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1. Introduction

It is well known in the wireless telecommunications field that the most valuable resource
available is the electromagnetic radio spectrum. Being a natural resource, it is obviously finite
and has to be utilized in a rational fashion. Nevertheless the demand increase on wireless
devices and services such as voice, short messages, Web, high-speed multimedia, as well as
high quality of service (QoS) applications has led to a saturation of the currently available
spectrum. On the other hand, it has be found that some of the major licensed bands like
the ones used for television broadcasting are severely underutilized Federal Communications
Commission (November) which at the end of the day results in a significant spectrum
wastage. For this means, it is important to come up with a new paradigm that allows us to take
advantage of the unused spectrum. Cognitive radio has risen as a solution to overcome the
spectrum underutilization problem Mitola & Maguire (1999),Haykin (2005). The main idea
under cognitive radio systems is to allow unlicensed users or cognitive users (those who have
not paid for utilizing the electromagnetic spectrum), under certain circumstances, to transmit
within a licensed band. In order to perform this task, cognitive users need to continuously
monitor the spectrum activities and find a suitable spectrum band that allows them to:

• Transmit without or with the minimum amount of interference to the licensed or primary
users.

• Achieve some minimum QoS required for their specific application.

• Share the spectrum with other cognitive users.

Therefore, it is easy to observe that spectrum sensing is the very task upon which the entire
operation of cognitive radio rests Haykin et al. (2009). It is of extreme importance for the
system to be able to detect the so-called spectrum holes (underutilized subbands of the radio
spectrum). This is why in this chapter we focus all our attention to analyze some important
aspects of spectrum sensing in cognitive radio, and particularly the case when it is performed
using multiple antennas.
In order to take advantage of the cognitive radio features it is important to find which parts
of the electromagnetic spectrum are unused at certain moment. These portions are also
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called spectrum holes or white spaces. If these bands are further used by a licensed user the
cognitive radio device has the alternative of either moving to another spectrum hoe or staying
in the same band but altering its transmission power lever or modulation scheme in order to
avoid the interference. Hence it is clear that an important requirement of any cognitive radio
network is the ability to sense such spectrum holes. As the most recent literature suggests
right now Akyildiz et al. (2008),Haykin et al. (2009), the most efficient way to detect spectrum
holes is to detect the primary users that are receiving data within the communication range
of a cognitive radio user. This approach is called transmitter detection which is based on the
detection of the weak signal from a primary transmitter through the local observations of
cognitive users. The hypotheses cab be defined as

x(t) =

{

H0 : n(t)

H1 : hs(t) + n(t)
, (1)

where x(t) is the signal received by the cognitive user, s(t) is the transmitted signal of the
primary user, n(t) is the AWGN and h is the amplitude gain of the channel. H0 is a null
hypothesis, which states that there is no licensed user signal in a certain spectrum band. On
the other hand, H1 is an alternative hypothesis, which states that there exist some licensed
user signal. Three very famous models exist in order to implement transmitter detection
according to the hypotheses model Poor & Hadjiliadis (2008). These are the matched filter
detection, the energy detection and the cyclostationary feature detection.

1.1 Matched filter detection

When the information about the primary user signal is known to the cognitive user, the
optimal detector in stationary Gaussian noise is the matched filter since it maximizes the
received signal to noise ratio (SNR). While the main advantage of the matched filter is that
it requires less time to achieve high processing gain due to coherency, it requires a priori
knowledge of the primary user signal such as the modulation type and order, the pulse shape
and the packet format. So that, if this information is not accurate, then the matched filter
performs poorly. However, since most wireless networks systems have pilot, preambles,
synchronization word or spreading codes, these can be used for coherent detection,

1.2 Energy detection

If the receiver cannot gather sufficient information about the primary user signal, for example,
if the power of the random Gaussian noise is only known to the receiver, the optimal detector
is an energy detector. In order to measure the energy of the received signal, the output signal
of bandpass filter with bandwidth W is squared and integrated over the observation interval
T. Finally, the output of the integrator Y, is compared with some threshold λ to decide
whether a licensed user is present or not. Nevertheless, the performance of the energy detector
is very susceptible to uncertainty in noise power. Hence, in order to solve this problem, a pilot
tone from the primary transmitter can be used to help improve the accuracy of the energy
detector. Another shortcoming is that the energy detector cannot differentiate signal types
but can only determine the presence of the signal. Thus the energy detectors is prone to the
false detection triggered by the unintended signals.
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1.3 Cyclostationary feature detection

An alternative detection method is the cyclostationary feature detection. Modulated
signals are in general couple with sine wave carriers, pulse trains, repeating spreading,
hopping sequences or cyclic prefixes, which result in built-in periodicity Kontorovich et al.
(2010). These modulated signals are characterized as cyclostationary since their mean and
autocorrelation exhibit periodicity. These features are detected by analyzing a spectral
correlation function. The main advantage of the spectral correlation function is that it
differentiates the noise energy from modulated signal energy, which is a result of the fact
that the noise is a wide-sense stationary signal with no correlation, while modulated signals
are cyclostationary with spectral correlation due to the embedded redundancy of signal
periodicity. Therefore, a cyclostationary feature detector can perform better than the energy
detector in discriminating against noise due to its robustness to the uncertainty in noise power.
Nonetheless, it is computationally complex and requires significantly long observation time.
Most of the previously mentioned techniques are investigated for a single sensor albeit some
use of multiple sensors is suggested in (Zhang et al., 2010). In the latter, the authors consider
a single sensor scenario equipped with multiple antennas and derived its performance in
assumption of correlated antennas and constant channel. Also, most of these studies are
focused on investigating the performance of particular schemes in ideal environments such
as independent antennas in cooperative scenario or in uniform scattering. However, such
consideration eliminate impact of real environment and its variation, while it is shown in
many publications and realistic measurements that such environments change frequently,
especially in highly build areas. Understanding how particular radio environment affects
performance of cognitive radio sensing abilities is, therefore, and important issue to consider.
Furthermore, it is well known (Haghighi et al., 2010) that the distribution of angle of arrival
(AoA), itself defined by scattering environment (Haghighi et al., 2010), affects both temporal
and spatial correlation of signals in antenna arrays. For these reasons in the first part of
the chapter we utilize a simple but generic model of AoA distribution, suggested in (Abdi
& Kaveh, 2002), to describe impact of scattering on statistical properties of received signals.
Later the concept of Stochastic Degrees of Freedom (SDoF) is incorporated in order to obtain
approximate expressions for the probability of miss detection in terms of number of antennas,
scattering parameters and number of observations. Following, the trade-off between the
number of antennas and required observation duration in correlated fading environments
is investigated. It is shown that at low SNR it is more convenient having just a single antenna
and many time samples so the noise suppression performs better. On the contrary, at high
SNR, since the noise is suppressed relatively quickly is better to have more antennas in order
to mitigate fading. Now, most of the existing spectrum schemes are based on fixed sample size
detectors, which means that their sensing time is preset and fixed. Hence, in the second part of
the chapter, we present some results based on the work of A. Wald (Wald, 2004) which showed
that a detector based on sequential detection requires less average sensing time than a fixed
size detector. We show that in general, it is possible to achieve the same performance that other
fixed sample based techniques offer but using as low as half of the samples in average in the
low signal to noise ratio regime. Afterwards, the impact of non-coherent detection is assessed
when detecting signals using sequential analysis. We finished using sequential analysis as a
new approach of cooperative approach for sensing. We call this an optimal fusion rule for
distributed Wald detectors and a evaluate its performance. The last section of the chapter is
devoted to conclusion remarks.
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Fig. 1. System Model

