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Regenerative Medicine and Tissue Engineering 
for the Treatment of Diabetes  

Matsumoto S, SoRelle JA and Shimoda M 
Baylor Research Institute / Baylor University / Baylor University Medical Center 

USA 

1. Introduction 

Diabetes mellitus is a disease of insulin insufficiency, which causes hyperglycemia and has 
both acute and chronic complications. Acute complications consist of hyperglycemic 
ketoacidosis and hypoglycemic episodes. Chronic complications consist of micro- and 
macro-angiopathies. Micro-angiopathy leads to diabetic nephropathy, neuropathy and 
retinopathy; macro-angiopathy leads to brain infarction, brain hemorrhage and cardiac 
infarction.  Both acute and chronic complications significantly deteriorate the quality of life 
of diabetic patients and are sometimes fetal. 
More than 23.7 million people suffer from diabetes in the USA today and that number will 
reach 44.1 million in 2034 (Huang et al., 2009).  It has been demonstrated that the loss of 
beta-cell mass is approximately 95% in type 1 diabetic patients, 65% in type 2 diabetic 
patients, and even 50% in metabolic syndrome patients (Butler et al., 2003, 2007; Meier et al., 
2005, 2008). 
From the treatment viewpoint, diabetes is categorized into non-insulin dependent diabetes 
mellitus (NIDDM) and insulin dependent diabetes mellitus (IDDM).  The standard therapy 
for the IDDM is insulin injection (Table 1).  However, in the advanced phase, those patients 
are not able to control blood glucose levels by insulin injection.  Beta cell replacement 
therapies including whole pancreas transplantation and islet cell transplantation are 
currently applied clinically for such patients (Matsumoto, 2010a) (Table 1).  Unfortunately, 
there are more than one million IDDM patients in the United States and the number of 
cadaveric organs available is approximately 7,000 in each year. There is a clear donor 
shortage and regenerative medicine and/or tissue engineering for creating insulin-
producing cells are critical to overcome this issue. 
Diabetes is an excellent candidate for regenerative medicine and tissue engineering because 
only the beta cell with or without alpha cells is necessary to be generated for improving 
glycemic control.  Since islet cell transplantation has already been proven to be an effective 
treatment for diabetic patients, generating insulin-producing cells is guaranteed for clinical 
effectiveness. 
Indeed, tissue engineering using pig islet cells has already been clinically attempted as a bio-
artificial islet transplantation for the treatment of IDDM patients (Table 1). In addition, some 
approaches including direct signal delivery to pancreas and neural relay of signal from liver 
to pancreas have been established for beta cell regeneration experimentally  
(Table 1). 
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Category Treatment Clinical 
application 

Donor 
sources 

Need for 
Anti-
rejection 
drugs 

Prevention of 
acute and 
chronic 
complications 

Insulin 
therapy 

Insulin 
injection 

Standard 
therapy 

N.A. No No 

Beta cell 
replacement 

Pancreas 
transplant 

Standard 
therapy 

Cadaveric or 
living donor

Yes Yes 

Beta cell 
replacement 

Islet 
transplant 

Semi-standard 
therapy 

Cadaveric or 
living donor

Yes Yes 

Bio-artificial 
islet 

Xeno islet 
transplant 

Under clinical 
trial 

Pig No Possible 

Bio-artificial 
islet 

Generated 
islet 
transplant 

Not clinically 
available 

Stem cells 
(ES cells,  
iPS cells, 
pancreatic 
stem cells) 

Yes or No Unknown 

Beta cell 
regeneration 

Direct signal 
delivery 

Not clinically 
available 

N.A. Yes for type 
1 diabetes 

Unknown 

Beta cell 
regeneration 

Neural relay 
of signal 

Not clinically 
available 

N.A. Yes for type 
1 diabetes 

Unknown 

Table 1. Current and future treatments for insulin dependent diabetes mellitus (IDDM).  
Allogeneic islet transplantation for the treatment of type 1 diabetes is considered as the 
standard therapy in some countries.  Of note, bio-artificial islet transplantation using pig 
islets has been already initiated for the treatment of type 1 diabetic patients.  ES cells: 
Embryonic stem cells, iPS cells: induced pluripotent stem cells, N.A.: not applicable 

Thus this field is one of the most advanced areas for regenerative medicine and tissue 

engineering. 
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In this book chapter we describe the current status of regenerative medicine and tissue 

engineering for creating insulin-producing cells and clinical application or the path to the 

clinical application of those technologies. 

