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1. Introduction 

Autism is a syndrome with a broad spectrum of phenotypes characterized by deficits in 
social interaction and communication, repetitive or stereotyped behaviors, and restricted 
interests (Rutter, 2005). Autism spectrum disorder (ASD) manifests mostly before 3 years of 
age (Klauck, 2006). ASDs include two related diagnoses; pervasive developmental disorder 
(PDD) including atypical autism, impairment in the same areas, but not meeting criteria for 
autism; Asperger's syndrome, which is milder than PDD, showing similar impairments in 
social interaction, behaviors and interests, but no significant delay in linguistic and cognitive 
development (Weiss, 2009). The prevalence rate of ASDs is ~0.6% and ASDs are 
approximately four times more common in males than in females (Veenstra-VanderWeele, 
2004). Many studies have been performed to elucidate the pathogenesis of ASDs, but 
identified risk factors do not explain a significant proportion of the disease prevalence. 
Genetic epidemiological data have been suggesting that ASDs are heritable both in autism 
families and in the general population (Freitag, 2007). The concordance rates of autism in 
monozygotic twins were reported to be significantly higher (~ 60–90%) than those in 
dizygotic twins (~ 10%) and the recurrence rates are known to be approximately 10-20 times 
higher in siblings than in normal population (Folstein & Rosen-Sheidley, 2001; Cohen et al., 
2005; Bailey et al., 1995; Lauritsen et al., 2005). ASD is not a single-gene disorder with 
Mendelian inheritance but rather a component of various genetic disorders with apparent 
cytogenetic abnormalities (Eapen, 2011). Cytogenetic alterations were detected in 7.4% of 
ASD (Vorstman et al., 2006), and some of them have been suggested as causative factors of 
neurodevelopmental disorders (Merikangas et al., 2009). However, discrepancies in study 
results and diverse modes of inheritance have hindered the discovery of common genetic 
susceptibility factors to ASDs. For these reasons, despite the growing evidence supporting 
the genetic susceptibility to ASD development (Folstein & Rosen-Sheidley, 2001; Veenstra-
VanderWeele & Cook, 2004), the genetic mechanisms of ASD is still largely unknown.  
Recent technical advance in microarray-based whole-genome analysis has enabled 
identification of common and rare genetic alterations associated with ASDs. Several recent 
studies have suggested that ASDs are associated with genetic variations including single 
nucleotide polymorphisms (SNPs) and copy number variations (CNVs), and that these 
genetic variations may work together (Veenstra-VanderWeele & Cook, 2004). For example, 
de novo CNVs were found in ~7% of idiopathic ASD families via oligoarray-comparative 
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genomic hybridization and whole-genome SNP array analysis (Abrahams & Geschwind, 
2008; Psychiatric GWAS Consortium Coordinating Committee et al., 2009). In addition to 
rare de novo variations, common genetic variations such as SNPs on 5p14.1 were found to 
be associated with ASDs and this finding was replicated in two independent studies (Wang 
et al., 2009). Recently introduced next-generation sequencing (NGS) will further accelerate 
mining of genetic variations linked with ASDs (Ropers, 2010). Graphical overview of the 
reported ASD-associated CNVs and SNP are illustrated in the Figure 1. In this chapter, we 
will review the recent results of CNV and SNP genome-wide association studies (GWAS) on 
ASDs and discuss the perspectives of the genetic susceptibility study of ASDs. 
 

 
 

 
Fig. 1. Genomic map of CNVs and SNPs associated with ASDs identified by GWAS. 
Green and red bars on the left and right side of the karyograms indicate chromosomal 
locations of SNPs and CNVs, respectively. Blue bars on the right side of the karyograms 
present the locations of known genes. This figure was drawn by IdeogramBrowser (Müller 
et al, 2007). 