Fig. 2. Filtered Observations

2. Impact of scattering environment in spectrum sensing in multi-antenna

cognitive radio systems

2.1 Signal model

Let us consider a primary transmitter which transmits some pilot signal s over L symbols
in order to sound the primary channel. CR can sense the same signal using NR receiving
antennas. The received signal matrix X of size NR × L can be written in terms of the NR × L
complex channel matrix H = {hrl} and the noise matrix W of the same size as

X = Hs + W, (2)

Here W is a zero mean Gaussian matrix of covariance σnI and H is a zero mean Gaussian
matrix with covariance matrix RH respectively. Element hrl is the channel transfer coefficient
from the transmitter to r-th antenna measured at l-th pilot symbol. Using vectorization
operation ((van Trees, 2001)) , one can rewrite (2) as

x = hs + w, (3)

where x = vec X, h = vec H and w = vec W1. Therefore, the detection problem is to
distinguish between the hypotheses

H0 : x[n] = w[n] n = 0, 1, . . . , NRL − 1
H1 : x[n] = h[n]s + w[n] n = 0, 1, . . . , NRL − 1

. (4)

1 The vec(·) operator is defined as the NR L × 1 vector formed by stacking the columns of the NR × L

matrix i.e. vec H = [h′
1h′

2 . . . h′
L]

′
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The sufficient statistic in this case is given by (van Trees, 2001), (Kay, 1998)

T = xHQx = |s|2xHRh

[

|s|2Rh + σ2
nI
]−1

x, (5)

where Rh = E
{

hhH
}

is the correlation matrix of the channel vector h = vec H.

This correlation matrix reflects both spatial correlation between different antennas and the
time-varying nature of the channel. Let Rh = UΛUH be eigendecomposition of the correlation
matrix Rh. In this case, the statistic T could be recast in terms of the elements of the
eigenvalues λi of the matrix Λ and filtered observations y = UHx:

T = yH
Λ

[

Λ + σ2
nI
]−1

y =
NR L

∑
k=1

λ2
k

λ2
k + σ2

n
|yk|

2, (6)

which is analogous to equation (5.9) in (van Trees, 2001). Elements yk of the vector y could
be considered as filtered version of the received signal x with a set of orthogonal filters uk

(columns of the matrix U), i.e. could be considered as multitaper analysis (Thomson, 1982).
Linear filtering preserve Gaussian nature of the received signals, therefore, the distribution of
T could be described by generalized χ2 distribution2 (Andronov & Fink, 1971):

p(x) =
NR L

∑
k=1

αk exp(−x/2λk), (7)

and

α−1
k = 2λk

NR L

∏
l=1,l �=k

(

1 −
λl

λk

)

. (8)

Theoretically, equation (7) could be used to set up the detection threshold γ. However, it is
difficult to use it for analytical investigation. Therefore, we would consider a few particular
cases of the channel when the structure of the correlation matrix could be greatly simplified
to reveal its effect on the detection performance.

2.2 Performance of estimator-correlator for PU detection

2.2.1 Constant independent channels

In this case the full covariance matrix Rh = σ2
h OL ⊗ INR

is a Kronecker product of NR × NR

identity correlation matrix INR
and OL = 11H is a L × L matrix consisting of ones. Therefore,

there are NR eigenvalues λk, k = 1, · · · NR equal to L. The k-th orthogonal filter uk is the
averaging operator applied to the data collected from the k-th antenna. Thus, the decision
statistic is just

TCI =
NR

∑
k=1

∣

∣

∣

∣

∣

L

∑
l=1

xkl

∣

∣

∣

∣

∣

2

=
NR

∑
k=1

Pk, (9)

where

Pk =

∣

∣

∣

∣

∣

L

∑
l=1

xil

∣

∣

∣

∣

∣

2

. (10)

2 Assuming that all eigenvalues λk of Rh are different.
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In absence of the signal, samples xkl are drawn from an i.i.d. complex Gaussian random
variable with zero mean and variance σ2

n . Therefore, the distribution of Pk is exponential, with
the mean value Lσ2

n

p(P) =
1

Lσ2
n

exp

(

−
P

Lσ2
n

)

, (11)

and the distribution of T is just central χ2 distribution with NR degrees of freedom

pCI(T |H0) =
1

Γ(NR)

T NR−1

(Lσ2
n)NR

exp

(

−
T

Lσ2
n

)

. (12)

If γ is a detection threshold for the statistic T then the probability PFA of the false alarm is

PFA =
∫ ∞

γ
pCI(T |H0)dT =

Γ
[

NR, γ/Lσ2
n

]

