to turn data 
into information. When spectroscopic data are considered, factors (variables) can be 
hundreds and highly collinear; the responses are components that need to be predicted for 
future samples. In these cases, Partial Least Squares Projections to Latent Structures (PLS) 
(Wold et al., 1984) is used to create multivariate calibration models with predictive capacity. 
In principle, multiple linear regression can be used with a large number of factors. However, 
if this number is bigger than the number of observations, the model will fail to predict a new 
data set because of problems with overfitting. In such cases, there can be only a few 
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underlying or latent factors that account for most of the variation in the response. The origin 
of PLS acronym can be explained by considering the general idea of PLS, which is to extract 
these latent factors accounting for the largest manifest factor variation possible, while 
optimally modelling the response. In PLS, factors are used to predict responses in the 
population, which is achieved indirectly by extracting the latent factors, T and U, from 
factors and responses, respectively. The extracted factors, T (X scores), are used to predict 
the Y scores, U, and then to build predictions for the responses. In PLS, the X and Y scores 
are chosen so that the relationship between successive scores is as strong as possible. 
Currently, several linear and nonlinear multivariate classification methods exist: the choice 
implies the evaluation of discriminatory power against the ability to interpret the meaning 
of class differences. In this respect, Soft Independent Modelling of Class Analogy (SIMCA) 
(Wold, 1976) is a well-established method for multivariate classification; disjoint PCA is 
used for fitting each class and it is largely used, even though it does not give easily 
accessible class difference information, thus, hampering the quality of interpretation of the 
classification model. PLS discriminant analysis (PLS-DA) has largely been used for 
explaining differences among overall class properties that become progressively more 
complicated with an increasing number of classes. The relatively new orthogonal PLS-DA 
(OPLS-DA) (Bylesjö et al., 2006) approach has been demonstrated to be the most revealing of 
the generated models. OPLS-DA was obtained as an extension of the PLS method featuring 
an orthogonal signal correction (OSC) filter (Trygg & Wold, 2002). In other words, compared 
to PLS-DA, OPLS-DA effectively separates predictive from non-predictive (orthogonal) 
loadings variation, which is particularly enforced when a two-class model is concerned. 

4. Abiotic stresses 

During recent decades, most studies investigating the complex cascade of events occurring 
in plants upon exposure to abiotic stresses have been mainly focused on the gene expression 
level. Through the application of transcriptomics (in addition to forward and reverse 
genetics) hundred of genes have been linked with environmental stress responses and 
regulatory networks of gene expression have been delineated. 
Relatively less is known about changes at the metabolomic level, but in the last few years 
the global metabolite analysis of plant stress response is representing a very rapidly 
expanding research field. 
Here we will review a selection of recent publications, describing results obtained both in 
the model plant, Arabidopsis thaliana, and in several crop species, focusing on the 
following main abiotic stresses: low- and high-temperature, drought, high salinity and 
oxidative stress. 

4.1 Temperature stress 

Temperature is one of the most crucial environmental factors determining plant growth and 
development. Plants are subjected to continuous diurnal and seasonal temperature 
fluctuations, with consequences depending on whether these deviations from the optimal 
values remain within a natural temperature range for each species or whether extremes of 
this range are reached. However, the temperature range of survival in some species can be 
extended through “cold acclimation” or “acquired thermotolerance”, the adaptive processes 
whereby plants increase in chilling/freezing or in heat tolerance in response to a prior low 
non-freezing or high temperature exposure, respectively. These highly complex inducible 
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mechanisms are accomplished by extensive reprogramming of the plant transcriptome, 
proteome and metabolome. 

4.1.1 Low-temperature stress response in Arabidopsis 

Metabolic changes in response to low temperatures (chilling and freezing) have been 
extensively characterised in the model plant, A. thaliana. 
In one of the first studies aimed to explore (on a large scale) the Arabidopsis metabolome 

variations occurring in response to low temperature, Cook et al. (2004) compared the stress-

induced global changes in two Arabidopsis ecotypes, differing for their acclimation ability 

(Ws-2: high acclimation and Cvi-1: low acclimation). They reported that, out of 434 

metabolites monitored in cold-acclimated plants, 75% and 62% increased their amount in 

Ws-2 and in Cvi-1, respectively; most of the changes (91%) observed in the Cvi-1 plants 

significantly overlapped with those occurring in Ws-2 plants. Moreover, 114 metabolites 

showed a fivefold or higher increase in Ws-2, compared to only 47 metabolites in Cvi-1. 

Altogether, these findings suggested that the ability to acclimate may depend on and 

correlate with the magnitude of cold-induced global changes in the metabolome (Cook et al., 

2004). However, Hannah et al. (2006), through a comparison of nine different Arabidopsis 

accessions, found that the extent of cold-driven metabolic responses did not simply correlate 

with the cold-acclimation capacity. 

Several of the cold-induced metabolites, such as sugars, proline and polyamines, identified 

through global analysis have been previously reported to accumulate under cold stress in 

Arabidopsis and other species in studies utilising targeted analysis (Guy et al., 2008). 

However, the power of metabolite profiling with respect to targeted analysis consists of the 

identification of changes in the amount of metabolites not yet known to be involved in the 

process being considered (i.e., cold acclimation). 

To elucidate the role of the CBF pathway in the reconfiguration of the low-temperature 

metabolome, Cook et al. (2004) also compared the metabolic profiles of Ws-2 wild-type (wt) 

plants and transgenic lines ectopically expressing the transcription factor CBF3. In non-

acclimated transgenic lines, they found an increase in almost 80% of the metabolites that 

were cold-induced in wt (90% if metabolites induced more than fivefold were considered), 

thus, confirming a prominent role of the CBF pathway in the cold response. 

More recently, Maruyama et al. (2009) reported analogous studies, with results that were 

only partially in agreement with those of Cook et al. (2004). Namely, Maruyama and co-

workers compared the metabolite profile of wt Arabidopsis plants grown under control or 

stress conditions (cold and drought) and transgenic plants ectopically expressing 

DREB1A/CBF3 or an active form of DREB2A. The overexpression of DREB1A/CBF3 has 

been previously shown to confer a higher tolerance to both freezing and dehydration, 

whereas the overexpression of DREB2A significantly improved the tolerance to dehydration 

but not to freezing in transgenic plants. 

Maruyama and co-workers found that DREB1A/CBF3 ectopic expression resulted in an 
increased amount of 37 metabolites, 33 of which also accumulated in cold-treated wt plants. 
Because cold induced the accumulation of 155 metabolites in these experimental conditions, 
the CBF pathway appeared to be involved in the increase of only 21% of the cold-induced 
metabolites (in comparison to 80%, as reported by Cook et al., 2004). In DREB2A transgenic 
plants (that are dehydration, but not freezing, tolerant), the level of 28 metabolites increased, 
17 of which were also positively affected by DREB1A/CBF3. 
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Seventeen metabolites (including myo-inositol, galactinol, raffinose, sucrose and 13 
unknowns) were found to increase both in cold-exposed wt plants and DREB1A/CBF3-
overexpressing plants but not in DREB2A-overexpressing plants. Thus, these compounds 
were considered as possible candidates that play an active role in the cold response. 
However, the level of the 4 known and 7 of the 13 unknown metabolites also significantly 
increased in dehydration-exposed wt plants. 
Interestingly, gene expression data obtained by a microarray analysis of the different lines 
and growth conditions were found to be in agreement with the metabolic data; in particular, 
the expression levels of genes involved in carbohydrate metabolism positively correlated 
with the accumulation of specific sugars and sugar alcohols under stress conditions 
(Maruyama et al., 2009). 
Vannini et al. (2004) analysed the low temperature stress response of wt and transgenic 
Arabidopsis plants ectopically expressing Osmyb4, a rice gene involved in cold responses. 
The non-acclimated OsMyb4-transgenic plants exhibited a degree of tolerance to both 
chilling and freezing comparable to that developed by wt plants after cold acclimation. 
Subsequently, through both targeted and profiling analyses, Mattana et al. (2005a) 
compared the changes in the metabolic content of wt and OsMyb4-transgenic plants during 
a ten-day-long cold experiment. They correlated the better tolerance of transgenic plants to a 
higher content of several metabolites (proline, sucrose, glucose, fructose, glycine betaine, 
alanine and sinapoyl malate) that were present in the transgenics prior to the stress 
treatment and that may prepare plants to face the stress. Moreover, during cold treatment, 
the degree of tolerance of the transformed plants further increased; the amount of the above-
mentioned metabolites raised in both wt and transgenic plants, but it was always higher in 
the transgenic lines than in wt during the time course of the experiment (Mattana et al., 
2005a). Furthermore, the increased metabolic contents in transformed plants were consistent 
with the global changes observed in the mRNA population (Mattana et al., 2005a; Vannini et 
al., 2004, 2006). 
Kaplan et al. (2004), in a time course experiment, found that the amount of 311 out of the 497 
low-Mr polar compounds that were detected was affected by cold exposure. The authors 
showed that changes in the metabolite contents were evenly distributed across all of the 
temporal stages of the cold-response: early, intermediate and late (corresponding to 1-4 
hours, 12-24 hours and 48-96 hours, respectively), with either sustained or transient increase 
or decrease. These results indicated that acclimation is a long-term dynamic process. 
This idea was strengthened by the finding (Gray & Heath, 2005) that the metabolic profile of 
Arabidopsis leaves that were shifted to low temperature was constantly changing (at least 
up to 49 days, the maximum cold-treatment period evaluated by the authors), whereas 
leaves that had developed at low temperature exhibited a stable metabolite composition. 
The profile of the shifted leaves became more distinct from the profile of the untreated ones 
the longer the shifted leaves stayed at low temperature. However, the profile remained 
different from the profile of leaves that had developed at 4 °C. Therefore, the authors 
suggested the existence of two distinct metabolic networks in response to cold stress: one 
that is environmentally modulated and another that is developmentally modulated at low 
temperature. The authors hypothesised that the same might be true also in response to any 
other environmental stimulus. 
Although many quantitative and qualitative differences among the results reported by 
several authors do exist, one of the aspects that is consistent in all of the studies on cold 
acclimation is the crucial role of carbohydrate metabolism. 
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Its prominent function in the cold response was confirmed by the comparative metabolite 
analysis conducted by Hannah et al. (2006). As we have already mentioned, these authors 
analysed nine different Arabidopsis accessions, originating from Scandinavia to the Cape 
Verde Islands and differing in their freezing tolerance, combining transcript and metabolite 
profiling. They showed that the global changes of transcripts, but not of metabolites, 
correlated with the cold acclimation ability. However, the accumulation of individual 
metabolites, including several carbohydrates (i.e., glucose, fructose, sucrose and raffinose), 
correlated significantly with freezing tolerance. Although the important role of soluble 
sugars and particularly of raffinose has been highlighted by many studies, it has been 
demonstrated that raffinose accumulation alone is neither necessary nor sufficient for cold 
acclimation (Zuther et al., 2004). 
An important role for carbohydrate has also been reported in relation to heterosis for 

