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1. Introduction 

The repair of large soft tissue defects, especially abdominal wall defects, is still a challenge 

for surgeons and continues to be a significant problem for patients (Gangwar et al., 2006; Lai 

et al., 2003). Free muscle transfer from local or distant sites is commonly employed for the 

surgical repair of muscle-tissue defects, but this practice is frequently associated with 

significant donor-site morbidity (Wei et al., 1995). A potential alternative includes the in 

vitro development of a functional three-dimensional muscle for transplantation or the 

construction of implantable biological biomaterials to direct myogenesis at the target site. 

The ideal biomaterial for abdominal wall repair should possess adequate strength, no 

hypersensitivity reactions, and biocompatibility to facilitate tissue ingrowths, which may 

help long-term maintenance of mechanical strength (Lai et al., 2003). In the reconstruction of 

a new tissue, two components are usually very important: the cells and the matrix 

(scaffolds) where they are seeded.  

Tissue engineering is an interdisciplinary field which applies the principles and methods 

of engineering and the life sciences towards the fundamental understanding of structural 

and functional relationships in normal and pathological tissue and the development of 

biological substitutes to restore, maintain or improve function (Skalak & Fox, 1988). The 

creation of skeletal muscle tissue using tissue engineering methods holds promise for the 

treatment of a variety of muscle diseases, including skeletal myopathies such as muscular 

dystrophy or spinal muscular atrophy, traumatic injury and aggressive tumor ablation 

(Guettier-Sigrist et al., 1998; Law et al., 1993). Tissues that are engineered using the 

patient’s own cells, or immunologically inactive allogenic or xenogenic cells have the 

potential to overcome current problems of replacing lost tissue function and offer new 

therapeutic options for diseases where currently no options are available. Moreover, this 

technology can play a vital role in the future management of paediatrics patients (Saxena 

et al., 1999a).  
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In general “Tissue engineering” refers to the science of creating living tissue to replace, 

repair or augment diseased tissue. The engineered tissue may be created in vitro and 

subsequently implanted into the patient or the tissue may be created entirely in vivo. 

Regardless of the technique, tissue engineering requires at least three components: a 

growth-inducing stimulus (induction), responsive cells (production), and a scaffold 

(biomaterials) to support tissue formation (Bronzino, 2006). 
Biomaterials are any material used to make devices to replace a part or a function of the 
body in a safe, reliable, economic and physiologically acceptable manner (Hench & 
Erthridge, 1982). The use of biomaterial for repair of abdominal wall defects is gaining 
increasing recognition and the use of biomaterials to achieve a tension–free repair has 
resulted in a significant reduction in post-operative pain, length of recovery period and the 
number of recurrence (Amid, 1997). 
Currently there is an increasing demand for cheap and ideal biomaterials which can be used 

in reconstructive surgery for repair of traumatic wounds suffer during war, traffic accidental 

and natural disaster and in the restore of the functions of diseased tissues or organs. 

Biomaterials are either synthetic (prosthesis) such as ceramic, polymeric and composite or 

biologic (bioprosthesis) such as heart valve, skin and other types of tissue graft (Black, 1992). 

The ideal biomaterials for abdominal wall repair should possess adequate strength, no 

hypersensitivity reactions and biocompatibility to facilitate tissue ingrowths, which may 

help long term maintenance of mechanical strength (Lai et al., 2003). 

Recently, new biodegradable biomaterials developed from biological materials mainly of 

collagen in nature have been tested for repair of body wall instead of the non-biodegradable 

synthetic materials. Bovine pericardium, human cadaveric fascia lata, human dura mater 

and collagen-based materials derived from porcine small intestine submucosa have been 

investigated for reconstruction of abdominal wall defects (Ueno et al., 2004; Saaverda et al., 

2001; Santillan et al. 1995; Rodgers et al., 1981). However in most research, it is indicated that 

these collagen based biomaterials are failed to be replaced by skeletal muscle tissue or 

regeneration of muscle tissue is not observed as whole therefore optimal muscle recovery or 

regeneration may require the use of novel technology like tissue engineering. Skeletal 

muscle comprises approximately 48% of the body mass and is responsible for voluntary 

control and active movement of the body. Application of tissue engineering techniques and 

successful fabrication of skeletal muscle mass holds now a promising future for the 

restoration of 3-dimentional contour as well as the loss of function for the affected part of 

the body. In order to generate skeletal muscle tissue, myoblasts which are skeletal muscle 

tissue precursors, have been employed (Saxena, 2005).  

One of the strategies for muscle tissue engineering involves the harvesting of satellite cells, 

their expansion in vitro, and their subsequent autologous implantation in vivo into the sites 

requiring repair or replacement. One of the main obstacles in the formation of new muscle 

tissue is the lack of an adequate support for expanded satellite cells. To overcome this 

obstacle, many researcher groups are trying to develop adequate synthetic and biological 

delivery systems for implanted cells (Conconi et al., 2005). Currently myoblast 

transplantations have been predominantly performed by injection of myoblast cell 

suspensions into mature skeletal muscle. These single cells have been shown to fuse with 

the host myofibers (Wernig et al., 2000).  Saxena et al. (1999b) were the first to implant 

successfully in vitro cultured myoblasts into a non-muscular environment. Their group used 

a polyglycolic acid (PGA) mesh as a scaffold for skeletal muscle cells (Saxena et al., 2001; 
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Saxena et al., 1999b). Myoblasts have also been seeded onto polyglycolic acid porous 

polymers with successful generation of vascularized new skeletal muscle in vivo (Saxena and 

Willital, 2000). Synthetic materials, such as Dacron and Polytetrafluorethylene, have been 

used to repair congenital muscles defects, e.g. Onfalocele and gastrochisis (Bauer et al., 1999; 

Calzolari et al., 1995; Meddings et al., 1993). However, all of these materials do not allow cell 

growth and do not follow host development. Evidence has been provided that biological 

materials can support in vivo and in vitro cell adhesion and proliferation.  

