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1. Introduction 

The induction of donor-specific tolerance remains a major goal of clinical transplantation. 

Partially inbred MGH miniature swine, in which swine leukocyte antigens (SLA) have been 

defined and fixed, have been utilized extensively as a preclinical model for tolerance 

induction. This preclinical large-animal model is an invaluable tool for studying the 

mechanism of transplantation tolerance. Recently, we have investigated the role of the 

persistence of donor antigen in the maintenance of tolerance and the peripheral regulatory 

cells’ ability to confer tolerance to naïve animals.  

Mechanisms of tolerance can be elucidated in part by attempting to interfere with (or 

“break”) the tolerant state. We have previously reported that a short course of calineurin 

inhibition permits the uniform development of long-term, donor-specific tolerance to renal 

allografts in juvenile miniature swine. Once tolerant, animals that undergo graft 

nephrectomy and immediate retransplantation accept donor-MHC matched kidneys while 

maintaining stable renal function without further immunosuppression.   

Utilizing this model we have attempted to break tolerance using several strategies. These 

have included administration of recombinant IL-2 to provide additional T-cell help, 

manipulation of the host thymus, and removal of donor grafts.  Our data indicate that (1) 

presence of an intact thymus is essential for the induction, but not for the maintenance of 

tolerance; (2) the persistence of the donor renal graft is essential for the indefinite 

continuation of tolerance; and (3) the pathway of donor antigen presentation, in tolerant and 

previously tolerant animals, is important for preservation or loss of the tolerant state. 

Although obvious limitations exist with regard to animal studies, our consistently 

reproducible results using MHC inbred miniature swine provide a unique opportunity to 

study the mechanisms of transplantation in animals physiologically similar to humans. As 

we have previously shown, our results are highly suggestive of what will occur in clinical 

human transplantation protocols. 
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2. Abbreviations 

APC: Antigen Presenting Cell 
CTL: Cytotoxic T-Lymphocytes 
CyA: Cyclosporine A 
FoxP3+: Forkhead Box 3 
HSC: Hematopoietic Stem Cells 
IL-2: Interleukin 2 
MGH: Massachusetts General Hospital 
MHC: Major Histocompatibility Complex 
PBL: Peripheral Blood Lymphocytes 
SLA: swine leukocyte antigens  
UNOS: United Network for Organ Sharing 

3. Importance of tolerance 

According to UNOS, over 110,000 patients are currently awaiting organ transplantation in 
the United States. However, in 2010 there were only 14,506 donors. Although the benefits of 
valued organ transplants are substantial, patients must accept the risks of the required 
immunosuppression. Immunosuppressive protocols generally include T-cell depletion in 
the perioperative period, followed by initiation of calcineurin inhibition, mycophenolic acid, 
and steroids. Many centers have been successful in reducing or eliminating the use of 
chronic steroids, but patients are still susceptible to the morbidity associated with 
immunosuppression (1,2).  
Transplantation tolerance, or immunologic non-responsiveness to donor antigen, would 
reduce the morbidity observed with immunosuppression (3). Immunosuppression has been 
associated with malignancy, infection, end-organ damage, and economic burden. As many 
as 30% of renal transplant recipients develop skin cancer within 10 years of transplantation 
(4) similar results have been reported in the cardiac transplant patient population (4,5). 
Furthermore, viral and bacterial infections are more likely to occur in the 
immunocompromised patient and although death rates from infection have decreased every 
decade for the last 30 years, patients at the extremes of age are still considered high-risk for 
infectious complications (6). End-organ failure is also a potential complication of 
immunosuppression; renal failure, likely due to calcineurin inhibitors, has been associated 
with chronic immunosuppression (7,8). Additionally, the lifetime economic cost of 
immunosuppressive drugs alone following kidney transplantation range from $68,000 to 
$88,000 depending on the selected regimen (9,10). 
Tolerance strategies would potentially alleviate the risks of malignancy, organ-failure, and 
infectious complications as well as the cost associated with anti-rejection medications. 
Recent clinical successes in inducing tolerance to kidney (11,12) and liver (13) grafts have 
proven that tolerance strategies are clinically applicable.   