Γ(NR)
, (13)

or
γCI = Lσ2

nΓ−1 [NR, PFAΓ(NR)] , (14)

where Γ−1 [NR, Γ(NR, x)] = x. If the signal is present, i.e. if the hypothesis H1 is valid, then the
signal yi is a zero mean with the variance σ2 = L2|s|2σ2

h + Lσ2
n . As the result, the distribution

of the test statistic T under the hypothesis H1 is given by the central χ2 distribution with NR

degree of freedom and the probability of the detection is just

PD =
∫ ∞

γ
p(T |H1) =

1

Γ(NR)
Γ
(

NR,
γ

σ2

)

=
1

Γ(NR)
Γ

(

NR,
1

1 + Lµ̄
Γ−1 [NR, PFAΓ(NR)]

)

,

(15)
where

µ̄ = |s|2
σ2

h

σ2
n

, (16)

is the average SNR per symbol. Performance curves for this case could be found in (van Trees,
2001).
It could be seen from both (9) and (15) that under the stated channel model, the improvement
in performance PD comes either through reduction of noise through accumulation of signal
in each of the antennas (i.e. increase in the effective SNR) or through exploitation of diversity
provided by NR antennas Kang et al. (2010). Thus, increasing number of antennas leads to a
faster detection.

2.2.2 Spatially correlated block fading (constant spatially correlated channel)

Now let us assume that the values of the channel remain constant over L symbols but the
values of the channel coefficients for different antennas are correlated. In other words we will
assume that Rh = σ2

h OL ⊗Rs where Rs is the spatial correlation matrix between antennas. Let

Rs = UsΛsUH
s be spectral decomposition of Rs. Then the test statistic T could be expressed,

according to equation (6), as

TCC =
NR

∑
k=1

|s|2σ2
h λk

|s|2σ2
h λk + σ2

n
|yk|

2 =
NR

∑
k=1

µ̄λk

µ̄λk + 1
|yk|

2, (17)

where σ2
h is the variance of the channel per antenna. The eigenvalues λk of Rs reflect time

accumulation of SNR in each “virtual branch” of the equivalent filtered value yk. In general,
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all the eigenvalues are different so one should utilize equation (7). While these calculations
are relatively easy to implement numerically, it gives little insight into the effect of correlation
on the performance of the detector.
Under certain scattering conditions (Haghighi et al., 2010), the eigenvalues of the matrix Rs

are either all close to some constant λ > 1 or close to zero. If there is Neq < NR non-zero
eigenvalues, their values are equal to λk = NR/Neq to preserve trace, and the rest NR − Neq

are equal to zero. In this case, the test statistic TCC could be further simplified to

TCC(Neq) =
Neq

∑
k=1

|yk|
2, (18)

where the index k corresponds to non-zero eigenvalues. Thus, the problem is equivalent to
one considered in Section 2.2.1 with Neq independent antennas and the expression for the
threshold γCC and the probability of detection are given by

αγCC = σ2
nΓ−1

[

Neq, PFAΓ(Neq)
]

, (19)

where 0 < α < 1 performs as a corrector variable.
The effect of correlation between branches has dual effect on performance of the system. On
one side, the number Neq of equivalent independent branches is reduced, comparing to the
number of antennas NR, therefore reducing diversity. However, increased correlation results
into additional accumulation of SNR (or, equivalently, additional noise reduction through
averaging) by factor of NR/Neq ≥ 1. Therefore

PD =
∫ ∞

γ
p(T |H1)dT =

1

Γ(Neq)
Γ

(

Neq,
αLγCC

σ2

)

=

1

Γ(Neq)
Γ

(

Neq,
1

1 + LNRµ̄/Neq
Γ−1

[

Neq, PFAΓ(Neq)
]

)

. (20)

2.2.3 Independent channel with temporal correlation

In the case of independent antennas but temporally correlated fading, the full correlation
matrix can be represented as Rh = RT ⊗ IL where RT = UH

T ΛTU is the eigen decomposition
temporal correlation matrix of an individual channel Paulraj et al. (2003). The decision statistic
can now be represented as

TICC =
NR

∑
k=1

xH
k RT

(

RT +
1

µ̄
IL

)−1

xk =
NR

∑
k=1

Tk, (21)

where xk is 1 × L time sample received by the k-th antenna. Therefore, each antenna signal is
processes separately and the results are added afterwards.
Taking advantage of eigendecomposition of the correlation matrix RT calculation of decision
statistic Tk can be recast as a multitaper analysis

Tk = ykΛk

(

Λk +
1

µ̄
IL

)−1

yk =
L

∑
l=1

λl

λl + 1/µ̄
|ykl |

2. (22)
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Once again, we can utilize approximation of the correlation matrix by one with constant or
zero eigenvalues as in Section 2.2.2. In this case there will be

Leq =
(tr RT)

2

tr RTRH
T

(23)

eigenvalues of size L/Leq and the rest are zeros. Therefore, there is NRLeq terms in the sum
(21) each contributing

L/Leq

L/Leq + 1/µ̄
=

µ̄L + Leq

µ̄L
, (24)

into the variance of TICC. Corresponding equations for choosing the threshold become

γCC = Lσ2
nΓ−1

[

NRLeq, PFAΓ(NRLeq)
]

, (25)

PD =
∫ ∞

γ
p(T |H1)dT =

1

Γ(Neq)
Γ
(

Neq,
γ

σ2

)

=

1

Γ(Neq)
Γ

(

Neq,
1

1 + LNRµ̄/Neq
Γ−1

[

Neq, PFAΓ(Neq)
]

)

. (26)

2.2.4 Channel with separable spatial and temporal correlation

The correlation matrix of the channel with separable temporal and spatial correlation has the
correlation matrix of the form Rh = RT ⊗ Rs. Correlation in both coordinates reduces total
number of degrees of freedom from NRL to NeqLeq ≤ NRL The loss of degrees of freedom is
offset by accumulation of SNR due to averaging over the correlated samples. The equivalent
increase in the average SNR is NRL/NeqLeq. Thus, the problem is equivalent to detection
using