2. Regenerative medicine of beta cells 

Regenerative medicine of beta cells consists of two major categories.  The one is a 
replacement/implantation of alternative cell sources instead of human islets from cadaver 
donors.  Such cell sources include embryonic stem (ES) cells, induced pluripotent stem (iPS) 
cells, or other systemic stem cells. They are expanded and differentiated to insulin 
producing cells in vitro, and implanted into a diabetic patient.  However, although several 
straightforward protocols were established, both the efficiency of in vitro programming and 
the function of derived-beta cells remain unsatisfactory.  In addition, safety concerns due to 
inherent risks of neoplasm originating from residual stem cells remain a major hurdle 
(Borowiak & Melton, 2009; Ricordi & Edlund, 2008; McKnight et al., 2010).  To avoid the 
risks of neoplasm of beta cell generation from stem cells, beta cell transdifferentiation from 
exocrine tissues has been performed (Minami et al., 2005). Impressively, simple culture of 
exocrine tissue with EGF and nicotinamide enabled the transdifferentiation of exocrine 
tissue to beta cells.  Additionally, exocrine tissues from type 1 diabetic mice model were able 
to trans-differentiate into beta cells (Okuno et al., 2007). However, the efficacy was not 
effective yet to generate enough beta cells to reverse diabetes, and this approach requires 
human exocrine tissue. 
Another medical approach is bona fide regeneration of islet cells/beta cells in a patient.  
Because there is a slow rate of beta cell turnover in the human pancreas even after injury, 
regenerative medicine is focusing on stimulating either beta cell replication or neogenesis.  
Finding a molecular intervention that can be safely used in vivo seems challenging but not 
impossible.  There are ways in which neogenesis might be stimulated to expand beta cell 
mass using agents such as exendin-4, gastrin and epidermal growth factor (Bonner-Weir & 
Weir, 2005).  Another method is differentiation/transdifferentiation in which either existing 
stem cells or differentiated cells can be programmed/reprogrammed to change their 
identity.  To achieve this goal, most studies have used a gene induction method with a viral 
vector.  It was demonstrated that pancreatic acinar cells might be reprogrammed in mice 
with injections into the pancreas of adenoviruses expressing three transcription factors, 
pancreatic duodenal homeobox-1 (PDX-1), musculoaponeurotic fibrosarcoma oncogene 
homolog A and neurogenin-3 (Zhou et al., 2008).  However, gene delivery with viral vectors 
has shown adverse effects, which have been related to enhancer-mediated mutagenesis of 
genomic DNA (Hacein-Bey-Abina S et al., 2003) or immunological responses to viral 
proteins (Manno et al., 2006). Before these permanent or long-term side effects are fully 
understood and resolved, the safety of using viral vectors must be established. 
In this chapter, for bona fide beta cell regeneration, we will introduce two unique methods.  
The first method is gene delivery using ultrasound targeted micro-bubble destruction 
(UTMD) technology. UTMD technology allows us to deliver genes specifically into the 
pancreas by using ultrasound without using viral vectors (Chen et al., 2006, 2010).  The other 
method is activating neural relay mechanism to stimulate beta cell regeneration and insulin 
secretion in naïve pancreas (Imai et al., 2010).  The initial signal is activated in the liver and 
the signal relay to pancreas via neural system.  The unique signal in the liver can actually 
stimulate beta cell regeneration and insulin secretion in the naïve pancreas. 
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2.1 Ultrasound targeted micro-bubble destruction (UTMD) for gene delivery to 
regenerate beta cells 
2.1.1 Development of UTMD for gene delivery 

In order to obtain high gene expression after gene delivery in vivo without viral vectors, we 
have established an ultrasound-mediated gene transfer method named Ultrasound Targeted 
Microbubble Destruction (UTMD) and achieved efficient gene transfer of plasmid DNA 
(pDNA) in vivo (Chen S et al., 2006, 2010; Korpanty G et al., 2005).  Delivery of pDNA does 
not transport toxic or immunogenic viral protein or polymer particles.  UTMD is known to 
be a novel and potential gene delivery method in vivo.  The mechanism of gene delivery is as 
follows: the microbubbles consist of lipid shell and perfluorocarbon gas on the inside. The 
plasmid gene to be delivered resides in the shell. After infusing the microbubbles with 
pDNA intravenously, they are detected in the target organ by echography. Under 
ultrasound exposure, the microbubbles burst and the energy creates transient pores in 
membranes of surrounding cells, and pDNAs are inserted into the cells (Figure 1). 
UTMD has many of the desired characteristics of gene therapy including low toxicity, low 
immunogenicity, potential for repeated application, organ specificity and broad 
applicability to acoustically accessible organs. 
 