2. CNVs associated with ASD 

2.1 What is CNV?  

Using array-CGH, a combination of microarray and comparative genomic hybridization 
(CGH) technologies, two pioneering groups of scientists have identified wide-spread CNVs 
in apparently healthy, normal individuals in 2004 (Iafrate et al., 2004; Sebat et al., 2004). 
CNV is defined as any type of genetic variant that alters the chromosomal structure, 
including duplications and deletions (Iafrate et al., 2004; Sebat et al., 2004; Redon et al., 2006) 
and now known to be one of the most prevalent types of genetic variations in the human 
genome (Feuk et al., 2006; Hurles et al., 2008; Carter, 2007; Estivill & Armengol, 2007). In 
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addition to SNPs, CNVs in normal individuals have been widening our understanding of 
genetic heterogeneity (Iafrate et al., 2004; Sebat et al., 2004; Redon et al., 2006). Commonly used 
working definition of CNV was a copy number change involving a DNA segment sized 1 
kilobases (kb) or larger (Freeman et al., 2006; Feuk et al., 2006). Nowadays, definition of CNVs 
includes any DNA structural variants including duplications, deletions and inversions (Hurles 
et al., 2008). When the frequency of CNV is common (>1%) in the population, CNV is also 
called copy number polymorphism (CNP). However, due to lack of standardized technologies 
to define CNV, the size and frequency of CNV have not been well defined in human 
populations. Since the two pioneering studies discovered the evidence of the existence of 
CNVs (Iafrate et al., 2004; Sebat et al., 2004), more than 66,000 CNVs and 34,000 InDels have 
been identified in various populations (Redon et al., 2006; Simon-Sanchez et al., 2007; de Smith 
et al., 2007; Perry et al., 2008; Díaz de Ståhl et al., 2008; Yim et al., 2010; Conrad et al., 2010; Park 
et al., 2010) and catalogued in the public database, Database of Genomic Variants 
(http://projects.tcag.ca/variation/) (Feuk et al, 2006). More CNVs have been uncovered using 
the NGS analysis (Mills et al., 2011; Kidd et al., 2010; Kim et al., 2009).   
CNVs can affect gene functions in several ways and have a potential to affect gene 
expression levels presumably larger than that of SNPs. Deletion or duplication may disrupt 
the genes located inside those regions, resulting in changes in the gene structure, which can 
affect the gene expression. Alternatively, disruption of the transcription regulatory regions 
and the enhancers can also affect the gene expression. During the recombination which is 
thought to be an important mechanism of CNV development, novel fusion products may be 
generated, which may exert positive or negative effects on gene expression and epigenetic 
regulations (Feuk et al, 2006; Zhang et al., 2009; Hampton et al., 2009; Przybytkowski et al., 
2011; Reymond et al., 2007). Taken together, structural variations are likely to be responsible 
for the phenotypic variation of human beings and comprehensive mapping of CNVs can 
facilitate the understanding of inter-individual phenotypic differences including disease 
susceptibility and responsiveness to drugs (Feuk et al, 2006; Estivill & Armengol, 2007). 
Indeed, CNVs have been found to be associated with various types of Mendelian traits and 
also a substantial number of complex diseases including neurodevelopmental disorders 
(Buchanan & Scherer, 2008; Lee & Lupski, 2006). 

2.2 CNVs in ASD 

To assess the role of CNV in ASD, several different whole-genome microarray platforms 
based on oligonucleotides, SNPs and BAC clones have been used for ASD family studies or 
case-control studies (Abrahams & Geschwind, 2008; Cook & Scherer, 2008). As a result, lines 
of evidence have been accumulated that multiple rare de novo CNVs contribute to the 
susceptibility to ASD. For example, duplications and/or deletions on chromosome 15q11–
q13 confer increased risk of ASD (15q11–q13 duplication syndrome, Prader-Willi syndrome 
and Angelman syndrome). Approximately one fourth of the individuals who have a 22q11.2 
deletion and over 90% of individuals with duplication of 17p11.2 show characteristics of 
ASD (Cohen et al., 2005; Abrahams & Geschwind, 2008; Fernández et al., 2009). Significant 
associations have been reported between ASD and CNV of various genes, such as NRXN1 
(2p16.3), NLGN3 (Xq13.1), NLGN4 (Xp22.23) and SHANK3 (22q13.3). There have been many 
reports on CNVs associated with ASDs, but, due to technical limitations and lack of 
standardized methods for defining the CNVs and CNV regions (CNVRs), there are 
inconsistencies among studies which should be removed by further GWAS. Table 1 
summarizes the major CNVs identified by GWAS in ASD.  
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Discovery Sample 
Replication 

Sample Study
design

Platform 
CNV 

Detection
method 

Number 
of CNVs
identified

Strong 
candidate 

loci 

CN 
change 

Reference 

Case Control Case Control

1496 
families 

with 
7,917 

subjects 

Unaffecte
d family 
members 

- - 
Family-
based

Affymetrix 
10K 

dChip 254 

NRXN1 
1q21 

17p12 
22q11.2 

del 
Szatmari 

et al., 2007 

165  
families 

99 
unaffected 

families 

- - 
Family-
based

Agilent 
244K 
390K 

ROMA 

HMM 17 

SLC4A10, 
FHIT 
FHIT 

FLJ16237 
A2BP1 

del 
del 
dup 
del 
del 

Sebat et 
al., 2007 

180 372 532 465 

Family-
based 
and 

Case-
control

Array-
CGH 

NimbleGen 1 16p11.2 microdel 
Kumar et 
al., 2008 

751 
multiplex 
families 

with 1441 
cases 

 

1420 
(AGRE 
parents) 

2814 
(bipolar 

disporder 
or NIMH 
controls) 

512 
(CHB)

299 
(deCO

DE) 

434 
(CHB)
18,834

(decode
) 

Family-
based

Affymetrix 
5.0 (AGRE)
Affymetrix 

500K 
(controls)

COPPER/ 
Birdseye 
(AGRE) 
ADM-
2(CHB) 

HMM(deC
ODE) 

47 
16p11.2 

 
del/dup 

 
Weiss et 
al., 2008 

 
397 

 
372 - - 

Family-
based

19K BAC 
Microarray

- 51 
15q11-q13 

22q11 
16p11.2 

dup 
dup 

microdel 

Christian 
et al., 2008 

427 
families 

 