4. Antigen presentation of allogeneic antigens and tolerance 

Tissue antigens are any proteins which when presented by the major histocompatability 
complex lead to immunologic responses (14,15). Proof of this MHC restriction earned 
Zinkernagel and Doherty the Nobel Prize in 1996 for work that was done in the 1970s (15). 
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In transplantation, these antigens can be presented by either donor or recipient antigen 
presenting cells (APCs). The presentation of antigen to recipient lymphocytes potentially 
leads to allosensitization of recipient T-cells. In direct alloantigen presentation, donor tissue 
antigens are recognized by recipient T-cells in the context of donor MHC molecules. 
Conversely, indirect antigen presentation occurs when alloantigens are recognized in the 
setting of recipient MHC. Recently, one group described an additional “semi-direct” 
mechanism in which the recipient cells acquire the intact MHC from the donor and 
subsequently present antigen in the context of the newly acquired donor MHC (16). 
A comprehensive understanding of antigen presentation is helpful for elucidating both 
transplantation rejection and tolerance. In allotransplantation, passenger lymphocytes and 
professional APCs within the transplanted organ present donor antigen to recipient T-cells 
leading to acute rejection (17,18). Indirect presentation of donor antigen may continue 
indefinitely and is generally associated with chronic rejection (19). These two pathways, 
however, are not mutually exclusive as early rejection episodes portend increased risk of 
future chronic rejection (20). While these alloreactive stimuli are known to play a role in 
rejection, small and large animal studies of tolerance have also demonstrated the importance 
of donor antigen presentation in the establishment of a tolerogenic milieu (21-23).  
Mechanisms of transplantation tolerance have been broadly categorized as “central” or 
“peripheral” on the basis of whether T-cells are rendered unresponsive during their 
maturation in the thymus or after they have left the thymus, respectively (24-26).  Deletion is 
thought to be the mechanism responsible for central tolerance, whereas peripheral tolerance 
is likely mediated by anergy, suppression, or ignorance (27). Central tolerance can be 
induced by exposing newly developed T-cells to alloantigens on the progeny of 
hematopoietic stem cells (HSC) injected either at a very early stage in the development of 
the immune system, either in utero or in neonates (28,29) or in adult animals following 
ablation of mature T cells (30-32). This tolerance is deletional and presumably utilizes the 
same process of negative selection that is responsible for self-tolerance during T-cell 
maturation in the thymus (29,33). In addition to bone marrow transplantation, another 
strategy to induce central tolerance is thymic transplantation. We, and others, have 
demonstrated successful induction of tolerance with donor thymic grafts across allogeneic 
and xenogeneic barriers in small and large animal models (34-36).   
Peripheral tolerance to alloantigens has been induced in many ways, generally by providing 
alloantigen in a non-stimulatory fashion or at a time when the aggressive alloreactive 
response has been simultaneously averted. Peripheral tolerance has been ascribed to the 
same processes as those invoked to explain peripheral tolerance to self – i.e. anergy(37-41), 
peripheral deletion(42,43), clonal ignorance (32) and regulation (44-49).  
Investigation of peripheral cellular suppression began over 40 years ago, though the 
implications of these findings were not immediately evident. Tada et al. demonstrated that 
when KLH primed T-lymphocytes were passively transferred to mice prior to immunization 
with DNP-KLH, antibody formation was inhibited. In contrast, when these cells were 
transferred after immunization with DNP-KLH, antibody formation was not inhibited. 
These results demonstrated that a peripheral T-cell response was suppressing immunologic 
response to immunization (50,51). This phenomenon was studied extensively in the 1970s 
and 1980s, and Castagnoli et al. found that the supernatant from antigen-specific 
suppressive thymoma cells was capable of suppressing an alloreactive response to the same 
antigen. These and other data suggested that the effects of purported T suppressor cells are 
mediated by one or more soluble factors (52,53). Our understanding of these suppressive 
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cells was broadened further when Sakaguchi et al. demonstrated that the lack of ostensible 
suppressor cells in nude/nude mice led to severe autoimmune disease, which could be 
rectified by inoculation with nude/+ thymocyte suspensions. Sakaguchi and his colleagues 
then successfully phenotyped these suppressor/regulatory cells as CD4+ve, CD25hi+ve (and 
some years later, FoxP3+) and showed that these cells are likely responsible for tolerance of 
self, and possibly necessary for the maintenance of peripheral tolerance (47,54).  