freezing tolerance (Korn et al., 2008, 2010; Rohde et al., 2004). A significant heterosis effect 

on leaf-freezing tolerance was first observed by Rohde et al. (2004) in the F1 progeny 

resulting from reciprocal crosses between the accessions Columbia-0 (Col) and C24, where 

Col plants are more freezing-tolerant than C24 plants, in both non-acclimated and 

acclimated conditions. In this case, among the soluble sugars measured, only raffinose 

showed a strong correlation with the leaf-freezing tolerance. 

Korn et al. (2008) extended this study to the analysis of 24 F1 hybrid lines, generated by 

reciprocal crosses of either Col or C24 accessions with six other parental accessions, widely 

differing in freezing tolerance. The degree of heterosis for freezing tolerance depended on 

the analysed cross (with C24 showing a better combining ability than Col) and was 

genetically unrelated to the heterosis for biomass production. Through a targeted analysis, 

they found that freezing tolerance in acclimated and non-acclimated plants correlated with 

the content of sugars (glucose, fructose, sucrose and raffinose), flavonols and proline. Very 

interestingly, heterosis for freezing tolerance correlated with heterosis for flavonols and 

sugars accumulation, whereas the proline content exhibited no correlation with heterotic 

effects in freezing tolerance (Korn et al., 2008). 

More recently, the same research group (Korn et al., 2010) used global metabolic profiling to 

discover metabolite combinations able to predict freezing tolerance and its heterosis. They 

identified several compatible solutes as crucial predictors for both phenotypes, in particular, 

metabolites belonging to the raffinose biosynthetic pathway and other yet unidentified 

compounds, in addition to some TCA cycle intermediates that specifically contributed only 

to predict the heterotic phenotype. 

The approach used by Korn et al. (2010), aimed to identify groups of metabolites, instead of 

individual metabolites, that together possess a predictive potential, seems to be well suited 

to analyse a redundant cellular protection system, such as that represented by compatible 

solutes, where single compounds might act non-specifically and substitute for each other 

with compensatory mechanisms (Panikulangara et al., 2004; Zuther et al., 2004). 

4.1.2 High-temperature stress response in Arabidopsis 

In comparison with the numerous works conducted on the metabolic changes induced by 
low temperature, only a few non-targeted metabolomic studies have been carried out on 
plants subjected to heat stress. 
Kaplan et al. (2004; see section 4.1.1) performed a global metabolite profiling analysis by GC-
MS to identify similarities and differences in temporal metabolite responses associated with 
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the induction of acquired thermotolerance in response to heat shock (HS) and acquired 
freezing tolerance in response to cold shock (CS). 
One of the most prominent differences between the plant responses to high and low 
temperature was represented by the temporal dynamics of the induced metabolic changes. 
Indeed, whereas during cold exposure, changes were evenly distributed along the time 
course of the treatment, most of the heat-induced metabolic alterations occurred within the 
first 30 minutes (Gray & Heath, 2005; Kaplan et al., 2004). 
Out of the 497 low-Mr polar compounds detected, 143 were affected by HS; among them, 
several pyruvate- and oxaloacetate-derived amino acids, fumarate and malate (oxaloacetate 

precursors), some amine-containing metabolites (β-alanine, GABA and putrescine) and 
several carbohydrates (including maltose, sucrose, raffinose, galactinol and myo-inositol) 
were found to be coordinately increased (Kaplan et al., 2004). 
Because 311 metabolites or mass spectral tags were altered in response to CS, it appeared 

that cold shock influenced metabolism more profoundly than heat shock. Moreover, a very 

large proportion of the HS metabolite response was shared with the CS response (with only 

a very small fraction being HS specific); in contrast, the majority of metabolites (60%) that 

were responsive to cold shock were CS-specific. 

Ninety-three metabolites showed a common response between the two thermal stresses; 

among these, pyruvate- and oxaloacetate-derived amino acids, polyamines and several 

carbohydrates (including fructose, sucrose, myo-inositol-phosphate, galactinol and 

raffinose) were increased in their content under both HS and CS. Several of these molecules 

are known to be either compatible solutes or precursors for secondary metabolites with 

properties of protection against pathogens. 

Concerning the role of raffinose in the heat stress response, Panikulangara et al. (2004) 

determined the content of this sugar in Arabidopsis wt plants, in transgenic plants 

overexpressing the major heat-shock transcription factor HSF3 and in two Galactinol 

synthase1 (GolS1) T-DNA knockout mutants. Galactinol synthase is a key enzyme in the 

biosynthetic pathway of the raffinose family oligosaccharides (RFOs): raffinose, stachyose 

and verbascose. The expression of GolS1 was heat-inducible in wt plants, constitutively up-

regulated in HSF3-overexpressing transgenic plants and almost completely inhibited in the 

T-DNA insertion mutants. Wild-type plants showed a basal level of raffinose under non-

stress conditions, that was increased following heat stress; in transgenic lines, a constitutive 

strong accumulation was observed that was further induced after heat stress; on the 

contrary, only a basal level without any increase after heat stress was detectable in the 

knockout mutants. Surprisingly, when the heat tolerance phenotype was investigated, no 

differences between the wt and knockout mutant lines were detected. 

These results, together with those obtained by Zuther et al. (2004; see section 4.1.1.) about a 

lack of difference in the cold tolerance phenotype among Arabidopsis lines accumulating 

very different levels of raffinose, led to the unexpected conclusion that altering the raffinose 

content (using T-DNA inactivated or transgenic plants) did not affect the stress temperature 

tolerance phenotype. 

One possible explanation is the presence of feedback and/or compensative mechanisms, 

whereby alterations of raffinose levels are accompanied by changes in the amount of other 

sugars/metabolites important in temperature stress tolerance. This hypothesis was 

supported by the increased amount of galactinol under cold acclimation found in the 

raffinose synthase knockout mutant (Zuther et al., 2004). 
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An increased level of the signalling molecule, salicylic acid (SA), was also observed by 
Kaplan et al. (2004) during both heat and cold stresses, although with different time courses. 
This finding suggested that SA, already known to play a key role in systemic acquired 
resistance to pathogens, could also function as an early signalling molecule in temperature 
stress responses. Actually, comparing wt and mutant plants accumulating different SA 
amounts, a correlation between pre-stress levels of endogenous SA and both basal and 
acquired thermotolerance was demonstrated (Clarke et al., 2004; Larkindale et al., 2005). 
Clarke and co-workers also have suggested an involvement of jasmonates in conferring 
basal thermotolerance to Arabidopsis plants. 