 

 
 

  

US 

Target 

Tissue 

Vessel 

Microbubbles  

with genes 

Genes 

 

 

Fig. 1. The mechanism of Ultrasound Targeted Microbubble Destruction (UTMD) for gene 
delivery.  In vessels, microbubbles can be destroyed with high mechanical index ultrasound 
in the target organ, and the released genes (pDNAs) pass through the vasculature, thus 
releasing the genes (pDNAs) into the surrounding tissue.  The microbubble destruction can 
only happen under ultrasound 

Using this technology, plasmids containing rat insulin 1 promoter (RIP)-human insulin and 
RIP-hexokinase I were successfully delivered to the islets of adult rats (Chen S et al., 2006).  
Delivery of RIP-human insulin plasmid resulted in clear increases in circulating human C-
peptide and decreased blood glucose levels.  Delivery of RIP-hexokinase plasmid resulted in 
a clear increase in hexokinase I protein expression in islets. Furthermore, delivery of RIP-
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NeuroD1 by UTMD technology into streptozotocin induced diabetic rats resulted in 
promotion of islet regeneration in the naïve pancreas with the return of normal glucose, 
insulin and C-peptide levels (Chen S et al., 2010).  Thus, an exciting new possibility has 
emerged with this technology.  Much work is now underway to determine the potential 
clinical applications of this in vivo gene induction used alone or in combination with other 
regeneration techniques. 

2.1.2 Path to clinical application of beta cell regeneration by UTMD 

Even though UTMD for gene delivery is promising for beta cell regeneration, there are 
several issues that remain to be solved before clinical application.  First of all, the safety of 
this technology needs to be confirmed using a large animal model.  Microbubbles have been 
clinically used as contrast agents for ultrasound; however, the material of microbubbles for 
UTMD is modified for gene delivery. Therefore, it is necessary to assure the microbubbles 
for UTMD is safe.  Furthermore, since the ability of beta cell regeneration in rodent is much 
higher in human or large animal (Noguchi et al., 2009b, 2010), it is important to confirm the 
efficacy of beta cell regeneration in large animal. The next issue is the long-term effect of 
beta cell regeneration by gene delivery with UTMD. In the rodent model, normoglycemia 
were maintained for up to 3 months (Chen et al., 2010). Identifying the mechanisms of 
failure to maintain long-term insulin independence is important.  On the other hand, the 
UTMD technology is relatively easy to be applied. Therefore repeating this technology is 
feasible.  In such case, the effect and safety of repeated UTMD need to be assessed. 
When applying the UTMD method for type 1 diabetic patients, it is necessary to prevent 
autoimmune recurrence. Therefore, immunosuppressive drugs might be necessary to 
prevent the immunological rejection of regenerated beta cells. 

2.2 Neural relay for beta cell regeneration in naïve pancreas 

The concept of neural relay is very unique. Beta cell proliferative activity changes 
dynamically to meet systemic needs throughout life. One condition in which beta cell 
proliferation is enhanced is obesity-related insulin resistance. However, the mechanism 
underlying this compensatory beta cell response is not well understood. 
Recently, Katagiri et al. have identified a neuronal relay, originating in the liver, which 
enhances both insulin secretion and pancreatic beta cell proliferation for the possible 
mechanism of obesity-related insulin resistance (Katagiri et al., 2009). Blockade of this neural 
relay in murine obesity models inhibited pancreatic islet expansion during obesity 
development, showing this inter-organ communication system to be physiologically 
involved in compensatory beta cell proliferation.  They demonstrated that proliferation of 
pre-existing beta cells contributes to a beta cell increment by neural relay mechanism.  
Therefore, this neural relay system is not only for explaining the mechanism of obesity-
related insulin resistance but also might be applicable for beta cell regeneration in the naïve 
pancreas for the treatment of diabetes. 