Bovine pericardium has been used as source of natural biomaterials for a wide range of 

clinical applications (Jose et al., 2001; Won et al., 2000; Marques et al., 1995). However, few 

clinical data are available in current literature about grafting of bovine tunica vaginalis 

parietalis for surgical use, although up to 10x7cm or larger collagen rich sheet of tunica 

vaginalis parietalis can be obtained from a testis of adult cattle. Naturally derived materials, 

including glutaraldehyde tanned bovine pericardium (James et al., 1991), small intestine 

submucosa (Clarke et al., 1996; Prevel et al., 1995) and also lyophilized and glycerolized 

bovine pericardium and tunica vaghinalis parietalis (Hafeez, 2005), have been tried in 

animal models. These biomaterials are less susceptible to infection and cause less foreign 

body response (Badylak et al., 1998; Hiles et al., 1995). Thus, the utilization of non-edible 

bovine offal’s of collagenous nature for the development of cheap and safe surgical patches 

for clinical use will be of economical importance in developing countries. However, fail to 

recover muscle tissue and also lack of strength over time is a concern for clinical application 

in which adequate tensile properties are necessary. Thus, for this reason, it is important to 

understand not only the biological response to degradable biomaterials, but also the 

expected mechanical properties of implant and replacement of tissue over time. These new 

collagen based biomaterials has to be improved its morphological and biomechanical 

properties just by seeding it with myoblast cells and must be evaluated first in animals’ 

model before being approved for test in human. 

In this study, biological collagen-based biomaterials were employed for reconstruction of 

abdominal wall defects in a rabbit model. These are bovine parietal pericardium and bovine 

tunica vaginalis parietalis which were collected from abattoir and processed by freeze-

drying preservation methods and sterilized using gamma irradiations system. In recent 

years, this preservation method in combination with sterilization using gamma irradiation 

has been reported in its good output (Zuki et al., 2007; Hafeez, 2005; Hafeez et al., 2005a, 

2005b). 

A reason for future use of collagen-based biomaterials seems functioning as temporary 

scaffolds which during resorption generate new permanent tissue. However, very fast 

resorption rates were reported for degradable materials of synthetic or natural origin (Smith 

et al., 1989; Tyrell et al., 1989). Moreover, fail to recover muscle tissue and also lack of 

strength over time is a concern for clinical application in which adequate tensile properties 

are necessary. 

2. Morphological evaluation of the myoblast seeded scaffolds in vitro 

The parietal pericardial sacs and tunica vaginalis parietalis were collected from healthy 

adult cattle immediately after slaughter, placed in polyethylene plastic bags containing cold 

normal saline and transferred into an icebox for transportation. The BP and BTV sacs were 

cleaned, trimmed into rectangular sheets and washed thoroughly under running tap water 
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and rinsed in serial changes of sterile saline (Figure 1). The BP and BTV sheets were then 

transferred aseptically into a sterile bottle containing 150ml of 0.05% sodium hypochlorite 

and shaken slowly for 10 minutes. The sodium hypochlorite were then washed off by 

shaking the tissue sheets in three changes of sterile normal saline for 20 minutes each 

change, then kept overnight at 4oC. The BP and BTV sheets were freeze-dried and sterilized 

by gamma irradiation at 25 KGy (Cobalt 60, JS8900, IR-174; CDM MDS NORDION, Ontario, 

Canada) according to the MINT (Malaysian Institute for Nuclear Technology) tissue bank 

work instruction Manual (1998) (Figure 2). Samples were taken from both BP and BTV grafts 

for histological and SEM examinations. The sections were stained with Haematoxylin and 

Eosin as described by Wilson and Gamble, (2002) for general histology and Masson’s 

trichrome method as described by Jones, (2002) for demonstration of muscles and 

collagenous tissue.  

 

 

Fig. 1. Photographs A and B show BP and BTV after cleaning, respectively 

 

 

Fig. 2. Photographs A and B show 3 x 4 cm2 scaffolds derived from BP and BTV, 
respectively. Note both have similar appearance macroscopically 

Biomaterials provide mechanical stability to the construct in the short term and serve as a 

template for the three-dimensional organization for the developing tissue (Hutmacher, 

2001). Therefore a critical step in skeletal muscle-tissue engineering is the identification of 

the optimal biomaterial scaffold, able to promote normal differentiation and maturation of 

myoblasts into myotubes and myofibers. At present, several kinds of natural scaffolds, such 

as porcine small intestinal submucosa (Badylak et al., 2002), acellular dermal matrix 

(Chung et al., 2003) and collagen (Lai et al., 2003) have been employed to repair 

 A B 

 A B 
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abdominal wall defects in experimental animal models. Acellular matrices, obtained by 

detergent-enzymatic method do not elicit rejection responses (Roeder et al., 1999) and 

could be employed as promising tissue substitutes (Parnigotto et al., 2000a, 2000b; 

Sutherland et al., 1996). 