5. Importance of large animal models 

While small animal data are valuable for defining mechanisms, large animal studies are 
imperative for the development of preclinical models (55). Numerous strategies for 
tolerance induction in rodents have proven fruitful, though few have been successfully 
translated to humans, non-human primates, or other large animals (55,56). Likely owing to 
the increased complexity of the immune system in large animals and longer-term exposure 
to environmental antigens, the results from tolerance induction protocols in large animals 
have been less successful than rodent studies (55-57). Another possible cause for this 
difference is that MHC class II expression on endothelial cells that is the first target in the 
alloreactive response to in solid organs. Murine “resting” endotherial cells do not express 
MHC class II while swine, whereas primate endothelial cells do (58).  

6. MHC inbred MGH miniature swine: A unique large animal model to study 
mechanisms of acceptance/rejection  

Miniature swine have been developed in our laboratory over the past thirty years as a 
model system for studies of transplantation biology. Swine were chosen for this purpose 
because they represent one of the few large animal species in which breeding characteristics 
make genetic experiments possible.  Swine have a relatively large litter size (3-10 offspring) 
and a short gestational cycle (3 months). They reach sexual maturity at approximately 6 
months of age, and sows have an estrous cycle every 3 weeks. These breeding characteristics 
have made it possible to develop MHC homozygous lines of miniature swine in a relatively 
short time and have also made it possible to isolate new MHC recombinants, to breed them 
to homozygosity, and to carry out short-term backcross experiments in order to identify and 
study the segregation of genetic characteristics (59). Our miniature swine thus represent the 
only large animal model in which MHC genetics can be reproducibly controlled.  As such, 
these animals have been particularly useful in assessing the effects of MHC matching on 
rejection and/or tolerance induction (60,61).   
At present, we maintain swine of three homozygous SLA haplotypes, SLAa, SLAc, SLAd and 
five lines bearing intra-SLA recombinant haplotypes as illustrated in Fig. 1.  All of these lines 
differ by minor histocompatibility loci, thus providing a model in which most of the 
transplantation combinations relevant to human transplantation can be mimicked.  Thus, for 
example, transplants within an MHC homozygous herd simulate transplants between HLA 
identical siblings, while transplants between herds resemble cadaveric or non-matched sibling 
transplants.  Likewise, transplants between pairs of heterozygotes can be chosen to resemble 
parent into offspring or one-haplotype mismatched sibling transplants (22). In addition, we 
have chosen one subline of our SLAdd animals for further inbreeding, in order to produce a 
fully inbred line of miniature swine.  This subline reached a coefficient of inbreeding of >96%, 
leading for the first time to long-term acceptance of reciprocal skin grafts (62).  These animals 
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have also made it possible to carry out adoptive transfer experiments for the first time in a 
large animal model, as reported here (Scalea et al, manuscript in preparation).  
 

 

Fig. 1. The serial breeding of MGH swine has led to fixed, defined MHC classes. 
Transplantation between lines of these swine allows researchers to mimic living-related and 
cadaveric organ transplantation.  