2.2.1 Discovery of neural relay 

Metabolism in different organs and tissues works in a coordinated manner.  This 
coordinated metabolism requires inter-organ/tissues communication, therefore the 
communication among organs and tissues are critical for maintaining normal metabolism 
(Katagiri et al., 2009).  It has been demonstrated that humoral factors including hormones 
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and cytokines play major roles.  However, a number of studies have shown that unexpected 
metabolic phenotypes also make a contribution suggesting the presence of currently 
unknown metabolic communication systems. 
Recently, it was demonstrated that neuronal signaling plays important roles in inter-organ 
metabolic communication (Yamada et al., 2006).  Obesity induces insulin hypersecretion and 
pancreatic beta cell hyperplasia in response to insulin resistance.  These compensatory 
responses of pancreatic beta cells prevent hyperglycemia; however, this causes 
hyperinsulinemia which is involved in the pathogenesis of the metabolic syndrome.  To 
elucidate the mechanisms of these compensatory mechanisms, Katagiri et al. activated 
several proteins which are known to be activated in the livers of obese and lean mice.  They 
discovered that extracellular signal-regulated kinase (ERK) plays an important role in 
compensatory pancreatic beta cell responses.  To activate ERK in the liver, they used 
adenoviral gene transduction system and discovered that liver-selective ERK activation 
induced insulin hypersecretion and pancreatic beta cell proliferation (Fujishiro et al., 2003).  
These pancreatic effects of hepatic ERK activation were inhibited by either splanchnic 
afferent blockade with pancreatic vagus dissection or midbrain transection.  This result 
indicated that a neuronal relay system from liver to the pancreas consists of the afferent 
splanchnic nerve, the central nervous system and efferent vagus (Figure 2). 
Furthermore, blockage of the neuronal relay at several levels in murine obesity model 
inhibited pancreatic islet expansion during obesity development indicating that the neural 
relay played an important role in the inter-organ mechanism in compensatory beta cell 
responses. 
 

 

Hepa�c ERK  

ac�va�on 

Splanchnic  

Nerve 

Vagal 

Nerve 

Insulin hypersecre�on 

Beta cell prolifera�on 

 

Fig. 2. The concept of neural relay for beta cell regeneration.  The signal of hepatic ERK 
activation reaches the brain via the splanchnic nerve.  Then the signal reaches the pancreas 
via the vagal nerve.  This signal stimulates insulin hypersecretion and beta cell proliferation 
in the pancreas 
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2.2.2 Potential application of neural relay for beta cell regeneration 

Regeneration of beta cells in the original pancreas could be an ideal cure for type 1 diabetic 

patients. Since the neural relay system can stimulate beta cell proliferation and insulin 

secretion, this system might be used for beta cell regeneration. 

Indeed, it has been demonstrated that liver-selective activation of extracellular signal-

regulated kinase (ERK) using an adenoviral gene transduction system resulted in an 

increase in beta cell mass and normalization of serum glucose levels in streptozotocin 

(STZ) induced diabetic mice and Akita diabetic mice (Imai et al., 2008). A 

bromodeoxyuridine (BrdU) staining study demonstrated that beta cell proliferation was 

the mechanism for increasing beta cell mass by neural relay (Imai et al., 2008).  Therefore, 

stimulating the ERK pathway is a promising idea for beta cell regeneration in the naïve 

pancreas. However, it should be noted that they used only the STZ model and Akita 

diabetic mice model.  STZ model is a model of insulin dependent diabetes mellitus, 

however, no autoimmune mechanism is involved. Therefore, although the neural relay 

works on the STZ model it is still unknown whether this method can be effective on the 

type 1 diabetic patients with autoimmune disease.  In addition, the STZ model cannot 

completely eliminate beta cells therefore beta cell proliferation was possible.  On the 

contrary, type 1 diabetic patients without insulin secretory ability have completely lost 

their beta cells.  Therefore, it might be impossible to induce beta cell proliferation because 

no beta cells remain.  In order to apply neural relay technology for type 1 diabetes, it is 

necessary to confirm the efficacy using NOD mice which is an autoimmune induced type 

1 diabetes model.  Additionally, it is necessary to examine the minimum number of 

remaining beta cells which will be proliferated to reverse diabetes.  If a significant amount 

of beta cells are necessary, this method can only be applied for the patients who still have 

insulin secretory ability.  Akita diabetic mouse is a model of type 2 diabetes.  In general, 

patients with type 2 diabetes do not require insulin injection; therefore the indication of 

neural relay for type 2 diabetes should be limited.  However, currently, insulin therapy is 

applied for type 2 diabetic patients in order to save functional beta cell mass.  Therefore, 

neural relay therapy might be an excellent option for type 2 diabetic patients with insulin 

therapy.   