Keq = NeqLeq =
(trRs)

2

||Rs||2F

(trRT)
2

||RT ||
2
F

, (27)

independent samples in the noise with the average SNR

µ̄eq =
NRL

NeqLeq
µ̄. (28)

The sufficient statistics in the case of the channel with separable spatial and temporal
correlation could be easily obtained from the general expression (5) and (6). In fact, using
Kronecker structure of Rh one obtains

T =
Keq

∑
k=1

|zk|
2. (29)

2.3 Examples and simulation

2.3.1 Correlation models

While the Jakes correlation function J0(2π fDτ) is almost universally used in standards on
wireless channels (Editors, 2006), realistic environment is much more complicated. A few
other models could be found in the literature, some chosen for their simplicity, some are based
on the measurements. In most cases we are able to calculate Neq analytically, as shown below.
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1. Sinc type correlation If scattering environment is formed by a single remote cluster (as it is
shown in (Haghighi et al., 2010)), then the spatial covariance function Rs(d) as a function
of electric distance between antennas d is given by

Rs(d) = exp (j2πd sin φ0) sinc (∆φd cos φ0) , (30)

where φ0 is the central angle of arrival, ∆φ is the angular spread. This correlation matrix
has approximately ⌊2∆φ cos φ0N + 1⌋ eigenvalues approximately equal eigenvalues with
the rest close to zero (Slepian, 1978).

2. Nearest neighbour correlation Neglecting correlation between any two antennas which
are not neighbours one obtains the following form of the correlation matrix Rs

Rs =
{

rij

}

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 if i = j
ρ if i = j + 1
ρ∗ if i = j − 1
0 if |i − j| > 1

, (31)

where ρ is the correlation coefficient. The eigenvalues of (31) are well know (Kotz &
Adams, 1964)

λk = 1 − 2|ρ| cos
kπ

N + 1
, 1 ≤ k ≤ N. (32)

The equivalent number of independent virtual antennas is given by

Neq =
N2

N + 2(N − 1)|ρ|2
=

N

1 + 2|ρ|2 (1 − 1/N)
. (33)

3. Exponential correlation

Rs =
{

rij

}

=
{

|ρ|i−j
}

. (34)

Eigenvalues of this matrix are well known (34) (Kotz & Adams, 1964)

λk =
1 − |ρ|2

1 + 2|ρ| cos ψk + |ρ|2
, (35)

where ψk are roots of the following equation

sin(N + 1)ψ − 2|ρ|ψ sin N + |ρ|2 sin(N − 1)ψ

sin ψ
= 0. (36)

4. Temporal correlation model for nonisotropic scattering Considering the extended case of
the Clarke’s temporal correlation model for the case of nonisotropic scattering around the
user, we have the temporal correlation function as (Abdi & Kaveh, 2002):

Rs(τ) =
I0

(
√

κ2 − 4π2 f 2
Dτ2 + j4πκ cos(θ) fDτ

)

I0(κ)
, (37)

where κ ≥ 0 controls the width of angle of arrival (AoA), fd is the Doppler shift, and
θ ∈ [−π, π) is the mean direction of AoA seen by the user; I0(·) stands for the zeroth-order
modified Bessel function.

147Primary User Detection in Multi-Antenna Cognitive Radio
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Fig. 3. ROC approximation vs. simulation results (α = 0.8) . Solid lines - theory, x-lines -
simulation.
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Fig. 4. Eigenvalues behavior of Rs temporal correlation matrix for nonisotropic scattering
(N = 10, µ = 0 and fd = 50Hz)

Figure 4 shows the eigenvalues behaviour for different values of the κ factor. Notice that
for κ = 0 (isotropic scattering) the values of the eigenvalues are spread in an almost equally
and proportional fashion among all of them. As κ tends to infinity (extremely nonisotropic
scattering), we obtain N − 1 zero eigenvalues and one eigenvalue with value N. In other
words, as κ increases, the number of “significant” eigenvalues decreases and hence so the
value of Neq as shown in Figure 6.

2.4 Simulation procedure

In order to perform the simulations which verified these results, the hypothesis in eq. (4) was
formed by giving the channel matrix H the desired correlation characteristics as shown in
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Fig. 5. Effect of correlation between antennas in the probability of detection.
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Fig. 6. ROC approximation for the estimator correlator considering the temporal correlation
for isotropic and nonisotropic scattering (κ = 0 and κ = 10 respectively).

section 2.3.1. Therefore, the vectorization operations are performed and after evaluating the
respective statistical tests, Monte Carlo method is utilized.

2.5 Space-time processing trade-off

It is common to assume that increasing number of antennas improves performance of
detection algorithms due to increased degree of diversity. Such proposition is correct when
the number of time samples remains the same. However, in cognitive networks it is desired to
reduce decision time as much as possible, sometimes by introducing some added complexity
in the form of additional number of antennas. The goal of this section is to show how one can
trade speed of making decision with a number of antennas available for signal reception.
It can be seen from equation (18) that the processing of the signal consists of two separated
procedures: averaging in time and accounting for diversity and suppressing noise in spatial
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diversity brunches. Depending on amount of noise (SNR) and fading (fading figure (Simon
& Alouini, 2000)) one of these two technique brings more benefit to the net procedure.
For relatively low levels of SNR noise suppression is a dominant task, therefore it is more
advantageous to have a single antenna and as many time samples as possible. On a contrary,
if SNR is somewhat higher, noise is sufficiently suppressed even by short time averaging and
suppressing fading through diversity combining is more beneficial. This can be seen from
Fig. 5. This graph shows performance different configurations of the receiver in such a way
that product NRL remains constant. The same Figure shows effect correlation, and thus, the
scattering environment, plays on quality of reception. For very strong correlations ρ ≈ 1 and
Neq ≈ 1. Therefore all samples collected are used to reduce noise. Such scheme performs
the best at low SNR. However, when ρ = 0 and Neq = NR the gain from the diversity is
highest and the scheme performs best for higher SNR. Intermediate case allows for smooth
transition between these two regions. It also can be seen, that only in the case of ρ = 1
there is an equivalent trade off between number of antennas and time samples: i.e. the
performance depends only on Q = NRL regardless how the product is divided between NR

and L. However, lesser correlation result in unequal trade-off with gain or loss defined by
SNR and amount of correlation.