7. Thymic-dependent and antigen-dependent tolerance in MHC miniature 
swine renal transplant models 

7.1 Induction of tolerance with a short course and high dose calcineurin inhibitor in   
MGH miniature swine  

i. Effects of CyA on renal allograft survival across a selective MHC barrier: We have 
attempted to induce tolerance using pharmacological limitation of T cell help.  For this 
purpose, class I mismatched renal transplants were performed using a short course of 
treatment with Cyclosporin A (CyA) (63,64).  We chose to study the effect of CyA across 
a selective two-haplotype class I mismatched, class II matched barrier, since without 
immunosuppression such recipients uniformly reject renal allografts within three weeks 
without immunosuppression (Fig. 2).  As reported in our initial study of this treatment 
regimen, a twelve-day course of CyA (10-13 mg/kg/day) induced long-term, specific 
tolerance in eight of eight two-haplotype class II matched, class I mismatched recipients(64). 
This result has been reproduced subsequently in more than fifty additional CyA-treated 
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animals, 100% of which develop long-term tolerance across a class I disparity.  It is 
important to note that although this dose and the resulting blood levels (400-800 ng/dl) 
are high with respect to clinically acceptable values, the toxicity caused by such levels 
clinically is generally reversible if discontinued after a two- week course (65).   
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Fig. 2. With a short-course of high-dose Cyclosporine A, tolerance is uniformly established 
across an MHC class-I mismatch in MGH miniature swine (n>50). 

ii. Effects of CyA on renal allograft survival across other selective MHC barriers:  We have 
also studied whether tolerance is induced with a 12-day course of CyA therapy across 
further immunologic disparities. Although the CyA regimen was capable of prolonging 
renal allograft survival across a full MHC barrier, it did not induce long-term tolerance in 
any of the animals tested (64).  However, since pharmacologic help limitation by CyA 
should be possible regardless of the MHC disparity, we also tested the effect of the CyA 
regimen on renal transplants selectively mismatched for class II or for one full haplotype 
(66,67).  Of seven CyA-treated class I matched, class II mismatched kidney transplants, five 
(71%) were accepted long-term, whereas two rejected on days 20 and 39, respectively (68).  
Similarly, of six CyA-treated recipients of single haplotype mismatched kidney allografts, 
two rejected (on days 31 and 37), while four (67%) accepted long-term. Thus, tolerance 
was possible across both class II and single haplotype full mismatches, but with a lower 
success rate and with a less stable clinical course than across a selective class I mismatch.  

iii. Effects of Tacrolimus on renal allograft survival across other selective MHC barriers 
According to the latter hypothesis, increasingly potent immunosuppression of T-cell 
help would be required for increasing the extent of the MHC disparity (i.e. class I < 
class II < one full haplotype < two full haplotypes). Our subsequent results using 
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Tacrolimus corroborate this finding (69). We have demonstrated that Tacrolimus at 
blood levels between 35 and 80ng/ml facilitates tolerance induction not only across a 
class I barrier, but also across a two-haplotype full MHC barrier in-vivo (69). However, 
like CyA-induced tolerance across class I mismatched barrier, thymic-dependent 
mechanisms are involved in this Tacrolimus-induced tolerance (70). Tolerance was only 
induced in juvenile hosts (see more details blow).   

7.2 Mechanisms of tolerance using high-dose calcineurin inhibitors 

To understand better the mechanisms of tolerance induction, both the role of thymus (i.e. 
aging) and persistence of donor antigens in tolerance induction/maintenance have been 
studied. 
i. Thymic dependent tolerance: A series of experiments were performed using aged and 

thymectomized animals. The data from these studies demonstrated that when aged 
animals underwent class-I mismatched kidney transplantation followed by 12-days of 
CyA, tolerance could not be induced. Similarly, thymectomy prior to kidney 
transplantation interfered with the development of tolerance across the same class-I 
barrier (71). Interestingly, thymectomy in a maintenance period (beyond 6 weeks after 
transplantation) did not abrogate tolerance (70). Recent work from this laboratory has also 
demonstrated thymic dependent mechanisms play important role in tacrolimus induced 
tolerance in both miniature swine and nonhuman primates (Yamada et al manuscript in 
preparation). These studies indicated that that 1) tolerance induction is thymus-
dependent, whereas tolerance-maintenance is not and 2) an interaction between central 
and peripheral mechanisms of tolerance is likely occurring in the stably tolerant animal.  