The advantage of this method is that no stem cells such as embryonic stem (ES) cells 

(Thomson et al., 1998) or induced pluripotent stem (iPS) cells (Takahashi et al., 2007) or 

pancreatic stem cells are necessary.  Therefore, the notorious problem of carcinogenesis of 

those stem cell derived beta cells is no longer an issue.  In addition, ex vivo manipulation to 

create beta cells from stem cells is not necessary.   

The possible disadvantage of this method is hepatic injury by activation of hepatic ERK.  

Also, the adenoviral system may not be appropriate for clinical trials because of the risk of 

viral infection. UTMD system for activation of hepatic ERK might be useful approach to 

avoid using viral transfection.  Identifying the efficient activation of hepatic ERK should be 

the key for beta cell regeneration.  When ERK stimulation for beta cell regeneration will be 

applied for type 1 diabetic patients, the prevention autoimmune recurrence and 

immunosuppressive drugs might be necessary. Furthermore, in advanced type 1 diabetes, 

all beta cells are destroyed as mentioned above. Therefore, it might be impossible to 

proliferate islets because no original islets exist. In this case, a combination of beta cell 

generation from pancreatic stem cells and neural relay might be useful. 
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3. Bio-artificial islets using pig islets 

Islet transplantation using the bio-artificial islets created from alternative sources instead of 

human islets is very attractive to overcome the issue of severe donor shortage for the 

treatment of diabetes. 

Very importantly, two clinical trials using bio-artificial islets consisting of piglet islets have 

been already clinically performed with promising results.  The first trial was performed in 

Mexico using neonatal pig islets combined with Sertoli cells for the treatment of pediatric 

type 1 diabetic patients (Valdes-Gonzales et al., 2005a, 2007).  Islets and Sertoli cells were put 

into a chamber. The Sertoli cells protected islets from immunological attacks. The other 

series were performed by New Zealand group for the treatment of adult type 1 diabetic 

patients with severe hypoglycemic episodes (Elliott et al., 2011). The New Zealand group 

used microencapsulated pig islets and those bio-artificial islets were transplanted into the 

abdominal cavity. 

Impressively, both groups achieved insulin independence after transplantation in some 

cases without use of immunosuppressive drugs. 

3.1 Bio-artificial islets with Sertoli cells 
3.1.1 Preparation of bio-artificial islets with Sertoli cells and transplantation 

Valdes-Gonzalez et al. performed bio-artificial islet transplantation into twelve pediatric 

type 1 diabetic patients (Valdes-Gonzalez et al., 2005a). Their bio-artificial islet consists of 

collagen-generating devices, islets from neonatal pigs and Sertoli cells. The collagen-

generating devices were not considered as immune-isolation devices.  Islets were isolated 

from male 7-10 days old piglets. The animals were bred in New Zealand in a specific 

pathogen-free environment in accordance with the Association for Assessment and 

Accreditation of Laboratory Animal Care. After pancreas retrieval, pancreases were 

digested using collagenase for islet isolation (Elliott et al., 2000; Valdes-Gonzalez et al., 

2005b). Islets were placed in RPMI-1640, 2% human serum albumin, 0.12% nicotinamide and 

1.5mg/l ciproxine at room temperature and centrifuged at 1000 rpm for 20 min.  The 

average islet yield was 290,730 islet equivalents (IEQ: 1IEQ=1 of 150 μm islet).  The purity of 

islets was assessed with dithizone staining and was greater than 85% in all cases.  The 

viability of islets assessed by acridine orange/propidium iodide staining was more than 

85% in all cases.  Isolated Sertoli cell-enriched testicular cells were placed in DMEM media 

with 0.12% nicotinamide and 1.5mg/l ciproxine. All cell preparations underwent full 

microbiologic screening both in New Zealand and again at the time of transplantation.  Cells 

from ten neonatal pigs were used for each transplant.  Sertoli cells and islets were mixed 

together immediately prior to transplantation. 

Two devices were implanted subcutaneously in the upper anterior wall of the patient’s 

abdomen under general anesthesia.  The devices were left in place for two months to allow 

formation of vascularized collagen tissue that completely surrounded and penetrated the 

device. 