3. Sequential analysis for multi-antenna cognitive radio

3.1 Sequential analysis overview

The sequential analysis and the sequential probability ratio test (SPRT) introduced by A. Wald
in 1943 (Wald, 2004) have proved to be highly effective in taking decisions between two known
hypothesis (H0,H1). Moreover, as it is shown in (Wald, 2004), the sequential probability ratio
test frequently results in a saving of about 50 percent in the average number of observations
in comparison to other well known detection techniques such as the Neyman-Pearson (NP)
decision test which is based on fixed number of observations. Unlike NP test, which utilizes
the logarithm of the Likelihood Ratio (log-LR) and compares it with a single predefined
threshold γ, the sequential probability ratio test compares the log-LR with two thresholds A
and B which are obtained in terms of the target probability of false alarm (PFA) and probability
of misdetection (PMD) (or the complementary probability of detection PD = 1 − PMD) (Wald,
2004), (Middleton, 1960). Furthermore, in contrast to fixed decision time of NP test, the
duration of testing of sequential analysis is a random variable.
The thresholds A and B are approximated as (Wald, 2004):

A = ln
1 − PMD

PFA
, B = ln

PMD

1 − PFA
(38)

The test procedure consists of sequential accumulating of m samples and calculating the
cumulative sum of the m-th log-LR as

B <

m

∑
i=1

Λi < A, (39)

where Λi is a single log-likelihood ratio sample.
If Eq. (39) is satisfied, the experiment is continued by taking an additional sample increasing
m by 1. However, if

m

∑
i=1

Λi ≥ A, (40)
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Fig. 7. Comparison of Neyman-Pearson Test and Sequential Probability Ratio Test
(PFA = 0.1,PD = 0.9).

the process is terminated with the acceptance of H1. Similarly

m

∑
i=1

Λi ≤ B, (41)

leads to termination with the acceptance of H0.

3.2 Wald test for complex random variable

Let us consider testing zero mean hypothesis in complex AWGN

H0 : zi = xi + jyi = wi

H1 : zi = m + wi
. (42)

Here m = mI + jmQ = µ exp(jφm) �= 0 is complex non zero mean and wi is i.i.d. complex zero

mean Gaussian process of variance σ2.
A single sample log-likelihood ratio Λi is given by

Λi = ln
p1(zi;H1)

p0(zi;H0)
=

2µ (xi cos φm + yi sin φm)− µ2

σ2
. (43)

After N steps of the sequential test the cumulative log-likelihood Λ ratio becomes

Λ =
N

∑
n=1

Λn =
2µ

σ2
TN −

Nµ2

σ2
, (44)

where

TN = cos φm

N

∑
n=1

xn + sin φm

N

∑
n=1

yn. (45)

The rest of the test follows procedure of Section 3.1.
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Figure 7 shows the performance comparison in number of samples needed between Wald Test
and Neyman-Pearson Test. Notice that the latter needs in general almost twice the number of
samples in order to detect the presence of the signal.
It follows from (45) that the sufficient statistic in the case of complex observation is

T =
N

∑
n=1

ℜ{x exp(−jφm)}. (46)

In other words, processing of the received signal is implemented in two stages: first, the data
is unitary rotated by the angle φm to align the mean along real axis; then the real part of data
is analyzed using the same procedure as purely real data.

3.2.1 Average number of samples

We have defined the sequential test procedure in eq.(39). Using this we can call

Λ =
m

∑
i=1

Λi = ln
p(z1, . . . , zm|H1)

p(z1, . . . , zm|H0)
, (47)

where the random variable m stands for the required number of samples needed to terminate
the test. As stated in Wald (2004) it is possible to neglect the excess on threshold A and B,
hence the the random variable can have the four possible combinations of terminations and
hypotheses such as

Λ =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

PFAA if H0 is true
PDA if H1 is true

(1 − PFA)B if H0 is true
PMB if H1 is true

. (48)

Following same reasoning we can get the conditional expectation for the random variable Λ

as

Λ̄ =

{

PFAA+ (1 − PFA)B if H0 is true
PDA+ PMB if H1 is true

. (49)

It is possible now to obtain the average number of samples (decision time) for accepting one
of the two hypothesis (H0,H1) as:

n̄(H0) =
PFAA+ (1 − PFAB)

Λ̄(H0)
, (50)

n̄(H1) =
PDA+ (1 − PDB)

Λ̄(H1)
, (51)

where the term Λ̄(H0) can be calculated as

Λ̄(H0) =
∑

N
n=1 Λn

N
, (52)

if no signal is present. The term Λ̄(H1) can be calculated analogously assuming there is a
signal present as follows

Λ̄(H1) =
∑

N
n=1 Λn

N
. (53)
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Fig. 8 shows the average number of samples needed to achieve a PD = 0.9 for different SNR.
The deviation at high SNR’s is due to the same effect already explained before. In practice for
very high SNR’s only one sample is enough to detect the presence of primary users.

3.2.2 Decision time distribution

as it was described earlier, decision time when using sequential analysis for detection is a
random variable. Hence it can be described by its PDF. Although an exact shape for this PDF
is not known in general, a very good approximation is available (specially for the low SNR
regimen) called Wald distribution or inverse Gaussian distribution defined as

f (x) =
λ

2πx3
exp

−λ(x − µ)2

2µ2x
x > 0, (54)

where µ is the mean and λ > 0 is the shape parameter. In figure 9 it is shown Wald’s
distribution in order to approximate the decision time for a PD = 0.9.
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Though application of sequential analysis with high reliability of the hypothesis testing
(PFA, PM → 0) can provide an effective censoring of the information sent to other SU or FC
together with reduction of the sampling size at SU.