4.1.3 Temperature stress response in crop species 

Two rice genotypes, contrasting in chilling tolerance, were investigated for their response to 
cold, as well as to salt and osmotic stress (Morsy et al., 2007). Targeted metabolite analysis 
revealed that the two genotypes responded differently to the different stresses. 
Unexpectedly, the chilling-tolerant (CT) genotype was found to be more sensitive to 
drought and especially to salt stress than the chilling-sensitive (CS) one. 
Differences in stress tolerance matched with, and may depend on, differences in metabolite 
accumulation between the two cultivars: indeed, under cold stress, CT accumulated 
galactose and raffinose, whereas these sugars decreased in CS. Conversely, CS specifically 
accumulated higher levels of osmoprotectants, such as mannitol and threalose under salt 
and drought conditions, respectively. The endogenous content of oxidative products and the 
activities of some antioxidative enzymes were also measured, leading the authors to 
hypothesise on the presence of a more efficient ROS scavenging metabolism in CT genotype 
during chilling stress (Morsy et al., 2007). 
In addition to the studies in transgenic Arabidopsis mentioned above, Mattana et al. (2005b) 
performed similar studies on stress tolerance response in wt and Osmyb4-expressing 
transgenic plants in several species, using a constitutive (pCaMV35S) or a stress-inducible 
(pCOR15a) promoter. 
The authors reported that the increase in Myb4-driven cold tolerance in maize, apple and 
Osteospermum well correlated with the increased concentration of sugars and proline. The 
transgenic maize plants grown under control conditions did not show any difference in 
metabolite concentration with respect to the wild-type, as the Osmyb4 gene expression in 
maize was under the pCOR15a stress-inducible promoter. However, a 6-day cold-treatment 
increased the sugar (fructose, sucrose and glucose) and proline contents in both wt and 
transgenic maize plants, with the concentration being significantly higher for all of them in 
the Osmyb4-transgenic plants. 
The use of the pCaMV35S constitutive promoter to drive Osmyb4 expression in 
Osteospermum and apple transgenic plants resulted in increased sugars and proline 
concentration prior to the stress exposure (Mattana et al., 2005b). 
In a further investigation, the authors reported the first metabolic profile of the 
Osteospermum species under control and stress growth conditions, thus, confirming and 
extending the previous observations on Myb4-driven cold tolerance and metabolic changes 
(Laura et al., 2010). Namely, in the PCA score plot, Osteospermum samples distributed 
according to genotype and treatments: control and 2-day cold-treated plants (wt and 
transgenics) clustered together, whereas 10-day cold-treated and freezing-treated plants 
separated into different regions based on genotype. The samples separation correlated with 
different amounts of sucrose (higher in transgenic plants), inuline, glucose, fructose and 

www.intechopen.com



 
Abiotic Stress in Plants – Mechanisms and Adaptations 

 

324 

amino acids (higher in wt) that accumulated under stress conditions (Laura et al., 2010). 
Determination of proline content and proline/amino acids ratio confirmed previous 
reported results on a higher concentration in Osmyb4-transgenic plants and highlighted that 
differences between accumulation in the two genotypes was boosted during the cold stress 
treatment (Laura et al., 2010). 
In transgenic apple, in agreement with the previously described overlap between cold and 

heat stress responses, Osmyb4 was found to ameliorate the tolerance to both cold and heat 

stress (Mattana et al., 2005b). 

In a more detailed analysis, the authors confirmed that the observed tolerance in transgenic 

apple plants may be driven by the higher content of sugars (glucose, sucrose and fructose) 

and proline present in plants grown under control conditions. In particular, the cold 

treatment amplified the differences of metabolites accumulation between wt and 

transgenics. Moreover, the Osmyb4-overexpressing plants showed an improved tolerance 

phenotype towards drought stress (Pasquali et al., 2008). 

A common characteristic displayed by all of the Myb4-transgenic plants under cold treatment 
was the increase in the proline content, whereas wt plants showed an increase in free amino 
acids (Laura et al., 2010; Mattana et al., 2005a; Pasquali et al., 2008). This result underlined the 
importance of proline accumulation during the stress, in agreement with the several roles 
proposed for this amino acid during abiotic stress (Verbruggen & Hermans, 2008). 
To identify the metabolites associated with differential heat tolerance in two perennial grass 

species, Du et al. (2010) performed a metabolite profile analysis of C4 warm-season 

bermudagrass (a tolerant species) and C3 cool-season Kentucky bluegrass (a susceptible 

species), grown under optimum temperature conditions or subjected to short-term and 

long-term heat stress. All of measured physiological parameters confirmed that 

bermudagrass exhibited better heat tolerance than Kentucky bluegrass. The metabolic 

profile analysis revealed differences in the accumulation of many metabolites, depending 

both on species and growth conditions. In particular, bermudagrass accumulated a higher 

content of most of the metabolites identified (including organic acids, amino acids, sugars 

and sugar alcohols) in comparison to Kentucky bluegrass, especially following long-term 

heat stress. 

4.2 Drought stress 

In addition to extreme temperatures, drought is one of the major constraints for plant 

productivity worldwide. Timing and severity of water deficit may vary a lot, ranging from 

long drought seasons (when the water supply by rain is lower than the demand) to short 

periods without rain at all. 

Whether exposed to mild or severe drought conditions, plants exhibit a range of specific 
responses, aimed to reduce water loss and/or to optimise water uptake. Among the 
earliest responses, reduction in vegetative growth, stomatal closure and a decrease in the 
rate of photosynthesis are observed. Osmotic adjustment, that is the active accumulation 
of solutes in response to drought, resulting in reduced osmotic potential and contributing 
to maintain cell turgor, represents an important adaptation mechanism to water deficit in 
several plants. 
Drought triggers the production of the phytohormone abscisic acid (ABA) and the 

occurrence of both ABA-dependent and ABA-independent pathways involved in plant 

drought response has been well described (Yamaguchi-Shinozaki & Shinozaki, 2006). Many 
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drought-inducible genes have been identified so far in many species and the complex gene 

networks are becoming to be elucidated. More recently, the global metabolic changes 

induced by water deficit have also been addressed by several authors. 

4.2.1 Drought stress response in Arabidopsis 

The global transcriptional and metabolic changes induced in Arabidopsis by drought and 
their dependence on ABA-mediated or not mediated pathways have been investigated in an 
integrated analysis, comparing wt and a T-DNA-tagged NCED3 knockout mutant (nc3-2, 
impaired in the dehydration-inducible ABA biosynthesis) under control and water deficit 
conditions (Urano et al., 2009). The metabolic analysis indicated that drought strongly 
affected the metabolic profile, influencing the level of 82 metabolites in the wt (61 increased 
and 21 decreased) and 78 metabolites in the mutant (46 increased and 32 decreased). The 
authors classified the changes in the profiles of metabolites into categories based both on the 
timing (early, middle and late phase) and the trend of variations throughout the time-course 
experiment (transient or stable). 
Comparison of the wt and mutant metabolic profiles highlighted that, among a total of 64 
dehydration-increased metabolites, 16 were regulated by ABA-dependent pathways, 
including some amino acids, ethanolamine, glucose and fructose, 35 were regulated by 
ABA-independent pathways, such as raffinose and galactinol, metabolites belonging to TCA 
cycle and GABA shunt, and 13 were regulated by both ABA-dependent and ABA-
independent pathways, including proline, agmatine, methionine, lysine, saccharopine and 
phenylalanine. 
The metabolic analysis performed by the authors revealed that most of the drought-induced 
amino acids showed global correlation with each other, whereas the sugar groups did not 
show any correlation with the amino acid groups, thus, indicating a response to drought 
stress through completely different metabolic networks.  
The authors also reported the integrated analysis of drought-induced transcriptome and 
metabolome changes. 
The relationship between temperature and drought responses has been widely documented 
(Yamaguchi-Shinozaki & Shinozaki, 2006); mutations affecting the tolerance to both stresses, 
as well as transgenic plants with increased tolerance to both stresses, have been described 
(Bouchabke-Coussa et al., 2008; Kasuga et al., 1999; Mattana et al., 2005a). 
An emblematic example of the overlap between the temperature and drought stress 
responses is represented by the eskimo1 (esk1) mutant phenotype. Although esk1 was 
originally isolated as a freezing-tolerant mutant in the absence of cold acclimation, able to 
constitutively accumulate high amounts of proline (Xin & Browse, 1998), genes regulated by 
the ESK1 protein showed a larger overlap with genes regulated by osmotic, salt and ABA 
treatment than with genes regulated by cold acclimation or belonging to the CBF/DREB 
pathway (Xin et al., 2007). 
Lugan et al. (2009), comparing global metabolic profiles of wt and esk1 plants grown under 
control and three different stress conditions (cold, salinity or dehydration), found that the 
mutant constitutively mimicked the phenotypic traits of wt abiotic stress response, in terms 
of development, osmotic status and metabolic profile. Despite some discrepancies, the 
changes at the metabolomic level were consistent with changes observed in the 
transcriptome, previously described by Xin and co-workers (2007). 
A more detailed comparison between mutant and stressed wt metabolomes indicated that 
esk1 was closer to drought-stressed than cold-acclimated wt plants. Indeed, the mutant 
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accumulated melibiose, raffinose, galactinol, proline, galactose, fructose and GABA (all 
associated with the three considered stress conditions), but not other metabolites, such as 
glutamine, trehalose and sucrose, involved in the wt cold response. Therefore, the authors 
suggested that the freezing tolerance exhibited by the esk1 mutant was a side effect of a 
constitutive acclimation to dehydration. Based on transcriptome analysis, a major role of 
ESK1 in the plant response to water shortage and in the whole-plant water economy was 
also suggested by Bouchabke-Coussa et al. (2008). 
The improved tolerance to multiple stresses as a consequence of the altered expression, in 
mutant or transgenic lines, of a gene normally activated in response to a specific stress, 
depends on the overlap at the molecular level of the response to different stresses. The 
rationale of this overlap is evident considering the two aspects of abiotic stress effects on 
plant cells: i) some primary cellular damages may be shared by several stresses, as for 
example the water deficiency caused not only by drought, but also by salinity, freezing and 
hypoxia (damaged roots being unable to transport water to the aerial parts) and ii) different 
primary effects may induce a common secondary stress (and, therefore, common secondary 
damages), such as oxidative stress, derived from the ROS production following the 
impaired photosynthetic ability in most of the suboptimal growth conditions (for a review 
on the specific and unspecific responses to cold and drought stress, see Beck et al., 2007). 
In Arabidopsis plants subjected to cold or drought treatment, Mattana et al. (2005a) 
observed similar metabolic changes, such as an increase of proline, sugars and amino acids, 
although with a different time-course accumulation between the two stress conditions. In 
the same paper, the authors also reported the increased tolerance to both stresses of plants 
ectopically expressing the rice gene Osmyb4. Under stress conditions, the Osmyb4 action 
seemed to amplify the changes in metabolites observed in wt, maintaining the difference in 
the timing of accumulation between the two stresses. 
We have already cited the studies performed by Maruyama and co-workers (2009) on wt 
and Arabidopsis transgenic plants overexpressing DREB1A/CBF3 or DREB2A, the former 
conferring tolerance both to freezing and dehydration and the latter only to dehydration in 
transgenic plants. Indeed, in agreement with these tolerance phenotypes, on the basis of the 
metabolic profile data (in particular, the accumulation of arginosuccinate, fumarate, malate 
and several unknown metabolites), DREB2A transgenic plants clustered with drought-
treated, but not with cold-treated wt plants. 
We have also discussed that DREB1A/CBF3 transgenic plants and cold acclimated wt plants 
shared the accumulation of 17 metabolites (see section  4.1.1.), which were not affected in 
DREB2A transgenic plants and, therefore, were presumed to be involved in freezing 
tolerance. In contrast, as both transgenic lines showed strong drought tolerance, it was 
proposed that this phenotype did not depend on metabolites shared by DREB2A transgenic 
plants and drought-treated plants, but on those metabolites whose accumulation was 
increased in both transgenic lines (Maruyama et al., 2009). The comparison of global 
transcriptomes performed by the authors led to analogous conclusions. 
Because of the possible simultaneous occurrence in nature of drought and high temperature 
conditions, Rizhsky et al. (2004) performed an analysis of the molecular and metabolic 
response of Arabidopsis plants to these stresses, considered either individually or in 
combination. The metabolic profile of plants subjected to both stresses was more similar to 
that of drought-treated plants than to that of heat-treated plants, with accumulation of high 
levels of sugars, such as sucrose, maltose and gulose. However, double stress-treated plants 
also accumulated sugars that are specific of heat-treated plants (i.e., fucose and melibiose) 
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and did not accumulate other metabolites typical of the drought response, the most 
remarkable example being proline. The authors suggested that proline might be toxic during 
a combination of drought and high temperature stress. A parallel transcriptome profiling of 
the same samples highlighted a similar preferential overlapping of the double-stressed 
plants with the drought-stressed ones. 