Both islets and Sertoli cells were isolated in New Zealand and sent at room temperature in 

culture media to Mexico. Islets and Sertoli cells were cultured for one day before 

transplantation.  The transplant procedure was carried out by infusing 250,000 islets with 

30-100 Sertoli cells per islet. The number of islets per body weight ranged from 

approximately 14,000 to 21,000IEQ/kg.  From 6 to 9 months later, all patients except one, 
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received a second islet and Sertoli cell transplant into previously implanted new devices.  

No immunosuppressive drug was administered at any point.   

3.1.2 Clinical outcomes 

Immediately upon entering the study, the patients followed a diet and exercise regimen 

standard for diabetic patients, with periodic weight and height measurements.  The patients 

were instructed to record blood glucose determination seven times a day (pre- and 

postprandial, and 3 am). Eleven age and disease matched control group was subjected for 10 

months to exactly the same exhaustive endocrine monitoring, and diet and exercise program 

without receiving a transplant. 

In the transplanted patients following the first and more markedly after the second 

transplant, cluster analysis revealed that two distinct insulin requirement patterns appeared. 

Half of the patients had a 50% or greater reduction in their insulin requirements, and the 

other six patients showed a slight increase. This increase in these patients seen corresponded 

with that that seen in the control group.  Half of the patients significantly reduced amount 

of insulin compared to the control group from the first month post transplant onwards. Two 

patients achieved insulin independence. The first one was a 15 year old female who had 

exogenous insulin requirements of 61 U/day before transplant and HbA1c was 13.4%. After 

the first transplant, she reduced her insulin requirements by 73% and after the second 

transplant she began to have intermittent period of 3-5 days, alternating between periods of 

no insulin injections, followed by periods of 1-2 U/day. This pattern last for 3 months, and 

HbA1c reached 9.6%. The second patient was a 16-year-old female who had exogenous 

insulin requirement of 55 U/day and HbA1c was 12%.  Six months after the first transplant, 

the patient showed a 6 week reduction to 1-3 U/day and HbA1c was 6.8%.  After the second 

transplant she was totally free of insulin for two consecutive months and her HbA1c was 

6.5-7.8%.  Interestingly all patients improved glycemic control after transplantation 

irrespective of the amount of insulin reduction.  Long-term follow-up of those patients 

revealed that all patients have positive porcine C-peptides in urine (Valdes-Gonzalez et al., 

2010). 
In terms of safety, routine microbiological screening of all patients and close family have 
been consistently negative, although two patients exhibited transient chimerism as 
evidenced by porcine DNA thru polymerase chain reaction (PCR).  No complication related 
to the surgery or to the presence of the cells has occurred at any time. 

3.2 Bio-artificial islets using micro-encapsulation technology 
3.2.1 Preparation of bio-artificial islets using micro-encapsulation technology and 
transplantation 

Elliott et al. performed bio-artificial islet transplantation into adult type 1 diabetic patients 
with severe hypoglycemic episodes (Elliot et al., 2011).  Their bio-artificial islets were made 
of micro-encapsulated islets from neonatal pigs. This group used the same islet isolation 
procedures using the same herd with Valdes-Gonzalez.  The islets were micro-encapsulated 
using alginate. The capsule allows entering nutrients and glucose inside the capsule and 
passing insulin outside the capsule (Figure 3). Meanwhile, the capsule blocks antibodies 
resulting in protecting the islet from immunological attack (Figure 3). 
The encapsulation process was a modification of the method described by Calafiore 
(Calafiore et al., 2006).  Encapsulation material was started with raw pharmaceutical grade 
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alginate powder. The alginate powder was dissolved in sterile pyrogen-free deionized water 
over 24 to 36 hours in the dark at room temperature and 3% NaCl was added.  The solution 
underwent multiple sequential passages through methylcellulose and polyester filters to 
ensure sterility.  The final 1.6% solution was stored in the dark room at 4oC to avoid alginate 
depolymerization. The islet tissue pellet, usually amounting to a few tenths of a milliliter, 
was thoroughly mixed with the 1.6% alginate solution. The alginate/islet proportion was 
adjusted so that one capsule would contain one islet, with fewer than 5% empty capsules. 
The suspension was extruded through a microdroplet generator, combining air shears with 
mechanical pressure: the alginate droplets were collected in 1.2% CaCl2 immediately turning 
into gel micro-beads.  They were sequentially overcoated with poly-L-ornithine and an 
outer alginate layer. 
 