2.1 Light and scanning electron microscopic evaluations of the scaffolds 
Bovine parietal pericardium and bovine tunica vaginalis parietalis were used to obtain a 

biological scaffold possessing morphological and mechanical properties resembling those of 

the native tissue. Bovine pericardium originated scaffolds seems have large pores and less 

interconnectivity with completely acellular (Figure 3A) and is collagenous-based in nature 

with no cellular and vascular element (Figure 4A), and this might be as a result of slight 

modification of preparation methods used in the previously reported methods by Hafeez, 

(2005) in conjunctions with light density of collagen as compared with BTV. However, BTV 

originated scaffolds possessing large pores and less interconnectivity with scanty cell 

remnant within dense collagen bundles (Figures 3B and 4B), and this perhaps contributed 

by high density of the structural fiber components. A similar result has been reported by 

Hafeez, (2005). The light and electron microscopic examinations revealed that nearly all 

cellular components were removed without ultrastructural evidence of damage to fibrous 

components. Even though similar acellular results were obtained by Chang et al. (2002) in 

their in vivo evaluation of cellular and acellular bovine pericardia fixed with a naturally 

occurring crosslinking agent (genipin). But, they had used a special cell extracting methods 

which was not used in this study. 

 

 

Fig. 3. Microphotographs of the collagen based of BP (A) and BTV (B) scaffolds show the 
pore size appears larger with less interconnectivity. Note also the scanty remnant cellular 
elements within a dense connective tissue matrix in B. H&E, Bar = 100µ 

Scanning electron microscopic examinations revealed that the serosal/inner surface of both 

type of scaffolds (BP and BTV scaffolds) had irregular polygonal shape structure (Figures 

5A and 6A). However, the outer layers were rough with irregular appearance of connective 

tissue (Figures 5B and 6B). The finding of this study is in accordance to the result reported 

by Hafeez (2005). They had reported that the surface of freeze-dried BP and BTV differ from 

fresh BP and BTV in many aspects such as the lost of the serosal layer and the exposure of 

underlying collagen bundles and separation of individual collagen bundles, and fibers, 

which appeared to be wavy and well defined. Adequate porosity with interconnected pores 

 A B 
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is required not only to achieve sufficient cell seeding density within the scaffold, but also to 

facilitate cell proliferation and differentiation by allowing the transport of nutrients and 

oxygen into and out of the scaffold (Goddard & Hotchkiss, 2007). This study has also 

demonstrated that the processed collagen-based biomaterials such as BP and BTV are 

sufficiently porous in nature (Figure 7). A similar result had been reported on bovine 

parietal pericardium (Chang et al., 2005).  

 

 

Fig. 4. Microphotographs of the masson’s trichrome stained BP (A) and BTV (B) scaffolds 
show the scaffold is collagenous-based in nature with no cellular and vascular element in A, 
and dense collagenous tissue with scanty cellular elements in B. Bar = 100µ 

Based on the light and scanning electron microscopic analysis the prepared pre-implanted 

BP and BTV are fibro-collagenous in nature with no or very few cellular remnants which 

make this biomaterials weak antigenicity apart from its excellent biocompatibility and 

biodegradability. This is a fascinating result to address the need of non-immunogenic and 

non-prosthetic biomaterials that could guide perhaps the regeneration of normal tissue. This 

study has also revealed that processed BP and BTV are porous in nature that could achieve 

to accommodate sufficient cell seeding density and facilitate cell proliferation and 

differentiation by allowing the transport of nutrient and oxygen into and out of the scaffolds 

(Goddard & Hotchkiss, 2007). 

 

 

Fig. 5. SEM electronmicrographs of the A) serosal/interior and B) epipericardial surfaces 
of BP scaffold showing polygonal shape structure and irregular fibrous surface, 
respectively 

 A B 

 A B 
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Fig. 6. SEM electronmicrograph of the A) serosal and B) scrotal surfaces of BTV scaffold 
showing polygonal shape structures and irregular surface, respectively 

 

 

Fig. 7. SEM electronmicrographs of the cross sectioned scaffolds of BP (A) and BTV (B) 
showing good porosity 

2.2 Skeletal myoblast harvesting and isolation analysis 
Skeletal muscle tissue engineering depends on the unique regenerative properties of 

satellite cells and the ability to direct intrinsic cell programs associated with proliferation 

and differentiation. The development of muscle stem cells and genetically engineered 

myoblasts for transplantation has become in the past few years a very attractive and 

challenging method for treatment of patients with muscle diseases (Wu et al., 2003; Huard 

et al., 2003; Haider et al., 2003). However, the repair of extensive muscular defects or 

diseased regions may require voluminous tissue grafts seeded with large amounts of 

myoblasts.  

Skeletal muscle tissues were obtained from the hind limbs muscle (Soleus muscles) of 5-day-

old rabbit using a primary cell culture. Cell purity is assessed by desmin antibodies to prove 

the purity of the cultured myoblast using immunocytochemistry analysis and also 

quantified by flow cytometric analysis. This identification method has been also employed 

by many researchers despite their slight variation in techniques (Guarita-Souza et al., 2006; 

Ott et al., 2004; Lai et al., 2003; Winokur et al., 2003; Rando & Blau, 1994). The prepared 3 x 4 

cm2 scaffolds were seeded with myoblast at a density of 1.0 × 107cells. Cell morphology and 

growth in the scaffolds were examined using SEM. 