ii. Regulatory mechanisms and stability of tolerance – Class I mismatched kidney transplantation 
with a 12-day course of CyA: 
a. In vitro assays suggesting involvement of regulatory mechanisms 

Because thymectomy post-transplantation did not lead to the abrogation of tolerance, 
investigators postulated that a suppressive peripheral regulatory mechanism had developed 
in class I mismatched tolerant model. When peripheral blood lymphocytes (PBL) from long-
term tolerant animals were stimulated with donor PBLs, and re-cultured with naïve SLA 
matched PBLs plus either donor-PBLs or 3rd party PBLs, we observed suppression of the 
naïve-SLA anti-donor CTL response and maintenance of naïve-SLA anti-3rd party CTL 
responses (45). This co-culture assay demonstrated in-vitro that a peripheral cellular 
mechanism of suppression was present. To study activation and effector function of these 
purported regulatory cells, we performed co-culture assays in which PBLs taken from a 
tolerant animal were placed in a transwell culture system such that they were separated from 
donor PBLs by a permeable membrane (69). In previous co-culture CTL assays performed 
without the membrane barrier, we observed that naïve-recipient SLA matched PBLs were 
inhibited by the presence of PBLs taken from a tolerant animal. However, when the cells were 
separated by a permeable membrane, the cells were no longer suppressive (69,72). This 
demonstrated that 1) direct cell-to-cell contact is required for activation of the peripheral 
regulatory mechanism and 2) soluble factors produced by the peripheral regulatory cells are 
themselves incapable of regulatory effector activation in this class I mismatched kidney model.  

b.  Exogenous T-cell help interfered with the induction of tolerance but not 
maintenance of tolerance 

Based on these in-vivo and in-vitro data, we attempted to further define the role of 
regulatory cells in the MGH miniature swine model, by attempting to abrogate tolerance in 
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animals. Because a lack or T cell help likely plays an essential role in calcineurin-induced 
tolerance,  we administered exogenous IL-2 either 1) during the induction period (Days 8. 9 
and 10) or 2) once animals were long-term tolerant (73). Much like our thymectomy 
experiments, we found that whereas IL-2 administration can prohibit the induction of 
tolerance if administered perioperatively, treatment with exogenous IL-2 failed to abrogate 
tolerance in long-term tolerant (LTT) animals (73). To further distill the role of T-cell help 
required for the anti-donor cellular response in tolerant animals, we challenged LTT animals 
with skin grafts from class-I donor/class-II third party donors instead of IL-2 (74). We 
reasoned that the class-II disparate graft may be capable of providing the necessary T-cell 
help by stimulating the alloreactive CD4+ population. Although recipient animals 
experienced a brief rejection crisis following skin grafting, they remained tolerant in the 
long-term (74). Thus, once established, the peripheral mechanism of tolerance is steadily 
stable, and capable of suppressing further stimulation with donor antigen.  