4.2.2 Drought stress response in crop species 

Many wild species are more tolerant to unfavourable environmental conditions than their 
relative cultivated crops, suggesting that crossing between wild species and elite cultivars 
could lead to an improvement of stress adaptation in modern crops. 
On the basis of this observation, Semel et al. (2007) compared the metabolic profile of tomato 
fruit pericarp from irrigated and non-irrigated field grown plants, belonging either to the 
cultivated tomato, Solanum lycopersicum (cv. M82), or to its interspecific hybrid with Solanum 
pennellii. A total of 72 identified metabolites were detected, and the variance due to the 
genotype and the environment was evaluated. 
Under irrigated field conditions, the metabolite composition of the elite cultivar and the 
F1 hybrid strongly differed, with a significantly higher content of several amino acids in 
M82 and a higher level of the majority of fatty and organic acids in the F1 hybrid. The two 
genotypes were also quite distinct with regard to the contents of sugars, sugar 
phosphates, sugar alcohols and other metabolites, with most of them (i.e., fructose, 
glucose, maltose, sucrose, trehalose and myo-inositol) being present at higher levels in the 
F1 hybrid and only a few of them (putrescine and fructose-6-phosphate) more abundant 
in M82 (Semel et al., 2007). 
In the cultivated tomato, M82, the stress strongly affected the content of many metabolites, 

with large increases in several amino acids (including proline, β-alanine, GABA, glutamate 
and glycine), fatty and organic acids (including TCA cycle intermediates), as well as sugars 
and sugar derivatives. Whereas a change in the content and/or a role in response to water 
stress had largely been documented for some of these solutes (e.g., proline and some 
sugars), the increase of other compounds was considered more intriguing, such as for 
branched amino acids, TCA cycle intermediates or gentiobiose. It is noteworthy that a 
signalling role during tomato fruit development had been proposed for this latter molecule. 
On the contrary, the F1 hybrid metabolic profile was not significantly affected by the 
experimental growth conditions, possibly because of the “constitutive” elevated 
concentration of many of the metabolites known to be involved in drought stress response. 
The statistical analysis performed on the entire dataset supported the analytical results. 
Indeed, PCA clearly discriminated M82 from the F1 hybrid as well as irrigated from non-
irrigated M82, but was unable to discriminate irrigated from non-irrigated F1 samples. 
Similarly, Hierarchical Clustering Analysis (HCA) revealed a strong influence of the genotype 
and a lower influence of the environment on the metabolic profiles (Semel et al., 2007). 
Vannini et al. (2007) analysed the drought-tolerant phenotype and targeted metabolite 
accumulation in wt and transgenic tomato plants overexpressing the rice Osmyb4 gene 
either under a constitutive (pCaMV35S) or a stress-inducible (pCOR15a) promoter. They 
found that the ameliorated tolerance of the transgenic lines was associated with a higher 
accumulation of sugars (sucrose, fructose and glucose) and proline (measured as percentage 
of total amino acid content). 
Following drought treatment, the content of these molecules increased in both wt and 
transgenic plants, with the levels observed in transgenics always higher than those observed 
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in wt. The Myb4-constitutively expressing plants accumulated a higher content of free 
sugars even under control conditions. As expected, because of the use of a stress-inducible 
promoter, no significant difference in the concentration of any analysed metabolite was 
observed between wt and pCOR15a-Myb4 plants under control conditions. However, under 
water deficit conditions, the concentration of these compounds was found to be significantly 
higher in pCOR15a-Myb4 transgenic lines than in wt and to be comparable to that found in 
pCaMV35S-Myb4 transgenic plants (Vannini et al., 2007). 
Dai et al. (2010b) have performed a systematic characterisation of the metabolic changes 

induced by water depletion in the roots of the medicinal plant, Salvia miltiorrhiza Bunge, 

comparing the results obtained using two metabolite analysis techniques (1H-NMR and LC-

DAD-MS) and four extraction methods based on different solvents (see also section 2.2). As 

phytomedicines are usually either air-dried or sun-dried for the purposes of transportation, 

storage or pharmacological requirements, the effect of these two different drying processes 

on the metabolite composition was also investigated and compared with a freeze-drying 

process, taken as the control. 
1H-NMR analysis revealed the presence of both primary and secondary metabolites, whereas 
LC-DAD-MS detected 44 secondary metabolites, among which 5 polyphenolic acids, genipin, 
umbelliferone and tormentic acid had not been previously described in this plant. 
Both approaches revealed distinct metabolite profiles of the extracts obtained from the 

different drying treatments and the PCA score plots generated from both data series could 

discriminate the samples depending on the drying process. 

However, the two approaches detected different metabolic changes following the two 

drying processes. Among the primary metabolites detected by 1H-NMR, an increase in 

proline, alanine and succinate accompanied by a decrease in n-butanol and lactate was 

observed in both the air-dried and sun-dried samples; in contrast, an increase in the content 

of sucrose and glutamine was observed only in air-dried roots, whereas an increase in 

leucine, melibiose and raffinose was found only in sun-dried roots. Different effects of air- 

and sun-drying processes were also highlighted on secondary metabolism by the LC-DAD-

MS method, with air-drying enhancing the biosynthesis of oligomeric caffeic acids and 

tanshinones and sun-drying promoting the biosynthesis of tanshinones but inhibiting that of 

polyphenolic acids. The differences in metabolite content variations between the two sample 

groups was suggested to be attributable to the different drying speed of the two methods 

and to the concomitant occurrence of light and thermal stresses in sun-, but not in air-dried 

roots (Dai et al., 2010b). This study has the merit of showing the effectiveness of the 

combination of two different analytical approaches (1H-NMR and LC-DAD-MS) and of 

highlighting the importance to carefully consider and optimise the extraction method when 

metabolomic analyses are performed. 

To assess the association of osmotic adjustment (OA) with drought tolerance, seed yield and 
specific metabolites accumulation, a recent study was conducted on three different castor 
(Ricinus communis L.) hybrids and their respective parents, grown under irrigated and non-
irrigated field conditions (Babita et al., 2010). The authors reported that genotypes with a 
greater OA also had higher leaf Relative Water Content (RWC) and maintained higher leaf 
water potential under water deficit; moreover, a positive relationship existed between OA 
and total seed yield under drought stress conditions. The high-OA genotypes accumulated 
significantly higher amounts of proline, total soluble sugars, total free amino acids and 
potassium, with sugars representing the major contributors to OA (Babita et al., 2010). 
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Three cotton near-isogenic lines (NILs), obtained via marker-assisted selection from the elite 
cultivars of the two species Gossypium barbadense (GB) cv. F-177 and Gossypium hirsutum 
(GH) cv. Siv’on, have been characterised for their metabolic and mineral compositions and 
compared to their parental genotypes (Levi et al., 2011). Plants were field-grown under well-
watered and water-limited conditions and comparative analysis was performed between i) 
GB and GH genotypes ii) the two water regimes and iii) each NIL and its recipient parent. 
The HCA, based on either 27 metabolites or 5 minerals, clearly distinguished between GB 
and GH genotypes. Within each species, in most but not all of the cases, the irrigation 
treatments had a more pronounced effect on the clustering than the genotypes. 
Comparisons between plants grown under well-watered and water-limited conditions for 
each genotype showed different trends in the various solutes. On the basis of the previously 
reported improved drought tolerance of the NILs versus their recipient parents, the authors 
focused their attention on those metabolites whose amount increased under stress in one or 
more of the NILs. In particular, an increase in aspartic acid, citric acid, malic acid, threonic 
acid, alanine, glycerol and myo-inositol among metabolites as well as in potassium, 
magnesium and calcium among minerals was suggested to contribute to the ameliorated 
adaptation to drought of these NILs (Levi et al., 2011). 