 A B 

 A B 
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During the initial stages of culture, the myoblast showed a rounded morphology. After the 

first 24 hours, the cells attached to the culture surfaces and also spindle-shaped cells started 

to sprout out from isolated muscle fibres and then proliferated. Therefore, this work allowed 

us to obtain muscle satellite cell-derived cultures, containing myoblasts, expressing the 

transcription factors involved in the skeletal muscle-cell differentiation program (Chen & 

Goldhamer, 2003). Moreover, cultured myoblasts are endowed with a high proliferation 

rate, so that only three weeks is needed to reach the optimal cell number for graft 

implantation.  Hence, this myoblast isolation technique appears to give a better result than 

those previously used to isolate satellite cells by Lai et al. (2003), Marzaro et al. (2002) and 

Van Wachem et al. (1999), but it appears to give  a similar results reported by Conconi et al. 

(2005).  

Moreover the culture technique that has been used allows the preferential growth of 

myoblasts over fibroblasts, and the yield of myogenic cells from the initial primary culture is 

very high and hence the percentage of myogenic cells increases with time in culture. Thus, 

from a mixed culture of myoblasts and fibroblasts, a nearly pure culture of myoblasts were 

achieved within three weeks and therefore the purity of the myoblast was confirmed using 

desmin immunocytochemistry which is a common preferable method employed by many 

researchers to produce a better result (Guarita-Souza et al., 2006; Conconi et al., 2005; 

Kamelger et al., 2004). Myoblast percentages were determined using flow cytometric 

analysis. According to desmin immunocytochemistry and flow cytometric analysis more 

than 97% of the isolated skeletal myoblast cells have got myogenic phenotype (Figures 8). 

However, Lai et al. (2003) had reported that approximately 80% of isolated skeletal muscle 

cells had a myogenic phenotype in desmin immunocytochemistry analysis which perhaps 

indicates the superiority of the present technique to isolate myoblast. 
 

 

Fig. 8. Flow cytometric histograms depicted FITC-conjugated desmin positive myoblast. 
Note that the percentage of pure myoblast is 97% whereas non myoblast cells are 3% in flow 
cytometry analysis. M1= Proportion of desmin negative cells, M2= Proportion of desmin 
positive cells 
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In vitro test revealed the ability of myoblast to form myotube in static culture on the surface 

of petri-dish which was not even a tissue culture flask. However, there were only few cells 

on the surface with haphazard arrangement which is perhaps related to the adhesion 

properties of the cell towards the petri-dish as showed in figure 9. This result is in 

agreement with Yan et al. (2006) who reported that if the myoblast cells are plated on plain 

plastic tissue culture or on non-aligned collagen gels, the satellite cells differentiate into 

skeletal myotube but the arrangement is haphazard.  

 

 
 A  B  C 

 

Fig. 9. The phase-contrast microphotographs showing A) the spindle-shaped myoblast at 24 
hrs post-seeding, B) long spindle-shaped myoblast at 72 hrs post-seeding with some 
multinucleated myotube (arrows) and C) long spindle-shaped myoblast and myotube at 120 
hrs post-seeding with some multinucleated myotube (arrows). Bar = 100µ 

 

 

Fig. 10. SEM electronmicrographs of the myoblast seeded bovine pericardium scaffold at A) 
24 hrs, B) 72 hrs and C) 120 hrs post-seeding. Note the myoblast covering almost the entire 
surface of the scaffolds (A), the unidirectional pattern of myotube (B) and the fusion of 
myotubes to form myofibres (C) 

The SEM examinations revealed that both type of BP and BTV scaffolds were able to support 

myoblast growth and differentiation, which were evidenced by few myoblast began to cover 

the whole surface of the scaffolds and fused into myotube within 24 hrs (Figure 10A). At the 

3rd and 5th day post-seeding, the myoblast continues to fuse and form a series of uniformly 

arrayed myotube (Figure 10B), whereas at 5th day post-seeding densely packed myotube 

with morphology reflecting myofibers were also observed (Figure 10C), and these results 

found to be almost consistent with result reported by Yan et al. (2006), where their study 

focused on tissue engineering of skeletal muscle using aligned collagen gel coated tissue 

flask. A similar result had been also reported by Conconi et al. (2005) on the homologous 

muscle acellular matrix seeded with autologous myoblasts as a tissue-engineering approach 

to abdominal wall-defect repair. A critical step in skeletal muscle-tissue engineering is the 

 A B C 
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identification of the optimal biomaterial scaffold, able to promote normal differentiation and 

maturation of myoblasts into myotubes and myofibers (Conconi et al., 2005). In this work, 

biologically originated collagen-based biomaterials were used to obtain a scaffold 

possessing morphological and mechanical properties resembling those of the native tissue, 

and in vitro findings confirmed that this matrix is able to support myoblast growth and 

differentiation. 

3. Post-implantation evaluations of myoblast seeded scaffolds 

In this study we used a total of 36 rabbit which were randomly divided into four 

experimental groups (Group I, II, III and IV), comprising of equal number of animals. Group 

I and II served as the treatment groups, while the other groups acted as control. Three 

rabbits from each group were randomly selected and scarified using an intra-cardial 

injection of sodium pentobarbital (CEVA, Sante animale, France) at a rate of 100mg/kg at 

7th, 14th and 30th day post implantation as described in Table 1. 

 

  Scarifying date  

  7th Day 14thDay 30th Day No of rabbits 

Treatment groups Group I 3 3 3 9 

 Group II 3 3 3 9 

Control Groups Group III 3 3 3 9 

 Group IV 3 3 3 9 

  12 12 12 36 

Group I -Myoblast seeded BP scaffolds 
Group II -Myoblast seeded BTV scaffolds 
Group III -Non-Seeded BP scaffolds 
Group IV -Non-Seeded BTV scaffolds 

Table 1. Experimental Design 

3.1 Post-operative care and follow up analysis 
The animals tolerate well to the surgical procedure and none of the rabbits died during 

surgical process with no post-implantation mortality which may be due to satisfactory 

anaesthetic technique (Table 2). Dullness, depression and partial anorexia in the immediate 

postoperative period was attributed to surgical trauma and inflammation at the site of 

reconstruction. A similar result was reported by Gangwar et al. (2006) using acellular 

dermal graft for repair of abdominal wall defects in rabbits. Neither the treatment groups 

nor its control groups in both types of scaffolds have showed any wound complication and 

infection as shown in figure 11, since, the complication rate after repair of large tissue 

defects strongly depends on applied reconstructive material. Wound infections, bowel 

fistulae, and repair failures can occur when synthetic materials were used for defect closure. 