 

 

 

Nutrients & 

 glucose 

An�bodies 

Insulin 

Capsule 
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Fig. 3. The concept of microencapsulation of an islet.  Nutrients, glucose and insulin can 
pass through the capsule, but antibodies cannot enter into the capsule 

Bio-artificial islets consisted of microencaplusted neonatal pig islets were transplanted into 

the peritoneal cavity via a laparoscope under general anesthesia.  Four patients received 

10,000 IEQ/kg body weight islets and the other four patients received 15,000IEQ/kg body 

weight islets. 

3.2.2 Clinical outcomes 

In order to perform clinical trials, they gained regulatory approval from the relevant 

authorities after prolonged national and international consultation (Elliott et al., 2011).  A 

national consensus on the bioethical issues was conducted and a separate national 

consultation on the acceptability of the science was also conducted.  Approval from Medsafe 

the relevant department of the Ministry of Health was obtained.  Eight adult patients with 

longstanding proven type 1 diabetes who met all inclusion and exclusion criteria, were 

selected on the basis of severe recurrent hypoglycemia usually with hypoglycemic 

unawareness.   

To date, most patients have shown modest reduction in insulin dose commencing about 

four weeks after transplantation with reduction in HbA1c levels.  Most outstanding has 
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been the reduction in severe hypoglycemic episodes and reduction or abolition of unaware 

hypoglycemia. For example, the first patient had an average of 4 episodes of unaware 

hypoglycemia per week, which was completely diminished after 8 weeks of transplantation.  

Transitory insulin independence of several months duration has been seen. 

In terms of safety, evidence of xenosis in the xenotransplant recipients has been diligently 

sought but not found.  This is reasonable given the credentials of the source herd used.  No 

serious adverse events related to the surgery or to the presence of the cells have occurred at 

any time. 

3.3 Future direction of bio-artificial islets 

Since year 2000 after the publication of the Edmonton protocol, allogeneic islet 

transplantation has become popular as the treatment of type 1 diabetes (Shapiro et al., 2000).  

Using the Edmonton protocol, type 1 diabetic patients who had severe hypoglycemic 

episodes became insulin independent and free from hypoglycemic episodes after allogenic 

islet transplantation (Shapiro et al., 2000). The allogeneic islet transplantation has been 

expanded using non-heart beating donors (Markmann et al., 2003; Matsumoto et al., 2006b) 

and even living donor (Matsumoto et al., 2005, 2006a). However, the drawbacks of the 

Edmonton protocol include necessity of multiple donor organs, unstable islet isolation 

results, necessity of immunosuppressive drugs, difficulty of maintaining long-term insulin 

independence and severe shortage of donor organs (Ryan et al., 2005; Shapiro et al., 2006).  

Currently, we introduced new pancreas preservation (Matsumoto et al., 2002a, 2002b, 2010b) 

and islet isolation strategies (Noguchi et al., 2009a; Shimoda et al., 2010) and 

immunosuppressive therapy to improve the efficacy of islet isolation (Matsumoto et al., 

2011). Now, we have a very stable islet isolation method, in addition, a single donor 

pancreas is enough to achieve insulin independence (Matsumoto et al., 2011).  Our 

preliminary data demonstrated that super-high dose islet transplantation could lead to long-

term insulin independence after allogeneic islet transplantation (Matsumoto et al., 2010c).  

However, the severe donor shortage can be never be solved by allogeneic islet 

transplantation alone.  Bio-artificial islets using porcine islets can solve the issue of donor 

shortage.  In addition, both bio-artificial islets with encapsulated islets and islets with Sertoli 

cells do not require immunosuppressive drugs.  This is huge benefit of bio-artificial islet 

transplantation because one of the major issues of allogeneic islet transplantation is the side 

effects and cost of immunosuppression (Hatanaka et al., 2010). 

Currently, bio-artificial islets were transplanted into the abdominal cavity or under skin.  

These transplant sites have unique advantages. In the case of allogeneic islet transplantation, 

islets were transplanted into liver.  Multiple infusions of isolated islets into liver cause portal 

hypertension.  Therefore allogenic islet transplantation has the limitation of the numbers of 

transplantation.  In the case of bio-artificial islet transplantation, there is no risk for portal 

hypertension. Therefore, there is no limitation of number of transplantation.  These 

comparisons were summarized in table 2. 