4.2.3 Resurrection plants 

Whereas the term “drought tolerance” refers to the ability of plants to survive a moderate 
dehydration (down to ~ 0.3 g H2O g-1 dry weight), the capacity to tolerate further 
dehydration (down to an absolute water content of 0.1 g H2O g-1 dry weight) is referred to 
as “desiccation tolerance” (Moore et al., 2009). This term also includes the ability of plants 
to rehydrate successfully and to regain normal metabolism and growth within several 
hours of rewatering. 
Although desiccation is part of the normal developmental program of seeds in most higher 
plants, only a few species possess desiccation-tolerant vegetative tissues. These include the 
individual members of different angiosperm families and are termed “resurrection plants” 
(Moore et al., 2009). 
Such species have been extensively studied in attempts to identify the mechanisms 
associated with their remarkable tolerance and with the aim of using the obtained 
knowledge to improve drought tolerance in economically important crop species. 
Many different approaches have been employed in these studies, focusing on molecular, 
biochemical, metabolic, ultrastructural and physiological aspects of such a complex trait 
(Moore et al., 2009). 
Among the plethora of data obtained, the identification of several upstream-acting genes, 
such as those encoding transcription factors and small regulatory RNA molecules, are of 
particular interest (Moore et al., 2009). 
With regard to metabolites involved in desiccation tolerance, the importance of antioxidants, 
such as phenolic acids and polyphenols (galloylquinic acid) has been highlighted. Namely, a 
correlation between the galloylquinic acid content/composition and the maximum 
desiccation period that different populations of Myrothamnus flabellifolius can survive has 
been reported. These molecules have been suggested to act as a “reservoir”, able to 
determine the length of the desiccation period that a plant can suffer before its viability is 
irreversibly compromised (Moore et al., 2005). 
As in other species, in resurrection plants dehydration leads to an increase in the content of 
proline and of soluble carbohydrates (i.e., sucrose, trehalose, raffinose and glucose). 
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Moreover, the localisation of glucose and sucrose in plant tissues was reported in 
accordance with their possible function as cellular protectants during water stress 
(Martinelli, 2008). 
Despite all of the results achieved in elucidating single aspects of the desiccation tolerance 
phenomenon, from gene regulation to metabolic adjustment or macromolecular stability, the 
secrets of resurrection plants still remain to be discovered. A holistic comprehension of how 
the identified individual factors interact spatially and temporally and the identification of (if 
it exists) the master switch is still lacking. Consistently, the ectopic expression of 
Craterostigma plantagineum transcription factors-encoding genes in Arabidopsis, tobacco and 
desiccation-sensitive callus tissue from C. plantagineum itself has led to inconsistent results: 
either improved drought tolerance or no effects on the phenotype, or even unexpected side 
effects, such as ABA insensitivity (Moore et al., 2009). 

4.3 Salt stress 

The increased salinisation of arable land, due to both natural processes and agricultural 
practises, is expected to have a dramatic negative impact on soil fertility in the next decades, 
resulting in a high percentage of land loss by the middle of the century. Most of the 
economically important crop species are very sensitive to high salt concentration in the soil. 
High salinity engenders both hyper-osmotic stress (caused by the reduction of water 

availability due to the reduced water potential) and hyper-ionic stress (caused by the toxic 

effects of the accumulated ions). Plants are thus subjected to dehydration, ion toxicity, 

nutritional deficiencies and oxidative stress, with the main negative effects being the 

disruption of ionic equilibrium, the inhibition of cell division and expansion, and the 

reduction in photosynthesis and growth. Plant acclimation responses include ion exclusion 

and tissue tolerance, osmotic adjustment and several molecular and biochemical changes, 

with both conserved and divergent metabolic responses among different species (D.H. 

Sanchez et al., 2008). 

4.3.1 Salt stress response in Arabidopsis 

Kim et al. (2007) have reported a detailed analysis of metabolic changes occurring during a 

time-course experiment (up to 72 hours) on salt-stressed Arabidopsis cell cultures. PCA and 

Batch Learning Self-Organising Mapping analysis (BL-SOM) revealed a coordinated 

induction of several pathways at different time points. Namely, short-term responses 

included the induction of the methylation cycle (for the supply of methyl groups), of the 

phenylpropanoid pathway (for lignin production) and of glycine betaine biosynthesis, 

whereas long-term response was characterised by the co-induction of glycolysis and sucrose 

metabolism and the co-reduction of the methylation cycle. In particular, metabolites that 

transiently increased in the short-term period included S-adenosyl-L-methionine (SAM), 

ethanolamine, cysteine and aromatic amino acids. Twenty-four hours after salt treatment, a 

decrease in SAM and the aromatic amino acid content and an increase in glycerol, inositol 

and S-adenosyl-L-homocysteine (SAH) were observed. As a consequence, the methylation 

index SAM/SAH increased as a short-term response to salt stress and constantly decreased 

after 12 hours of salt stress. Finally, long-term stressed cells abundantly accumulated 

sucrose and lactate (Kim et al., 2007). 

The metabolic response to high salinity stress was also addressed in a time-course 

experiment by Kempa et al. (2008). These authors investigated the ABA involvement in the 
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complex re-adjustment of carbohydrate metabolism during salt stress, by exploring the 

temporal dynamics of the Arabidopsis metabolome in response to high soil salinity (up to 5 

days) or to ABA treatment (up to 3 days). Comparison of the salt- and ABA-induced 

metabolic changes in an Independent Component Analysis (ICA) revealed both common 

and distinct metabolic responses, indicating the existence of ABA-dependent and ABA-

independent pathways. Notably, both high salt and ABA treatments led to depletion of 

starch and increase in maltose levels, suggesting a role of this hormone in triggering stress-

induced starch mobilisation.  

The authors also addressed the question of whether a correlation exists between changes in 

specific metabolite levels and changes in the expression levels of genes encoding the 

corresponding metabolic enzymes and found such a correlation in several, but not all, of the 

pathways examined. 

As plant hormones play a crucial role in responses to various environmental stresses, 

studies on the effects of hormone treatments on intracellular metabolites have also to be 

mentioned here. One of such studies was performed by Okamoto et al. (2009), who 

investigated by NMR the metabolic profiling of Arabidopsis T87 cultured cells following 

various hormone treatments (ABA, salicylic acid [SA], auxin and brassinosteroid). 

Moreover, as ABA and SA are known to mediate abiotic and biotic stress responses and to 

act antagonistically each other, the authors also monitored the dynamic metabolic changes 

in cells treated with ABA and SA simultaneously or successively for different time periods. 

Based on their data, the authors suggested that ABA and SA do not have simple 

antagonistic effects but that they cross-talk at the metabolite levels in a much more complex 

manner. 

The single and combinatorial effect of salinity stress and elevated CO2, two environmental 

conditions that are expected individually to affect plant growth in opposite directions, has 

also been investigated (Kanani et al., 2010). The authors found that, while the transcriptional 

responses to the salinity and to the combined stresses were very similar, this was not the 

case for the metabolic responses, thus, representing an example of “inconsistency” between 

these two levels of plant response. In particular, the combination of the two perturbations 

had a milder effect on the metabolic physiology than the salinity stress alone. This suggested 

a beneficial role of elevated CO2 on salt-stressed plants at the metabolic level, at least within 

the experimental timeframe (30 hours), probably due to the provided additional resources in 

the presence of elevated CO2 concentration. 