However, naturally derived materials are less susceptible to infection (Drewa et al., 2005; 

Schlatter et al., 2003; Dolgin et al., 2000; Minkes, et al., 2000). 
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Groups 
No. of 
Rabbit 

No. of 
mortality (%) 

No. of 
Adhesion (%) 

No. of 
Seroma (%) 

Group I 9 0(0) 1(11.11) 0(0) 

Group II 9 0(0) 0(0) 0(0) 

Group III 9 0(0) 3(33.33) 0(0) 

Group IV 9 0(0) 2(22.22) 1(11.11) 

Table 2. Post-operative complications  

 

 

Fig. 11. Subcutaneous surface of the implanted scaffolds is covered by new/old fascia 
originated from surrounding fascia with overwhelming blood vessels in Group I on day 7 
post-implantation 

3.2 Macroscopic analysis 
The vascular change at reconstructive site is a part of normal body response to injury. It is 

an attempt to increase resorption and removal of clot and debris from the wound site and 

finally helping in the laying down of fibrous tissue (Silver, 1982). Therefore, the present 

results revealed the increased vascularity at the reconstructive site in all groups of rabbit in 

both type of scaffolds as the post-operative day advances. Although variable degree of 

angiogenesis were a common feature of the treatment and its control groups in both BP and 

BTV scaffolds, and hence overwhelming neo-angiogenesis were recorded in the treatment 

groups of both type of scaffolds which might be attributed by seeding of myoblast on the 

scaffolds. 

The study has showed that deposition of loose fibrous connective tissue and white 

connective tissue was observed in all the groups of rabbit regardless of the scaffolds type. 

However, it was on groups I and II complete neo-peritoniazation began with the appearance 

of glistening membrane covering the inner surface of the graft at day 7th of post-

implantation (Figure 12) which is indeed earlier than the study conducted by Singh et al. 

(2008) in acellular biomaterials of porcine origin for the reconstruction of abdominal wall 

defects in rabbits, where complete peritoniazation the graft occurred at 21st post-operative 

day, and their finding relatively similar with the control groups of our study where early 

peritoniazation on the implanted scaffolds was not observed in the control groups in which 

myoblast was not seeded. Therefore myoblast seeding might be a good justification for early 

peritoniazation.  
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ft 

 A  B 
 

Fig. 12. Peritoneal surface of the implanted graft in Group I (A) and group II (B) on day 7 
post implantation showing the surface is completely covered by newly formed white fibrous 
tissue including the fatty tissue (ft) and neo-peritoneum that appears smooth and shinny 

Naturally derived materials, including glutaraldehyde tanned BP (James et al., 1991), small 
intestine submucosa (Clarke et al., 1996; Prevel et al., 1995) and also lyophilized and 
glycerolized BP and BTV (Hafeez, 2005), have been tried in animal models. These 
biomaterials are less susceptible to infection and cause less foreign body response (Badylak 
et al., 1998; Hiles et al., 1995). However, fail to recover muscle tissue and also lack of 
strength over time is a concern for clinical application. Macroscopically, at day 30th of post-
implantation, our study revealed that the control groups III and IV have showed thinning 
and fascial weakness, which was evidenced by pouching and distension appearance of the 
abdominal wall as shown in Figure 13.  
Lai et al. (2003) had proven that scaffolds covered with cells had better mechanical 
properties than acellular/non-seeded scaffolds in body wall repair using small intestinal 
submucosa seeded with cells. Fauza et al. (2001) had also reported acellular collagen-based 
matrix alone may be insufficient scaffold for abdominal wall reconstruction. However, in 
our study none of the treatment groups, in both types of scaffolds have showed pouching 
and distension appearance of the abdominal wall, rather various degree of tissue 
regeneration was noticed, which was evidenced by graft opacity, and overwhelming blood 
vessels, fatty tissues, fibrous tissue and neo-peritoneum was observed in myoblast seeded 
groups of both type of scaffolds at 30 days of post-implantation (Figure 14). 
 

 
 A  B 

 

Fig. 13. Peritoneal surface of the implanted graft in group III (A) and group IV (B) on day 30 
post-implantation showing the implanted graft over-stretched and lead to pouching 
appearances with very few blood vessels 
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Fig. 14. Peritoneal surface of the implanted graft in group I (A) and group II (B) on day 30 

post-implantation showing the neo-peritoneum (np) covered all over the surface with 
numerous blood vessels and white fibrous tissue at host-graft junction (stars), fatty tissue (ft) 

In this study, the wound strength of repair was not evaluated. However, the firm integration 

was observed between the implant and host tissue produced by infiltration of fibro-

collagenous tissue which was indeed further strengthens by infiltration of skeletal muscle in 

the treatment groups. Therefore myoblast seeded scaffolds seems to have superiority over 

non- seeded scaffolds in cell infiltrations as well as mechanical performances. Similarly Lai 

et al. (2003) have stated that the success of a tissue-engineered composite might be determined 

by both the strength of the scaffold and the angiogenesis to support the new cells. 