3.3 Sequential probability ratio test for partially coherent channel

Let us consider detection of a signal in a channel a with partially known phase. The received
signal can be modeled as

zi = m exp(j∆) + wi, (55)

where m = mI + jmQ = µ exp(jφm) is a deterministic and known complex constant, wi

is complex zero mean Gaussian noise with variance σ2. Random variable ∆ represents
uncertainty in measuring the phase of the carrier. Its distribution can be described by PDF
p∆(∆). In the following we assume that the phase uncertainty is described by the Von Mises
(or Tikhonov) PDF (von Mises, 1964)

p∆(δ) =
exp [κ cos(∆ − ∆0)]

2π I0(κ)
. (56)

Parameter ∆0 represents bias in the determination of the carrier’s phase, while κ represents
quality of measurements. A few particular cases could be obtained from (56) by proper choice
of parameters

1. Perfect phase recovery (coherent detection): κ = ∞, ∆0 = 0, and, thus, p∆(∆) = δ(∆)

2. No phase recovery (non-coherent detection): κ = 0 and, p∆(∆) = 1/2π

3. Constant bias: κ = ∞, ∆0 �= 0, p∆(∆) = δ(∆ − ∆0)

We will derive the general expression first and then investigate particular cases to isolate
effects of the parameters on performance of SPRT.

3.3.1 Average likelihood ratio

For a single observation zi probability densities p1(zi) and p0(zi) corresponding to each of the
hypothesis H1 and H0 are given by

p1(zi) = C exp

[

−
(xi − µ cos(φm + ∆))2

σ2

]

exp

[

−
(yi − µ sin(φm + ∆))2

σ2

]

, (57)

and

p0(zi) = C exp

[

−
x2

i + y2
i

σ2

]

, (58)

respectively Filio, Primak & Kontorovich (2011). For a given ∆, the likelihood ratio Li could
be easily calculated to be

Li =
p1(zi)

p0(zi)
= exp

[

2µ (xi cos(φm + ∆) + yi sin(φm + ∆))− µ2

σ2

]

. (59)

The conditional (on ∆) likelihood ratio L(N|∆), considered over N observation is then just a
product of likelihoods of individual observations, therefore
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L(N|∆) =
N

∏
n=1

p1(zn)

p0(zn)
= exp

[

2µ ∑
N
n=1 (xn cos(φm + ∆) + yn sin(φm + ∆))− Nµ2

σ2

]

= exp

[

2µT (N, ∆)

σ2

]

exp

[

−
Nµ2

σ2

]

, (60)

where

T (N, ∆) = cos(φm + ∆)
N

∑
n=1

xn + sin(φm + ∆)
N

∑
n=1

yn. (61)

Let us introduce a new variables, X(N), Y(N), Z(N) and Ψ(N), defined by

X(N) = Z(N) cos Ψ(N) =
N

∑
n=1

xn (62)

Y(N) = Z(N) sin Ψ(N) =
N

∑
n=1

yn (63)

Using this notation equation (61) can now be rewritten as

T (N, ∆) = Z(N) cos [φm + ∆ − Ψ(N)] . (64)

The average likelihood (Middleton, 1960) L(N) could now be obtained by averaging (60) over
the distribution of p∆(∆) to produce

L̄(N) = exp

[

−
Nµ2

σ2

]

∫ π

−π
exp

[

2µZ(N) cos [φm + ∆ − Ψ(N)]

σ2

]

p∆(∆)d∆. (65)

In turn, this expression could be further specialized if p∆(∆) is given by equation (56)

L̄(N) = exp

[

−
Nµ2

σ2

]

1

I0(κ)
I0

⎡

⎣

√

4µ2Z2(N)

σ4
+

4µZ(N)κ

σ2
cos [φm − Ψ(N)− ∆0] + κ2

⎤

 . (66)

It can be seen from (66) that it is reduced to (45) if ∆0 = 0 and κ = ∞. Furthermore the
deterministic phase bias ∆0 could be easily eliminated from consideration by considering z̃i =
zi exp[−j(φm + ∆0)] instead of zi. Therefore, equation (66) could be simplified to

L̄(N) = exp

[

−
Nµ2

σ2

]

1

I0(κ)
I0

[

1

σ2

√

4µ2Y2(N) + [2µX(N) + κσ2]
2
]

. (67)

In the case of non-coherent detection, i.e. in the case κ = 0, expression (67) assumes a well
known form

L̄(N) = exp

[

−
Nµ2

σ2

]

I0

[

2µZ(N)

σ2

]

. (68)

Formation of the likelihood ratio could be considered as a two step process. As the first
step, inphase and quadrature components independently accumulated to lessen the effect
of AWGN. At the second step, values of X(N) and Y(N) must be combined in a fashion
depending on available information. In the case of coherent reception it is know a priori that
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Fig. 10. Impact of coherency on the average number of samples.

the quadrature component Y(N) contains only noise and it is ignored in the likelihood ratio.
On the contrary, in the case of non-coherent reception one cannot distinguish between the
in-phase and quadrature components and their powers are equally combined to for Z(N). In
the intermediate case both components are combined according to (67) with more and more
emphasis put on in-phase component X(N) as coherency increases with increase of κ.
In figure 10 we present the impact of non-coherent detection in the number of samples needed
in order to detect a signal with respect to some PD target. Notice that the main repercussion
of non-coherence detection is the increase of samples to nearly twice in comparison to the
coherent detector. In this terms, the non-coherent Wald sequential test procedure can be
thought as having the same efficiency (in terms of number of samples) as the coherent NP-test.