4.3.2 Salt stress response: Thellungiella vs. Arabidopsis 

Thellungiella halophila (also known as T. salsuginea), a Brassicaceae species closely related to 
Arabidopsis, displays “extremophile” characteristics represented by a remarkable tolerance 
to a variety of abiotic stresses, namely high salinity, water-deficit and freezing. Studies have 
taken advantage of the high nucleotide sequence identity between Thellungiella and 
Arabidopsis, utilising tools developed for the model species to investigate the transcriptome 
of the halophyte species. 
Gong and co-workers (2005) investigated the salinity stress adaptation competence of 
Thellungiella. To identify pathways relevant for the stress adaptation phenotype of 
Thellungiella, they compared the transcript and metabolite profiles of the two species, grown 
under both optimal and salt-stressed conditions. In addition to stress responses shared by 
the two species, three Thellungiella-specific response categories were defined: i) additional 
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pathways that are stress-activated in Thellungiella but not activated in Arabidopsis, ii) genes 
with a significantly higher pre-stress intensity in Thellungiella and iii) novel stress-relevant 
genes whose homologs are not stress-responsive in Arabidopsis. 
At the metabolic level, changes in Arabidopsis plants subjected to 150 mM NaCl for 24 
hours were mainly represented by an increase, with respect to control plants, of proline, 
sucrose and an unknown compound (putative complex sugar). Drastic differences 
distinguished the two species, the most relevant being a higher amount in Thellungiella of 
sugars and sugar alcohols, both under control and salinity growth conditions. Under salt 
stress, Thellungiella also accumulated higher levels of proline, glutamic acid, malic acid, 
succinic acid, whereas in both control and stress conditions, Arabidopsis showed a higher 
accumulation of fumaric acid and mannitol. 
Metabolome data, together with transcriptome results, have pointed towards the presence of 
a stress anticipatory strategy in Thellungiella as responsible for its “extremophile” 
characteristics. 
More recently, Arabidopsis and Thellungiella responses to salinity and osmotic stress have 
been compared with an analogous approach by Lugan et al. (2010). 
The authors found that, apart from a few differences in raffinose and secondary metabolites, 
salt stress affected the same metabolic pathways in the two species, the main differences 
being quantitative. Thellungiella had a higher concentration of many stress-related 
metabolites than Arabidopsis, independent of the growth conditions. It also contained less 
water and showed a higher ability to lose water following stress, without any detrimental 
effect, which could contribute to maintaining a water potential gradient between the soil 
and plants in water-limiting conditions. 
PCA analysis sharply separated the samples, both depending on the species and on the 
environmental conditions, the genetic background being the main contributor to the 
metabolome variations. The species-dependent differences appeared to relate partially to the 
stress anticipatory strategy that has been hypothesised for Thellungiella; indeed, 42 of the 58 
metabolites that were more abundant, and 19 of the 34 metabolites that were less abundant, 
in Thellungiella under the control growth conditions, were found to increase and decrease, 
respectively, in Arabidopsis under stress treatment. Therefore, the Arabidopsis metabolic 
response to salt seemed to, at least partially, mimic the constitutive status of Thellungiella. 
A very original contribution to the metabolomic analysis approach that was provided by 
this study is represented by the idea of considering the metabolome of each species as a 
single “virtual molecule”, the physicochemical properties of which are the weighted 
averages of the properties of the individual metabolites.  
Therefore, based on this idea, the significant differences between the two species can be 
summarised as follows: i) under both standard and stressed conditions, the Thellungiella 
metabolome was more soluble, polar, massive and reduced than the Arabidopsis metabolome; 
ii) osmotic and salinity stresses changed the metabolome biophysical properties in a different 
way, depending on the stress and on the species; iii) both stresses induced more dramatic 
changes in Arabidopsis than in Thellungiella; iv) in Arabidopsis, salt affected the metabolome 
biophysical properties more than osmotic treatment and v) in Thellungiella, water stress 
induced more dramatic changes than salt stress (Lugan et al., 2010). 

4.3.3 Salt stress response in crop species 

One of the first applications of metabolomic analysis to the plant response to salt stress 
was reported by Johnson et al. (2003) on tomato fruits. Extracts from two varieties 
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differing in their salt tolerance were analysed using FT-IR spectroscopy coupled with 
chemometric techniques.  
Whereas the unsupervised method, PCA, was not able to discriminate between the control 
and salt-treated fruits for either variety, the supervised method, Discriminant Function 
Analysis (DFA), classified the untreated and salt-treated samples of both varieties. The 
application of Genetic Algorithms (GAs) enabled the identification of key regions within the 
FT-IR spectra important for this discrimination, corresponding to nitrile-containing 
compounds and amino radicals. 
Analyses of both gene expression and metabolite profiles were performed to elucidate the 

mechanisms responsible for the ability of a salt-tolerant tree species, Populus euphratica, 

grown in one of its natural habitats, a saline semi-arid area (the Ein Advat valley, located in 

the Negev desert in Israel) to acclimate to high salinity (Brosché et al., 2005). Leaf samples 

were collected from trees grown in four experimental sites in the valley, represented by 

three distinct areas that are characterised by a different degree of soil salinity, in addition to 

a non-saline well-irrigated area used as a control. 

The accumulation of 22 selected metabolites in the leaves was examined by GC-MS. Trees 

growing in the most saline area, which accumulated more Na+, displayed a significantly 

higher concentration of the amino acids, β-alanine, valine and proline, whereas changes in 

stress-responsive carbohydrates and organic acids were of relatively limited extent, when 

compared to what is observed in Arabidopsis, and were statistically significant only for 

glycerol, glyceric acid and myo-inositol. 

An interesting comparison between water deficit and salt stress has been described by 

Cramer et al. (2007). These authors monitored the early and late changes in the transcript 

and metabolite profiles induced in the vegetative tissues of grapevines (Vitis vinifera, cv. 

Cabernet Sauvignon) by long-term (16 days) water deficit and salinity stresses. Both stresses 

were gradually applied to the plants to better mimic field conditions. Moreover, the 

uniqueness of the experimental design was represented by the imposition of equivalent 

water potentials over time in the two stress treatments, thus, allowing the discrimination of 

the osmotic effects from the ion toxicity effects. 

As expected, the relative abundance of several metabolites was altered by both stress 

conditions; however, at equivalent water potentials, water deficit had a more severe effect 

than salinity. Namely, among the key compounds involved in energy metabolism and 

osmotic adjustment, malate, proline and glucose were significantly higher in drought-

treated than in salt-treated plants; moreover, only drought caused an increase in citrate and 

tartrate. With regard to inorganic molecules, a higher accumulation of sulphate, chloride 

and phosphate was observed under salinity than under drought stress. These differences in 

metabolite accumulation between the two growth conditions were correlated to differences 

observed in the transcript levels of genes involved in energy metabolism and nitrogen 

assimilation. Altogether, the data reported by Cramer et al. (2007) suggested a greater need 

for osmotic adjustment, ROS detoxification and photoinhibition amelioration in drought-

treated than in salt-treated plants. 

Another example of a multiple stress comparison is represented by the afore-mentioned 
results by Morsy and co-workers (2007; see section 4.1.3). These authors characterised two 
rice genotypes that contrasted in chilling tolerance for their response to water-deficit and 
high salinity stresses and found that, unexpectedly, the chilling-tolerant (CT) genotype was 
more sensitive than the chilling-sensitive (CS) one to both of the stresses. The high 
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accumulation of specific osmoprotectants, such as trehalose (under drought conditions) and 
mannitol (under salt conditions), observed in CS relative to CT, might account for its higher 
tolerance under these stresses. 
Two rice cultivars (Arborio and Nipponbare) have been characterised by 1H-NMR analysis 

for their metabolic profiles under either osmotic or salt-stress conditions in in vitro 

experiments by Fumagalli et al. (2009). Nipponbare was found to be more tolerant to both 

stresses than Arborio, as shown by the percentage of inhibition on shoot and root growth. 

For both genotypes, PCA score plots clustered the samples into three distinct groups, 

depending on the growth conditions: untreated, osmotic treated (PEG 20%) and salt treated 

(NaCl 150 mM) seedlings. In comparison to control growth conditions, shoots of both 

cultivars accumulated a higher amount of glucose, glutamine and glutamate under both 

stress conditions; under salt stress, an increase in the content of sucrose, threonine, valine 

and lactate was also induced. 

Although the two rice cultivars showed the same trend in metabolic changes during stress, 

they significantly differed in the relative amount of some metabolites, namely in the 

sucrose/glucose ratio and in the glutamate/total amino acids and glutamine/total amino 

acids ratios. These results suggested that both sugar and glutamine-glutamate metabolism 

were differentially regulated in the two cultivars in response to abiotic stresses. 

More recently, Widodo et al. (2009) conducted an analysis of the metabolic responses to 

salinity stress in barley, a species of particular interest for metabolomic studies among 

cereals, as it is characterised by a higher Na+ tissue tolerance (i.e., the capacity of 

accumulation of high concentrations of Na+ in leaves) in comparison to rice and wheat. 

Two barley cultivars differing in their salt tolerance, Sahara (more tolerant) and Clipper 

(more susceptible), were compared for their metabolic profiles under normal or saline 

conditions in a time-course experiment (24 hours, 3 and 5 weeks). The PCA of the leaf 

metabolites separated the samples belonging to the two cultivars grown in any conditions, 

the distance increasing with the time of the experiment for both control and treated samples. 

In both cultivars, a clear separation between short-term (24-h) and long-term responses (3 

and 5 weeks) was also evident. Indeed, after 24 hours of salt treatment, only a few changes 

in metabolite concentrations were detected, whereas after long-term exposure (3 and 5 

weeks) a greater number of metabolic changes and a larger magnitude of these changes 

were observed in both cultivars.  

The authors suggested that, with the exception of proline, the observed accumulation of 

several amino acids in Clipper leaves after long-term salt exposure might correlate, as 

reported for other species, with slower growth and/or leaf necrosis, thus, being an indicator 

of general stress and cell damage rather than part of an adaptive response to salinity. 

On the contrary, the specific accumulation in Sahara leaves of organic acids (including TCA 

cycle intermediates), sugars, polyols and other compounds, already known to be involved in 

cellular protection, may actually have a functional role in establishing the salt-tolerant 

phenotype of the cultivar (Widodo et al., 2009). 