The adhesion formation depends on material surface geometry and affects the correctly 

organized neo-peritoneum regeneration. In previous in vitro study in which mesothelial cells 

were seeded onto various biomaterials, it has been established that mesothelialization 

occurs early when the prosthesis is of laminar type. In contrast, when the biomaterial has 

the structure of a reticular mesh mesothelial deposition takes place in an irregular manner, 

with cells settling on the prosthetic filaments, achieving an uneven cover, therefore they 

speculated that early stage mesothelial deposition after implant is probably conditioned by 

the structural design of prosthesis (Bello’n et al., 2003). 
The origin of adhesions between the organs and the parietal peritoneum has yet to be 
determined. These formations also appear after biomaterial implantation to repair 
abdominal wall defect, mainly when macroporous biomaterials, such as polypropylene 
mesh, are utilized. This fact has been observed by several authors in animal models, such as 
the Sprague-Dawley rat and the New Zealand white rabbit (Bello’n et al., 1996). Moreover, 
in human it is well known that intra-peritoneal positioning of conventional parietal mesh 
provides efficient reconstruction, but it causes visceral adhesion formation in 80–100% of the 
cases (Balique et al., 2005). In our study, all the adhesion found between the implanted graft 
and the visceral organ (caecum) was mild. 33% and 22.22% of adhesion was found in control 
group III and IV respectively. Absence of adhesion in treatment group II was noticed. The 
early formation of a mesothelium covering the myoblast seeded graft probably explains the 
lack of adhesion formation observed following implantation. Besides, it is likely that the 
delay in mesothelialization associated with non-myoblast seeded groups (control) implant 
gives rise to the frequent adhesions that occur at the biomaterials-visceral peritoneum 
interface. Ironically, a single case out of nine (11.11%) rabbits from treatment Group I have 
showed mild adhesion with caceum which is likely to be affected by the individual variation 
factors rather than by the type of the implanted grafts (Tables 3 and 4, and Figure 15). 
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Date of euthanizing 

Day 7th Day 14th Day 30th

Adhesion 

degree 

S C S C S C 

0 3 2 3 2 2 2 

1 0 1 0 1 1 1 

2 0 0 0 0 0 0 

3 0 0 0 0 0 0 

Based on Mann-Whitney Test, P= 0.270, Since P > 0.05, there is no significant difference in adhesion 
formation between treatment and control groups 
S - Myoblast seeded BP (Group I) 
C - Non seeded BP (group III) 
1 - Showing minimal/ minor adhesion observed between the implanted and the underlying visceral 
organ 

Table 3. Scoring of adhesion formation at 7th, 14th, and 30th days of post-implantation for 
bovine pericardium scaffolds 

 

Date of euthanizing 

Day 7th Day 14th Day 30th 

Adhesion 

degree 

S C S C S C 

0 3 2 3 2 3 3 

1 0 1* 0 1* 0 0 

2 0 0 0 0 0 0 

3 0 0 0 0 0 0 

Based on Mann-Whitney Test, P= 0.145, Since P > 0.05, there is no significant difference in adhesion 
formation between treatment and control groups. 
S - Myoblast seeded BTV (Group II) 
C - Non seeded BTV (Group IV) 
1* - Showing minimal/ minor adhesion observed between the implant and the underlying visceral organ 

Table 4. Scoring of adhesion formation at 7th, 14th, and 30th days of post-implantation for 
bovine tunica vaginalis scaffolds 

 

 

Fig. 15. Peritoneal surface of A) group IV showing seroma formed between neo-peritoneum 
and the implanted scaffolds at day 7 post-implantation and B) minor adhesion between the 
implant and caecum at day 14 post-implantation 

 A B 
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3.3 Light microscopic analysis 
The attack of body immune system on implant can cause failure of the biomaterials to serve 
as the tissue replacement. Biocompatibility involves the acceptance of biomaterial by the 
surrounding tissue and by the body as whole (Park & Lakes, 2007). Histopathologically, the 
present study revealed that the inflammatory response in all treatment and also controls 
groups of animals were significantly high during the first week (7th days) of post-
implantation (Figure 16). It was indeed an immediate response initiated by surgical trauma 
when the abdominal well defects were created which perhaps correlated with the 
inflammatory phase of defects. A similar observations was reported by many researchers 
(Singh et al., 2008; Zuki et al., 2007; Gangwar et al., 2006; Gamba et al., 2002; Tung et al., 
2002).  
 

  A  B  C 

 np 

 im 

 sb 

 ad 

 np 
 im 

 sb 
 im  sb 

 

Fig. 16. Microphotographs of group I (A), group II (B) and group IV (C) at 7th day of post-
implantation showing the inflammatory cells surrounding the implanted scaffold (im). Note 
also the presence of neo-peritoneum (np), subcutaneous tissue (sb) and adiposity (ad) in A 
and B but neo-peritoneum was not detected in C. H&E, Bar = 500µ 