c. Role of graft in maintenance of tolerance 
Because 1) removal of the thymus in a tolerant animal did not lead to tolerance abrogation 
and 2) based on the in-vitro data suggesting that tolerance was mediated by an active 
cellular process, we next questioned if the graft itself was providing the tolerogenic stimulus 
for maintenance of tolerance. To test this hypothesis, we designed several experiments in 
which the tolerated graft was removed and replaced by a donor-MHC matched graft (21) 
(75). In the first experiment, long-term tolerant animals underwent graft nephrectomy and 
immediate retransplantation with a donor-MHC matched graft. As previously published, 
each animal uniformly accepted the retransplanted graft and never experienced rejection. In 
the next experiments, we introduced a period of “absence-of-donor-antigen” by removing 
the tolerated kidney from LTT animals and replacing it with a self-MHC matched graft to 
support the life of the animal. Then, at 1 and 3 months, animals were retransplanted with a 
donor-MHC matched graft. When animals bearing self-MHC matched grafts underwent 
retransplantation from actual donors immediately after primary graft nephrectomy, all 
animal accepted kidney with stable renal function(21). However, we observed a brief 
rejection crisis followed by uniform acceptance when second kidneys were transplanted at 
one month after the primary graft nephrectomy.  Moreover, as the period of absence-of-
donor-antigen was increased to 3 months, retransplantation was followed by significant 
rejection crisis in two of three animals. One animal completely rejected the retransplanted 
graft within 2 months and the other had severe rejection episodes (21). Furthermore, when 
skin grafts from class-I donor/class-II third party donors were transplanted onto animals 
during absence of donor kidneys, second kidneys transplanted 3 months after primary 
kidney nephrectomy were uniformly rejected in an accelerated manner (<7 days), indicating 
a “broken tolerance” (Yamada et al., manuscript in preparation). This series of experiments 
confirmed that the kidney plays an essential role in the maintenance of tolerance. Because 
we observed rejection of the retransplanted donor-MHC matched graft following periods 
without donor antigen present, it is likely that the kidney provides a constant tolerogenic 
stimulus via a peripheral mechanism which is required for maitenence of T-regulatory cells. 

d. Current evidence for the role of T-regulatory cells in peripheral tolerance  
The previous experiment clarified our understanding of the role that persistence of donor 
antigen plays in the maintenance of tolerance and provided indirect evidence that this 
process was mediated by T-regulatory cells (21,45). We then postulated that, if T-regulatory 
cells were responsible for maintaining tolerance then removal of T-regulatory cells from a 
LTT animal, may lead to abrogation. Thus, we next attempted to hasten the onset of 
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rejection by performing an extensive leukapheresis immediately prior to retransplantation 
of a donor-matched graft following a three month period of absence-of-donor-antigen. In 
eight of ten animals in this protocol, we observed rejection of a subsequently retransplanted 
donor-MHC matched graft, and complete or chronic rejection in four of ten animals (Scalea 
et al, manuscript being submitted). When the leukapheresed cells were evaluated in vitro, 
we observed that they were capable of suppressing a naïve anti-donor response in a cell 
mediated lympholysis (CTL) co-culture assay in a donor-specific manner (Scalea et al, 
manuscript in preparation).  
Having determined that these cells were capable of suppressing a naïve response in-vitro 
(45), we then questioned whether they would be suppressive in-vivo. However, based on 
our absence-of-donor-antigen and leukapheresis with retransplantation experiments, it 
appeared that both the kidney and peripheral regulatory cells were important for the 
continuation of tolerance (21). To resolve the contribution of the circulating cellular 
compartment versus the kidney itself, we adoptively transferred leukapheresed cells from 
tolerant donors that were from our most highly-inbred line of miniature swine. We found 
that when either the LTT kidney was transplanted into a naïve animal, or leukapheresed 
cells were transferred along with a naïve donor graft, there was prolonged graft survival, 
but not long-term acceptance (Scalea et al, manuscript in preparation). Conversely, when the 
leukapheresed cells and kidney were transferred from the same LTT animal, the naïve 
recipient experienced long-term graft survival. Additionally, these recipients were 
unresponsive to donor in CML assay as early as day 28, and in one case, as late as 150 days 
following transplantation (Scalea et al, manuscript being submitted).  

8. Summary 

In summary, our understanding of the mechanisms of tolerance has blossomed over the last 
several decades. It is clear that while small animal data has helped elucidate the molecular 
basis for tolerance, large animal studies are required for the development of preclinical 
models. While animal models have some limitations, our unique model allows us to model 
accurately the clinical scenarios of clinical transplantation. Using this model, we have 
demonstrated the importance of the thymus for tolerance induction and the persistence of 
donor antigen for the maintenance of tolerance. Recent work in our laboratory has 
demonstrated that stable peripheral tolerance is mediated by a cellular mechanism that is 
best explained by the presence of T-regulatory cells.  
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