An interesting aspect of stress response is represented by the observation that mycorrhizal 

plants exposed to osmotic constraints generally perform better than nonmycorrhizal plants. 

Most of the knowledge on the improved stress protection comes from plants interacting 

with arbuscular mycorrhizas (AMs), whereas relatively little information is available on 

molecular and physiological mechanisms underlying the enhancement of stress tolerance in 

host plants by ectomycorrhizas (EMs). 

www.intechopen.com



 
Plant Metabolomics: A Characterisation of Plant Responses to Abiotic Stresses 

 

335 

Luo et al. (2009) have investigated the transcriptional and metabolic profiles in EM and 
non-EM roots of gray poplar (Populus x canescens) under control or excess-salinity 
conditions. The mycelia of the fungus Paxillus involutus were used for mycorrhizal 
inoculation. Unstressed EM roots accumulated osmolytes, such as soluble carbohydrates, 
sugar alcohols and free amino acids, at a higher extent than non-EM roots. Moreover, 
sugars of both major and minor pathways were more abundant in EM than non-EM roots 
also under stress conditions. Conversely, there were no significant differences in the 
amino acid content between stressed non-EM roots and both unstressed and stressed EM-
roots. In agreement with the metabolic data, a microarray analysis indicated a constitutive 
activation of stress-related genes in control EM-roots, that are activated by salt stress in 
non-EM roots. Altogether, the data of Luo et al. (2009) indicated a stronger induction of 
defence pathways and metabolites in EM roots than in non-EM roots exposed to excess 
salinity, suggesting that the fungus P. involutus was able to prime the poplar plants for 
increased stress tolerance. 

4.4 Oxidative stress response 
A common consequence of most abiotic stresses is an increased production of reactive 

oxygen species (ROS), which are highly toxic and cause damage to proteins, lipids, 

carbohydrates, chlorophyll and DNA, thus, resulting in oxidative stress (Gill & Tuteja, 2010). 

ROS are mainly by-products of processes, such as photosynthetic or respiratory electron 

transport. Under normal growth conditions, there is an equilibrium between the production 

and the scavenging of ROS, but abiotic stress factors may disturb this equilibrium, leading 

to a sudden increase in intracellular levels of ROS. Most of the studies on this topic have 

been performed on ROS-scavenging enzymatic antioxidants, which represent the initial 

defence mechanism, whereas fewer studies have been reported about the direct 

consequences of oxidative stress on the plant metabolome. 

Baxter et al. (2007), using the redox-active quinone menadione (MD), induced oxidative 

stress in Arabidopsis cell suspension cultures and characterised the dynamics of metabolic 

responses by following changes in metabolite abundance and in 13C-labeling kinetics. A total 

of 23 metabolites out of the 50 analysed were significantly affected (16 decreasing and 7 

increasing). The integrated evaluation of such metabolic changes (an increase in hexose and 

triose phosphates, gluconate, ribose, a decrease in malate and some amino acids) indicated a 

dramatic inhibition of the TCA cycle and a diversion of carbon into the oxidative pentose 

phosphate pathway (OPPP). The decrease of ascorbate (one of the principal cell antioxidant 

molecules), concomitant with the accumulation of threonate (an ascorbate breakdown 

product), indicated a prolonged severe oxidative stress with a failure to recycle the oxidised 

ascorbate entirely (Baxter et al., 2007). 

Analogous studies performed on Arabidopsis roots from hydroponically-grown plants 

highlighted similar metabolic changes in short-term menadione responses (30 minutes), 

whereas after longer oxidative stress (2 and 6 hours), changes observed in Arabidopsis roots 

and cultured cells clearly differed (Lehmann et al., 2009). In menadione-treated roots, 

among 56 identified polar metabolites, 33 were significantly affected within the first 30 

minutes, and 39 were altered in at least two time points. The early changes, analogous to the 

observations in cell cultures, consisted of a decrease in the TCA cycle metabolites and 

associated amino acids and an increase in the OPPP intermediates Ribose 5-P and Ribulose 

5-P and some glycolytic intermediates. As the time course proceeded, the amount of many 
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metabolites (i.e., TCA cycle intermediates and some amino acids) returned to normal values 

and further increased in the roots, in contrast to the response of cultured cells, in which 

most metabolites remained depressed throughout the time course. A major difference in the 

response of cells in culture and roots was in glycolysis: whereas in cultured cells a sustained 

increase in hexose 6-phosphates and a transient increase in 3-PGA were observed, in roots a 

significant decrease in hexose 6-phosphates and a linear increase in pyruvate were found. 

Moreover, the following variations in metabolites that can prevent oxidative damage were 

reported in menadione-treated roots: an increased abundance of proline (with a concomitant 

decrease in its precursor, glutamate), changes in polyamine metabolism with a decrease in 

putrescine, and accumulation of some methionine-derived aliphatic glucosinolates (Baxter et 

al., 2007; Lehmann et al., 2009). 

An enhanced tolerance to menadione-induced oxidative stress was displayed by rice 

cultured cells overexpressing the Arabidopsis Bax Inhibitor-1 (AtBI-1) gene (Ishikawa et al., 

2010). Bax Inhibitor-1 is an endoplasmic reticulum membrane protein, acting as a cell death 

suppression factor, that is widely conserved in animals and higher plants. 

Using Capillary Electrophoresis–Mass Spectrometry (CE-MS), the authors investigated the 

metabolic responses to cell death-inducible oxidative stress. The control rice cells showed a 

shift in carbon flow from the central pathway to the OPPP, probably due to an increased 

requirement for NADPH as reducing power, in agreement with data obtained in roots and 

cultured cells of Arabidopsis (Baxter et al., 2007; Lehmann et al., 2009). However, despite the 

depression of carbon metabolism in the central pathway, a marked accumulation of most 

amino acids derived from PEP, pyruvate and oxaloacetate was found in MD-treated rice 

cells. This observation was inconsistent with results obtained in MD-treated Arabidopsis, in 

which decreased levels of several amino acids correlated with decreases in their precursors 

(Baxter et al., 2007; Lehmann et al., 2009). AtBI-1 overexpression did not produce any 

significant effect on primary metabolism in non-stressed cultured cells. However, clear 

differences between AtBI-1 overexpressing and control cells were found following a 24 h 

exposure to stress (but not at earlier time points), mainly in some metabolic pathways, i.e., 

glycolysis, amino acids of the glutamate and aspartate families, and components of redox 

and energy metabolism. These results suggested that tolerance to oxidative stress conferred 

by the AtBI-1 factor was due to a higher capacity of metabolic acclimation, with a recovery 

of metabolite composition that was depleted during the early response. 

Oxidative stress and programmed cell death may be induced both in natural and cultivated 

plants, including forest trees, by ozone (O3) exposure. In the past few years the increase in 

tropospheric ozone concentration has become one of the most serious environmental stress 

factors, that negatively affect plant growth, development and productivity. Ozone is a 

photochemically generated air pollutant, that can enter the intercellular space of leaves 

through the stomata, react with water and spontaneously generate ROS. Depending on the 

severity of the stress (O3 concentration and length of exposure) and on the susceptibility of the 

plants (varying with age and genotypes), damage symptoms may range from visible chlorosis 

and necrosis in the leaves to inhibition of photosynthesis and reduced yield. The ozone effects 

have been studied with two main approaches, by exposing plants either to a high-dose of O3 

for a short period (acute ozone exposure) or to a weaker dose for a longer period (chronic 

ozone exposure), which represents a more realistic stress condition. The plant responses to this 

atmospheric pollutant have been recently investigated through “omics” tools in different 
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species, such as Arabidopsis, rice and birch (Cho et al., 2008; D’Haese et al., 2006; Kontunen-

Soppela et al., 2007; Li et al., 2006; Ludwikow & Sadowski, 2008). 

Cho et al. (2008) performed a systematic analysis of rice seedling molecular responses, using 

parallel transcriptomics, proteomics and metabolomics approaches, thus, providing a global 

view of signalling and metabolic pathways involved in rice response to O3 exposure. CE-MS 

based metabolomic profiling revealed an increase in the content of several amino acids, 

GABA, glutathione and sakuranetin, a main rice secondary metabolite. The integration of 

the outputs from all these different approaches allowed the authors to indicate glutamate, 

GABA and glutamate dehydrogenase as possible biomarkers for O3 damages in rice. 

A long-term ozone exposure experiment was conducted in realistic open field conditions by 

Kontunen-Soppela et al. (2007), to compare O3-induced leaf metabolome changes in two 

genotypes of white birch (Betula pendula Roth) differing in their ozone sensitivity. Among 

339 low molecular weight metabolites, ozone enrichment led to increased concentrations of 

phenolic compounds (such as chlorogenic acid and quercetin glycosides) and lipophilic 

compounds related to leaf cuticular wax formation. On the contrary, decreases in 

concentrations of many carbohydrates and chlorophyll-related compounds were induced by 

elevated ozone. 

4.5 Plant stress response and circadian clock 

A very interesting aspect that has been more recently addressed is the interaction between 
the endogenous circadian clock and the transcriptional and metabolic reprogramming that 
occurs during the plant stress responses. 
A role for the circadian clock in cold stress responses has been demonstrated (Nakamichi et 

al., 2009) and a large overlap between cold- and circadian-regulated genes has been 

observed (Bieniawska et al., 2008). These authors reported that diurnal- and circadian-

regulated genes were responsible for the majority of the substantial variation observed 

between different experiments carried out to characterise the cold-responsive transcriptome 

in Arabidopsis. That is, genes identified as cold-responsive were dependent on the time of 

day the experiment was performed and a control at normal temperature did not correct for 

this effect, contrary to what is currently assumed. 