Moreover, the inflammatory process is a normal response to surgical injury and the 
presence of implant as foreign objects. In facts inflammation is necessary as the transitional 
linking stage between damaged tissue and repair of damaged tissue (Dumitriu, 1994). 
However, our study showed that the inflammatory process gradually decreased in every 
advancing period in all treatment and controls groups of both BP and BTV originated 
scaffolds. These findings suggest that the processing method to produce fibro-collagenous 
scaffolds is better to removes antigenic proteins and maintain graft integrity. It might also be 
associated with early degradation and resorption of the implant. As Hafeez (2005) had 
reported, the cervices and pores created by freeze drying and the fragmentation caused by 
gamma rays for sterilization in lyophilized grafts enhances inflammatory cells infiltration 
into the implant and leads to early degradation and resorption. Apart from its processing 
methods, collagen bundles of the implant in treatment group II and control group IV were 
not completely resorbed at 30th day of post-implantation, ironically the implant of treatment 
group I and its control group III has showed better resorption rate. This slight difference 
might be as a result of higher density of fibro- collagenous nature of BTV originated 
scaffolds than the BP originated scaffolds. 
Previous study that had been reported by Hafeez (2005) indicated that lyophilised BP and 
BTV graft were started resorption at week three post-implantation in a rat model. However, 
the present results showed earlier resorption which can be explained by species differences 
as showed in figure 17. Despite the unknown exact mechanism, several factors, including 
the animal species, age and site of implantation may play an important role in the rate of 
degradation of implant (Vialle-Preles et al., 1993).  
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This investigation showed that in both control groups (III and IV) the implanted grafts were 
overwhelmed by fibroblasts, mesenchymal cells and neovascularisation. These 
mesenchymal and fibroblasts were frequently observed throughout the biomaterials. In fact 
the collagen fibers and ground substance (matrix) were synthesised and deposited by newly 
migrating fibroblast as it was showed by the gradual spread of newly formed tissue in the 
implanted graft. The newly formed collagens in the first week were delicate, immature and 
unorganized. Later on the 2nd and 4th weeks post-implantation, the amount of collagen fibers 
increased and infiltrated throughout the implant in well defined and organized form. 
However, there was not even a single skeletal muscle fiber formation in the implant of 
control groups. This finding seems consistence with previous reports of biological 
biomaterials mediated wound repair (Singh et al., 2008; Zuki et al., 2007; Gangwar et al., 
2006; Gamba et al., 2002; Tung et al., 2002). 
 

 

Fig. 17. Microphotographs of group I (A) and group II (B) at 14th day of post-implantation 
show the graft is completely replaced by collagen fiber (green) and small delicate muscle 
fibers (red colour). Masson trichrome stain, Bar = 500µ 

In contrast to the above cases, in both the treatment groups (I and II), skeletal muscle tissue 
regeneration were clearly observed. The myoblast were originated from the seeded part, not 
from the host tissue. At 14th day of post- implantation, the newly formed muscles were 
young muscle fibers (Figure 17) but eventually at the 4th week post-implantation, they 
became matured and became well-defined muscle fibers (Figure 18). Since the seeded 
myoblast were labelled with fluorescence dye and therefore the newly formed muscles 
fibers were further confirmed by fluorescence microscopy (Figure 19).  
The importance of rapid mesotheliazation of biomaterials stems from the fact that adhesion 
formation is inversely related to the number of mesothelial cells on the peritoneal surface 
(Law & Ellis, 1988). Therefore, myoblast seeding on the scaffolds has proved well organized 
bridging of peritoneal lining (mesotheliazation) across the wound with better 
vascularisation and this could be contribute to the preventions of intra-abdominal adhesion 
between  the biomaterials and visceral organs. 
The formation of foreign body giant cells is a feature of chronic inflammation which occurs 
in the presence of microorganism or non-phagocytosable materials for long period of time. 
The foreign body reaction appeared as macrophage and foreign giant cells (Anderson, 1998). 
In our study absence of foreign body giant cells were noted in both the treatment and 
control groups of the two types of scaffolds. This could suggest (indicates) the 
biocompatibility of the scaffolds with the host tissue. Our study has also revealed that both 
type of myoblast seeded scaffolds showed similar appearance histopathologically, meaning 

 A B 
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that apart from newly formed delicate collagens, newly formed young muscles were 
observed which eventually became matured and became well-defined muscle fibers. 
However, on both type of non-myoblast seeded scaffolds (control groups) only delicate, 
immature and unorganized collagens fibers were observed within the first week which is 
later on become organized and mature collagens fibers without a single skeletal muscle 
fibers development. 
 

 

 A  B 

 

Fig. 18. Microphotographs of Group I (A) and group II (B) at 30th day of post-implantation 
show the graft was completely replaced by collagen fiber (Green) and well developed 
muscle fibers (Red) and blood vessels (arrows). Masson trichrome stain, Bar = 100µ 

 

 

Fig. 19. Double-fluorescence microphotographs of the graph of Group I (A) and group II (B) 
at day 30th of post-implantation demonstrate the PKH26-labeled myofibers and its DAPI-
stained nuclei. Note the well developed myotube/myofibers. Bar = 100µ 

3.4 Scanning Electron Microscopic analysis 
The SEM examinations at 7th day of post-implantation in both I and II revealed infiltration of 
spherical shape of inflammatory cells with scattered polygonal and spindle shapes of cells 
on the peritoneal surface indicating the beginning of mesotheliazation as depicted on Figure 
20. On day 14th of post-implantation, the treatment groups (I and II) of both type of 
scaffolds, demonstrated the well organized mesotheliazation with confluent polygonal 
shapes of cells covering all over the peritoneal surfaces (Figure 21). By day 30th of post-
implantation, the treatment groups (I and II) of both type of scaffolds, revealed the well 
organized mesotheliazation (neo-peritoniazation) where the polygonal shapes of cells 
covering all over the peritoneal surfaces with numerous cilia like structure (Figure 22). 