3.4 Optimal fusion rule for distributed Wald detectors

This Section generalized results of Chair & Varshney (1986) to the case of distributed detection
using Wal sequential analysis test. We assume that there are M sensors, making individual
detection according to the Wald algorithm. Once a decision is made at an individual sensor
the decision is send in the binary form to the Fusion Centre for further combining with other
decisions. We assume that the value u = −1 is assigned if the hypothesis H0 is accepted,
u = 1 if the hypothesis H1 is accepted and u = 0 if no decision has been made yet. Only
u = ±1 are communicated to the Fusion Centre.
Since each node utilizes the Wald sequential detection Wald (2004), the decision is made at a
random moments of time. Therefore, at any given moment of time t there is a random number
L(t) ≤ M of decisions which are available at FC as can be seen in figure 11. Probability
distribution of making decision could be approximated either by the two parametric Wald
distribution Wald (2004), or by three parametric generalized inverse Gaussian distribution
Jørgensen (1982) (as seen in fig.9). Parameters of those distributions could be found through
moment/cumulant fitting, using expressions derived in Wald (2004), Filio, Kontorovich
& Primak (2011). Following Chair & Varshney (1986) we would treat this problem as a
two-hypothesis detection problem with individual detector decision being the observation.
For a given number L = L(t) of decisions made by the time t, the optimum decision rule is
equivalent to the following likelihood ratio test
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Fig. 11. System model of data fusion system

P (u1, u2, · · · , uL|L,H1) P(L|H1)

P (u1, u2, · · · , uL|L,H0) P(L|H0)

H1
≷
H0

P0(C10 − C00)

P1(C01 − C11)
. (69)

Here P(L|H0) is the probability of making exactly L decisions assuming that H1 is true and
ul is the decision made by l-th sensor.
Furthermore, assuming the minimum probability of error criteria, i.e. by setting C00 = C11 = 0
and C01 = C10 = 1, introducing notation uL = {u1, u2, · · · , uL} and using the Bayes rule one
can recast equation (69) as

P(H1|uL, l)P(l|H1)

P(H0|uL, l)P(l|H0)

H1
≷
H0

1, (70)

or, after taking natural log of both side

ln
P(H1|uL, l)

P(H0|uL, l)
+ ln

P(l|H1)

P(l|H0)

H1
≷
H0

0, (71)

where l is a vector which represents which sensors have made decisions.
Once again following Chair & Varshney (1986), one can calculate probabilities P(H1|uL, l) and
P(H0|uL, l) as follows. In the case of the hypothesis H1 one can write

P(H1|uL, l) =
P(H1, uL|l)

P(uL|l)
=

P1

P(uL|l)
∏
S+

P(ul = +1|H1)∏
S−

P(ul = −1|H1) =
P1

P(uL|l)
∏
S+

(1 − PM,l)∏
S−

PM,l , (72)

where S+ is the set of all i such that ui = +1 and S− is the set of all i such that ui = −1.
Similarly, in the case of the hypothesis H0 one obtains

P(H0|uL, l) =
P(H0, uL|l)

P(uL|l)
=

P0

P(uL|l)
∏
S−

(1 − PF,l)∏
S+

PF,l . (73)

Finally, using equations (72) and (73) one obtains the following expression for the conditional
log-likelihood

ln
P(H1|uL, l)

P(H0|uL, l)
= ln

P1

P0
+ ∑

S+

ln
1 − PM,l

PF,l
+ ∑

S−

ln
PM,l

1 − PF,l
. (74)

157Primary User Detection in Multi-Antenna Cognitive Radio

www.intechopen.com



20 Will-be-set-by-IN-TECH

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

time

 

 
P

MD
 M = 5

P
FA

 M = 5

P
MD

 M = 7

P
FA

 M = 7

P
MD

 M = 11

P
FA

 M = 11

Asymptotic P
MD

 M = 5

Asymptotic P
FA

 M = 5

Asymptotic P
MD

 M = 7

Asymptotic P
FA

 M = 7

Asymptotic P
MD

 M = 11

Asymptotic P
FA

 M = 11

Fig. 12. Data fusion scheme considering sequential analysis decision from each sensor
(PM,l = 0.3, PF,l = 0.1).
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Fig. 13. Data fusion scheme considering sequential analysis decision from each sensor
(PM,l = 0.1, PF,l = 0.3).

In order to evaluate the second term in the sum (71) let us first consider an arbitrary node
1 ≤ k ≤ N. Distribution pT,k(τ) of the decision time at such a node is assumed to be known.
Therefore, probability PD,k(t|Hi) that the decision is made by the time t = mTs given that the
hypothesis is true is given by

PD,k(t|Hi) =
∫ mTS

0
pk(τ|Hi)dτ. (75)
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The probability that no decision has been made by the time t is then simply 1 − PD,k(t|Hi).
As it has been mentioned earlier, parameters of this distribution could be defined as in Filio,
Kontorovich & Primak (2011). Therefore , the second term in the equation (71).

ln
P(l|H1)

P(l|H0)
=

L

∑
l=1

ln
PD,l(t|H1)

PD,l(t|H0)
+

M

∑
l=L+1

ln
1 − PD,l(t|H1)

1 − PD,l(t|H0)
. (76)

Finally, the fusion rule in the case of nodes making decision according to Wald’s criteria could
be written as

f (u) =

{

1 if a0 + ∑
L
l=1 alul > 0

−1 otherwise
(77)

where

a0 = ln
P1

P0
+

L

∑
l=1

ln
PD,l(t|H1)

PD,l(t|H0)
+

M

∑
l=L+1

ln
1 − PD,l(t|H1)

1 − PD,l(t|H0)
, (78)

al = ln
1 − PM,l

PF,l
if ul = 1, (79)

al = ln
1 − PF,l

PM,l
if ul = −1. (80)

Thus, the combining rule is similar to that suggested in Chair & Varshney (1986), however,
with some significant differences in the term of a0. In figures 12 and 13 it is shown the
performance of the data fusion scheme considering that each one of the sensors takes a
decision based on the sequential detection criteria. In these figures it is plotted the probability
of missdetection (PMD) and the probability of false alarm (PFA) versus the time in which the
fusion centre gathers the decisions taken from the local observers. Notice that for t → ∞ all
graphs converge to the data fusion rule of Chair & Varshney (1986) for which the theoretical
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expression for probability of missdetection and false alarm is derived in appendix 5. It is
obvious that for small values of time, the fusion centre has less information (since not all
the detectors might achieve a decision by then) and the final decision it takes is way less
accurate that for large values of time. Nevertheless, in some practical systems it would be
impossible to wait that long for getting the decision from the fusion centre, so we can use
these results as a trade-off between the performance on the detection and the time of decision
Gosan et al. (2010). Next thing it is possible to observe is the impact that PD,l and PF,l has on
the performance of the data fusion detector.
Notice that for very small values of false alarm probability, al ≈ − ln PM,l if u = −1 in eq. (78)
which means that hypothesis H0 is always less weighted in equation (77) or in other words,
the fusion centre “trusts” more in those sensors who decide that H1 is true. For very small
values of missdetection probability a similar thing occurs but in this case the hypothesis H0