Espinoza et al., (2010) have investigated the role of diurnal and/or circadian regulation in 
metabolic cold-induced responses, performing an integrated analysis of both transcripts and 
metabolites. Their findings also underlined the importance of understanding cold 
acclimation in the correct day-night context. Furthermore, they observed that a mutant with 
a disruption in the circadian clock was more sensitive to freezing and impaired in its cold 
acclimation capacity. This finding was in agreement with data reported in Populus on a 
reduced ability to cold acclimate of transgenic lines where the expression of some clock-
component homologs genes had been down-regulated by RNA interference (Ibáñez et al., 
2010). On the contrary, an Arabidopsis triple mutant for other clock-component genes has 
been reported to have an increased freezing tolerance, associated with a higher 
accumulation of the compatible solutes, proline and raffinose (Nakamichi et al., 2009). The 
reason for these contrasting phenotypes of different clock mutants remains to be elucidated. 
It must be mentioned that in Arabidopsis, the time-of-day has also been shown to influence 
the transcriptome alterations following drought exposure (Wilkins et al., 2010). 
The circadian clock seems to function as a central coordinator of plant metabolism, to 
maintain homeostasis by determining the levels of both primary and secondary metabolites 
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and also to allow plants to anticipate future environmental stresses, such as drought at 
midday and cold at midnight. In addition, a feedback mechanism is brought about by 
metabolic and stress cues on the central oscillator itself (A. Sanchez et al., 2011). 
It is noteworthy that a functional link between the circadian clock and plant immunity has 
also been reported very recently (W. Wang et al., 2011), with a remarkable and intriguing 
example of a plant tuning its immune response against a pathogen. Arabidopsis defence 
genes involved in the response to an oomycete pathogen were found to be under the control 
of a central circadian regulator (the cca1 gene), thus, allowing plants to anticipate infection at 
dawn (when the pathogen disperses the spores) through a maximal expression of the 
relevant genes at the time of day when attack is most likely (W. Wang et al., 2011). 
Thus, the circadian clock and the response to both abiotic and biotic stresses appear to be 
firmly interconnected in plants. Furthermore, the integration of the circadian clock with the 
stress signalling pathways might have played a crucial role in the development of plant 
adaptation to their environments during evolution. 

5. Integration of “omics” results 

The availability of high-density microarray and next generation sequencing technologies has 
opened the route to carry out whole genome transcriptome (WGT) analyses in a high-
throughput manner.  
Likewise, high throughput LC-MS  approaches enable the rapid identification of large sets 
of proteins and of their post-translational modifications (Huang & Xu, 2008). 
In fact, plant acclimation to abiotic stress conditions is associated with profound changes in 
proteome composition. Since proteins are directly involved in plant stress response, 
proteomics studies can significantly contribute to unravel the possible relationships between 
protein abundance and plant stress acclimation (Kosovà et al., 2011) 
Post-translational modifications (PTMs) are also  involved in the regulation of a wide range 
of cellular responses to abiotic stress stimuli  and greatly affect protein structure, activity 
and stability. Several hundred PTMs have been described in the literature and the advent of 
high-throughput quantitative proteomics technologies has allowed the systematic 
identification of the PTMs (phosphorylation, S-nitrosylation, ubiquitylation, SUMOylation, 
glycosylation) and the determination of their functional relevance in the context of 
regulation and response to abiotic stress (Ytterberg & Jensen, 2010). 
These global analyses were in numerous cases coupled to metabolomic approaches (see 
above), reinforcing the tight link between changes in specific transcriptional patterns of 
candidate gene and/or specific proteomic patterns to the production of metabolites (both 
primary and secondary). 
The WGT technologies enable to precisely pinpoint the classes of genes under 
transcriptional control (down/up-regulation) and to define not only responses at the gene 
level but also at that of “network” (Yamaguchi-Shinozaki et al., 2006; Swindell et al., 
2007).  
In fact, as described for the metabolomic approaches, the characterisation of the whole 
transcriptome enables researchers to identify the whole cascades of target genes from the 
transcriptional factors to the effector genes (whose expressions is dependent upon that of 
specific transcriptional factors).  
The transcriptome analyses allow to define co-regulatory pathways that often underlie the 
concerted up/down-regulation of large sets of genes involved in the same regulatory 
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and/or biosynthetic pathways (Krouk et al., 2010). This is of high relevance to define the 
genetic components of specific or common plant responses to abiotic stress conditions.  
The advent of high-throughput sequencing technologies has markedly accelerated the 
generation of whole transcriptome data and the capability of capturing changes in 
expression also of rare transcripts. It is now possible to globally define transcription start 
sites, polyadenylation signals, alternative splice sites and generate quantitative data on gene 
transcript accumulation in single tissues or cell types (L. Wang et al., 2010). These deep-
sequencing technologies (also called Next Generation Sequencing Technologies)  are thus 
paving the way for global genome transcriptomics and will undoubtedly lead to novel 
insights into plant abiotic stress responses. However, several challenges exist to making this 
technology broadly accessible to the plant research community, including the current need 
for a computationally intensive analysis of large data sets. 

6. Conclusion 

Metabolome analysis has become an invaluable tool to study plant metabolic changes that 
occur in response to abiotic stresses. This approach has already enabled to identify a large 
number of metabolites whose accumulation is affected by exposure to stress conditions. 
However, despite the many progresses that have been achieved in this field, much work is 
still required to identify novel metabolites and pathways not yet linked to stress response 
and tolerance and to decipher the extensive coordination and interaction among the various 
metabolic pathways.  
To better understand the role of stress-associated metabolites in abiotic stress response, it 
has to be taken into account that metabolites not only have functional roles in stress 
tolerance but also act as signalling molecules. In most of the studies, the production, 
increase or depletion of metabolites are mainly regarded as the final, downstream response 
of the plant cell to the external stimuli. However, the question should be addressed whether 
the changes in metabolic networks that are observed are driven by alterations in gene 
expression, or whether the transcriptome changes are responding to a specific metabolic 
perturbation. In addition to hormones or other canonical mediators, such as sucrose and 
glucose, many other small molecules may play a crucial role in signalling pathways; it 
seems likely that only a subset of the metabolites with a mediator function in the regulation 
of transcription in response to stresses has been identified so far. 
To this purpose, it is essential to consider the temporal dynamics of the response, through 
an integration of the “omics” data obtained at different time points during stress exposure. 
But even this “snapshots”-based approach, consisting in the comparison among different 
samples taken at different time points, has been recently considered as a rather static 
approach and its usefulness for obtaining a comprehensive and global information on stress-
induced molecular changes has been questioned. More dynamic approaches, such as 
fluxomics (Wiechert et al., 2007), aimed to follow the flux of metabolites through pathways, 
are being currently developed and might reveal to be much more informative. 
To elucidate the function of a single compound, it is also important to be aware that 
compensatory mechanisms are commonplace and that a change in the content of a single 
metabolite may have no effects on the phenotype, because of compensative modulation of 
other components of the same family of compounds. 
The original approach proposed by Lugan et al. (2010), considering the metabolome as a 
single “virtual molecule” whose physicochemical properties are the weighted averages of 
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the properties of individual metabolites, also appears to be quite promising both to 
investigate the global metabolic strategies of a species to maintain cell function under stress 
and to evaluate differences among species. 
In addition, further efforts to make stress treatment conditions more relevant to plant 
growth outside of the lab are required. Because plants are often subjected to a combination 
of multiple adverse conditions rather than to individual stresses (a common example being 
represented by the simultaneous occurrence of heat and drought in the field), tolerance to 
multiple abiotic stresses is an important breeding target in crops. Studies performed 
comparing single or combined stresses have already demonstrated that metabolic responses 
may be quite different and these results have to be considered in identifying strategies to 
improve stress tolerance, either by breeding or by transgenics approaches.  
Moreover, as relatively little is known about the molecular mechanisms that underlie the 
acclimation of plants at a long-term realistic exposure to specific stressors, the focus has to 
move from how plants survive “acute” (sudden and short-term) stress conditions to how 
plants respond to “chronic” (long-term), sub-optimal growing conditions. 
Another aspect to be considered is that, besides classical stress factors, plants also have to 
cope with emerging stressors (such as tropospheric ozone and anthropogenic stressors), 
which were not previously met by species during evolutionary times. 
The recent findings on a firm interconnection between the plant circadian clock and the 
response to both abiotic and biotic stresses also emphasize the importance of having a 
diurnal perspective when plant stress responses are characterized and of investigating stress 
response in the correct day-night context. 
Another major challenge is the elucidation of epigenetic regulation mechanisms, including 
changes in nucleosome distribution, histone modification, DNA methylation, and non–
protein-coding RNAs (npcRNAs), which also play important roles in abiotic stress gene 
networks (Urano et al., 2010). 
The integration of the -omics approaches, that have markedly increased our understanding 
of global plant systems in response to stress conditions, is likely to enable researchers to 
reconstruct the whole cascade of cellular events leading to rapid responses and adaptation 
to the various abiotic stress stimuli. 
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