 A  B 
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Fig. 20. Scanning electron micrographs of the peritoneal surface of group I (A) and group II 
(B) on 7th days of post-implantation show the infiltrated spherical shape of inflammatory 
cells (Yellow arrows) with scattered polygonal and spindle shapes of cells (Red arrows) 

 

 

Fig. 21. Scanning electron micrographs of the peritoneal surface of Group I (A) and group II 
(B) on 14th day of post-implantation show the well organized mesotheliazation of the surface 
with polygonal shape of mesothelial cells 

 

 

Fig. 22. Scanning electron micrographs of the peritoneal surface of Group I (A) and group II 
(A) on 30th day of post-implantation show the smooth appearance of the surface with 
numerous cilia in A 

The SEM analysis of the present study has showed a clear understanding by the speed at 
which mesotheliazation of the myoblast seeded scaffolds in both types of scaffolds on the 
peritoneal surfaces. These undoubtedly give rise an optimal interface between the graft and 
visceral organs in avoiding the formation of adhesion and also the appearance of 
complications related to adhesion because as Chew et al. (2000) had reported in their study 
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that firm adhesion may become integrated within the biomaterials which can provoke long 
term complications such as intestinal fistula in some cases.  Moreover, the ultrastructure 
findings in this study are also indicates reduction of inflammatory cells as the day advances 
in all the treatment and control groups of both types of scaffolds. 
Ultrastructural analysis has further confirmed the profound differences between 
treatment and its control groups in mesotheliazation/neo-peritoniazation of the 
peritoneal surfaces. Treatment groups/myoblast seeded scaffolds in both type of scaffolds 
has showed a well-organized neo-peritoneum generation which might be induced by 
seeding of myoblast and it could be a good explanation for absence of adhesion. In 
contrast, on both type of non-myoblast seeded scaffolds (control groups) uneven 
peritoneum with an irregular mesothelium, which is prone to develop adhesion as 
reported by Losi et al. (2007). 

3.5 Fluorescence microscopic analysis 
Fluorescence microscopic analysis clearly demonstrates that myoblast seeded biomaterials 

can be successfully transplanted into artificially created full layer of abdominal wall defects 

except the skin. The prerequisites for using PKH26 for labelling of cells has been 

demonstrated in the previous study by many researchers that the incorporation of PKH dye 

does not physically weaken the membrane of the cells, does not interfere with the functions 

of the cells and appeared to be ideal for long-term tracking of cells. Animal studies revealed 

no toxicity of the PKH dye and no immune response appears to generate against labelled 

cells (Read et al., 1991; Slezak and Horan, 1989a, 1989b; Melnicoff et al., 1988). Most 

importantly, Johnsson et al. (1997) had reported in their ‘ex vivo PKH26-labelling of 

lymphocytes for studies of cell migration in vivo’ study of this labelling dye was found to be 

retained within the labelled cells and not transferred to other cells.  

As expected, the seeded myoblast onto two type of naturally originated collagen based 

scaffolds materials did not migrate into surrounding tissue rather it remained within the 

defects. Therefore, cell growth and fusion within the defects suggests that this technique 

might be suitable for filling volume defects in ectopic locations outside skeletal muscle.  

Engineering of multinucleated myotube which later on differentiated into mature striated 

muscle fibres and its existence for up to the end of the study period showing the superiority 

of this study to the previous case reported by Van Wachem et al. (1999) where failure of 

muscle regeneration noted. Lai et al. (2003) has also reported that scaffold covered with 

skeletal muscle cells did not differ from fibroblast construct in terms of hernia rate.  

However, Kamelger et al. (2004) have reported the successful regeneration of skeletal 

muscles in their comparative study of three different biomaterials in the engineering of 

skeletal muscle using a rat animal model. The fluorescence microscopy have clearly 

indicated that the similarity of the current results with their study. 

In the present study, in both type of myoblast seeded scaffolds the fluorescence microscopy 

has clearly indicated regeneration of multinucleated skeletal muscle with well developed 

vascularisation all over the implant and this finding seems consistence with the results 

reported by Kamelger et al. (2004) and Conconi et al. (2005). However, no PKH26 labelled 

myoblast was observed in both type of non-myoblast seeded scaffolds, and not even a single 

skeletal muscle tissue has been detected in the control groups (III and IV), meaning that all 

the skeletal muscle obtained in the treatment groups were originated from seeding rather 

from host tissue which indeed confirmed by its PKH26 fluorescence dye. 
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Van Wachem et al. (1999) reported one of the reasons for the failure of muscle regeneration 

may be absence of vascularisation. However, this study has showed that early well 

vesicularization (neo-angiogenesis) of the implant microscopically and also macroscopically 

which perhaps may have an impact on the successful regeneration of skeletal muscles at 

large. 

4. Conclusion  

In general, lyophilized and gamma sterilized BP and BTV scaffolds have showed a 

tremendous potential for in vitro cultivation of skeletal muscle, it renders great success when 

used as substrate for filling of wound bed or for the delivery of cells. Myoblast harvested 

from primary culture are able to proliferate and form myotube in vitro on both type of 

collagens based biomaterials. This study has also showed that well vascularised 

biomaterials-myoblast-construct can be successfully implanted for reconstruction of 

abdominal wall defects which profoundly results in regeneration of skeletal muscle tissue. 

Myoblast seeded scaffolds did not provoke a significant inflammatory response compared 

to the non-seeded collagen based scaffold. These engineered myoblast-constructs have 

better cell infiltration and mechanical performances that ultimately avoid adhesion between 

the graft and visceral organs than the non-myoblast seeded construct. These finding 

suggests seeding of myoblast to these scaffolds may be a viable alternative to engineer 

skeletal muscle tissue for body replacement and remodeling.  
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