Impressively, pigs in New Zealand have been maintained in a clean, non-pathogenic 

environment and seem suitable for clinical use.  Both clinical trials of bio-artificial islets used 

these pigs.  Expansion of the herd of pigs should be the key to enhancing the bio-artificial 

islet project.  Islet isolation from neonatal piglets is relatively easy and stable; this is 

important advantage for commercialization. 
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 Standard 
Allogeneic Islet 
Transplantation 

Advanced 
Allogeneic Islet 
Transplantation 

Bio-artificial Islet 
Transplantation 

Primary Endpoints Preventing 
hypoglycemia 

Insulin free Preventing 
hypoglycemia 

Secondary 
Endpoints 

Insulin free 
Preventing 
diabetic 
complications 

Preventing 
diabetic 
complications 

Insulin free 
Preventing 
diabetic 
complications 

Donor numbers 2 or more human 
pancreases 

1 human pancreas 10 piglets 
pancreases 

Stability of islet 
isolation 

Not stable Stable Stable 

Transplant site Liver Liver Intra-peritoneum 
Under skin 

Immunosuppression Necessary Necessary Not necessary 

Attaining insulin 
independence 

Most likely Most likely Possible 

Long-term insulin 
free 

Difficult Possible Difficult 

Long-term function Possible Most likely Possible 

Re-transplant Up to 3 or 4 times Up to 3 or 4 times No limitation 

Table 2. Comparison among the standard allogeneic islet transplantation, the advanced 
allogeneic islet transplantation and bio-artificial islet transplantation.  Of note, bio-artificial 
islet transplantation has several important advantages including using alternative source, no 
immunosuppressive drugs and no limitation of re-transplantation 

As shown Elliott et al., the bio-artificial islets can eliminate hypoglycemic unawareness, and 

this is the one of the major goals of allogeneic islet transplantation.  Therefore, the patients 
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with hypoglycemic unawareness will be suitable candidates for bio-artificial islet 

transplantation instead of allogeneic islet transplantation in future. 

More importantly, allogeneic islet transplantation can reduce or eliminate diabetic 

secondary complications such as diabetic nephropathy, retinopathy and neuropathy 

(Thompson et al., 2011).  Especially, if the bio-artificial islet transplantation can also reduce 

or eliminate such diabetic secondary complications, this treatment will be very valuable 

because the real problems of diabetes are the secondary complications.   

Cost effectiveness is an issue of bio-artificial islets, because maintenance of clean pigs is 

expensive. The system to maintain cleanness of a huge herd of pigs needs to be developed to 

overcome the cost issue. The major concern of bio-artificial islet transplantation is zoonosis.  

Especially, creating a new viral disease by xeno-transplantation must be avoided.  Infection 

of porcine endogenous retrovirus after xeno-transplantation into immune compromised 

mice demonstrated the risk of the combination of immunosuppression and xeno-

transplantation (van der Laan LJ et al., 2000). Therefore current bio-artificial islet 

transplantations have been performed without immunosuppression. 

Acceptance of pig islets by patients is an emotional and highly debated issue for xeno-

transplantation.  Our survey of type 1 diabetic patients revealed that more than 60% of type 

1 diabetic patients were willingly to accept pig islets if the treatment was effective 

(Hatanaka et al., 2010). 

4. Conclusions 

We introduced two unique gene therapies UMTD and neural relay for beta cell 
regenerations.  Both methods are not clinically applied yet; however due to their relatively 
safe feature, we believe those methods can be clinically used in near future.  We also 
described the clinical applications of bio-artificial islets using neonatal porcine islets with 
promising results.  Most importantly, so far there are no severe adverse events.  Although 
the results of bio-artificial islet transplantation are not as effective as allogeneic islet 
transplantation there are many aspects including islet isolation methods (Shimoda et al., 
2011a, 2011b), islet culture methods, transplantation sites and patients’ treatments, which 
can be improved. 
Currently, diabetes is considered a non-curable disease therefore current treatments are 
focusing on improving quality of life and preventing diabetic complications (Takita 2011, 
Hatanaka 2011).  However, we believe that the bio-artificial islets and/or gene therapy for 
beta cell regeneration will cure a majority of both types of diabetes in the future. 
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