is more weighted in the final sum in equation (77). A special case occurs when PD,l = PF,l ,
P0 = P1 and t → ∞. In this situation, the scheme converts into the more simple majority
decision approach, which just sums all ul and compares with zero. Even though its simplicity,
the maximum likelihood approach performs better than the majority decision scheme in the
minimum probability of error criteria as can be seen in figure 14 Filio et al. (2010). The
perceptive reader must have noticed by now that there might be some confusion at the fusion
centre when there exists an even number of sensors and there is a tie in the decision. This can
be settled by considering the a priori probabilities P0 and P1 which are inherent to the system.

4. Conclusion

In the first part of this chapter, we have investigated the impact the scattering environment on
the performance of primary user detection in multiantennae confinguration. An approximate
expressions for the probability of missed detection in function of the number of antennas,
parameters of the scattering environment and number of observations. It is shown that at low
SNR it is more beneficial to utilize just a single antenna and large number of time samples.
This allowes for a better noise suppression via time averaging. On the contrary, at high SNR, it
is more beneficial to have more antennas in order to mitigate fading which is a dominant cause
of errors in detection in weak noise. It was also shown that for a very strong correlation, i.e.
ρ ≈ 1, the equivalent number of antennas is almost unity, Neq ≈ 1. Therefore this scheme can
be usefully applied in a low SNR situations assuming enough time samples are obtained. As
ρ ≈ 0, the diversity gain is increased, therefore making it suitable for higher SNR situations.
The second part of the chapter was devoted to application of the sequential analysis technique
to a chive a faster spectrum sensing in cognitive radio networks. It was shown that using the
sequential probability ratio test it is possible to detect the presence of a primary user almost
twice as fast as other fixed sample approaches such as Neyman Pearson detectors. This can be
achieved when dealing in the low SNR region which is a quite often operating characteristic in
real life. The effect of error in estimation phase of the carrier on the duration of the sequential
analysis has also been investigated. It was shown that the impact of non-coherent detection in
sensing the presence of primary users using sequential analysis is the increase of almost twice
the samples needed in comparison to a coherent detection approach. Afterwards we derived
an optimal fusion rule using detectors that use sequential analysis for taking decisions. We
assessed the performance of the system in terms of the time that it takes to gather the decision
from all detectors. It was shown that for faster decision, the fusion centre does not consider
the opinions of all sensors and hence the performance gets reduced. On the other hand, as
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the time of decision increases the performance is better but the system experiment a higher
latency.

5. Appendix

Performance derivation of data fusion rule

Let us introduce the following notations

ai =

{

ln 1−PMD
PFA

if ui > 0

ln 1−PFA
PMD

= − ln PMD
1−PFA

if ui < 0
, (81)

and

ξi =

{

ai = ln 1−PMD
PFA

if ui > 0

bi = −ai = − ln 1−PFA
PMD

if ui < 0
. (82)

Consider a T (test statistic) given by eq. (77)

T = a0 +
K

∑
k=1

akuk = a0 +
K

∑
k=1

ξk|uk| = a0 +
K

∑
k=1

ξk. (83)

Here ξk could be considered as a random variable with PDF

Pξ(x) = P+δ(x − a) + P−δx − b
= Pδ(x − a) + (1 − P)δ(x − b),

(84)

where
a = ai = ln 1−PMD

PFA

b = −ai = − ln 1−PFA
PMD

. (85)

and P+ is probability of u = +1 decision, equal to

P+ = p(H1)(1 − PMD) + p(H0)PFA

= p(H1)(1 − PMD) + [1 − p(H1)] PFA
, (86)

The corresponding characteristic function of ξ is then given by

Θξ(s) = P+e−sa + P−e−sb, (87)

and the characteristic function of T could be evaluated as

ΘT = ΘK
ξ e−sa0 =

[

P+e−sa + (1 − P+)e−sb
]K

e−sa0

= ∑
K
k=0 (

K
k)Pk

+(1 − P+)K−ke−s[ka+(K−k)b+a0]
. (88)

Equivalently, the PDF is given by

PT (x) =
K

∑
k=0

(

K

k

)

Pk
+(1 − P+)

K−kδ[x − (ka + (K − k)b + a0)]. (89)

If k = 0 then
ka + (K − k)b − a0 = Kb + a0
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= −K ln
1 − PFA

PMD
+ ln

P(H1)

1 − P(H1)
. (90)

If P(H1) ≈ 1 such that

P(H1)

1 − P(H1)
>

(

1 − PFA

PMD

)K

, (91)

then the FC makes only H1 decisions i.e.

PMD = 0, PFA = P(H0) = 1 − p(H1).

If (91) is not satisfied then there is kmax > 0 such that

kmaxa + (K − kmax)b + a0 < 0, (92)

and
(kmax + 1)a + (K − kmax − 1)b + a0 > 0. (93)

In this case the scheme suggested in Chair & Varshney (1986) is equivalent to (kmax + 1) out
of K scheme (this is assuming that are statistically equivalent).
Let H1 be true. Then the target is missed if there are no more than kmax positive decisions, or,
equivalently, no less than K − kmax negative decisions. The probability of miss detection at FC
is then given by

PMDF
=

kmax

∑
k=0

(

K

k

)

Pk
MD(1 − PMD)

K−k. (94)

To more decisions H1 there should be at least kmax + 1 partial 1. If H0 is true, the probability
of false alarm at the fusion center is then:

H1 : PMDF
= ∑

kmax

k=0 (K
k)(1 − PMD)

kPK−k
MD

H0 : PFAF
= ∑

K
k=kmax

(K
k)(PFA)

k(1 − PFA)
K−k . (95)
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