500 
 

- 

1,152 
matche

d 
controls

Case-
control

Affymetrix 
500K 

dChip, 
CNAG, 
GEMCA 

277 

16p11.2 
SHANK3-
NLGN4-

NRXN1-PSD
DPP6-
DPP10-
PCDH9 

ANKRD11
DPYD 

PTCHD1 
15q24 

del/dup 
 

Marshall 
et al., 2008 

 
859 

 

 
1409 

 
1,336 1,110 

Case-
control

Illumina 
HumanHa

p550 
PennCNV 78,490 

15q11-13 
22q11.21 
NRXN1 
CNTN4 
PARK2 
RFWD2 

AK123120 
UNQ3037 

GRID1 
NLGN1 

GYPELOC44

dup 
dup 
del 

del/dup 
del 
dup 
dup 
del 
del 
dup 
dup 

Glessner 
et al., 2009 

912 
multiplex 
families 

1,488  
(CHOP) 

542 
(NINDS) 

859 1,051 
Case-

control

Illumina 
HumanHa

p550 
PennCNV > 150 

NRXN1 
UBE3A 

15q11-q13 
BZRAP1 
MDGA2 

del 
dup 

del/dup 
del/dup 

del 

Bucan et 
al, 2009 
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Discovery Sample 
Replication 

Sample Study
design

Platform 
CNV 

Detection
method 

Number 
of CNVs
identified

Strong 
candidate 

loci 

CN 
change 

Reference 

Case Control Case Control

28 
children 

62 Adults 
 

- - 
Case-

control
Array-
CGH 

Array-
CyGHt 

38 
8p23.1 
17p11.2 

del 
del 

Cho et al, 
2009 

996 
 

1,287 - 3,677 

Case-
control

and 
Family-
based

Illumina 
1M 

QuantiSNP
iPattern 

 
5,478 

SHANK2 
SYNGAP1 
DLGAP2 

CSNK1D/S
LC16A3 
NRXN1 
22q11.21 

DDX53/PTC
HD1 

del 
del 
dup 

dup/del 
dup/del 

del 
del 

Pinto rt 
al., 2010 

ACC:Autism Case-Control cohort 
ADM : aberration detection method 
AGP: Autism Genome Project 
AGRE: Autism Genetic Resource Exchange 
CHB: Children’s Hospital Boston 
CHOP: Children’s Hospital of Philadelphia 
CNAG: Copy Number Analysis for GeneChip 
COPPER: copy-number polymorphism evaluation routine 
dChip: DNA Chip Analyzer 
GEMCA: Genotyping Microarray based CNV Analysis 
HMM: hidden Markov model 
NIMH: National Institute of Mental Health 
NINDS: National Institute of Neurological Disorders and Stroke 

Table 1. Genome-wide CNV association studies of autism  

In 2007, two pioneering studies demonstrated the association of CNVs with ASD. The 
Autism Genome Project Consortium performed linkage and CNV analyses using Affymetrix 
10K SNP array for 1,181 ASD families with at least two affected individuals (Autism 
Genome Project Consortium et al., 2007). Of the 254 highly significant CNVs, the 
investigators emphasized four CNVs and the most interesting finding was a 300-kb sized 
CNV loss on chromosome 2p16 identified recurrently in two families. The deletion of this 
region disrupted the coding exons of the neurexin 1 gene (NRXN1), which interacts with 
neurologins and involves in synaptogenesis. Therefore, deterioration of the neurexin 1 
function by deletion may affect susceptibility to ASD or its phenotypes. The structural 
variation in the NRXN1 gene was reported from the previous autism studies (Chubykin et 
al., 2005; Feng et al., 2006). The other three interesting CNVs were 1.1-Mb sized CNV gain 
on chromosome 1q21, 933-kb sized de novo duplication on 17p12, and duplication on 
22q11.2. The duplication on 17p12 is known to cause Charcot-Marie-Tooth 1A (CMT1A) 
disease (Houlden et al., 2006). In addition, other micro-duplications of the same 
chromosomal region have been reported in individuals with mental retardation, linguistic 
delay, autism and related phenotypes (Moog et al., 2004).  
Sebat and his colleagues performed array-CGH analysis with 264 families and explored the 
association of de novo CNVs with ASD, which are not present in their respective parents 
(Sebat et al., 2007). The authors identified 17 de novo CNVs in 16 subjects. According to their 
result, the frequency of spontaneous mutation was 10% in the sporadic cases and 3% in the 
multiplex families, while 1% in unaffected individuals. One of the de novo CNV loci was a 4.3-
Mb sized deletion at 22q13.31-q13.33, where SHANK3 gene is located. Recurrent deletion of this 
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region has been previously reported in ASD (Manning et al., 2004). Durand et al. reported that 
mutations in SHANK3 gene were associated with ASD and abnormal gene dosage of SHANK3 
was associated with severe cognitive deficits, linguistic delay and ASD (Durand et al., 2007). 
SHANK3 is a scaffolding protein found in excitatory synapses directly opposite to the 
presynaptic active zone. This gene has been suggested to be associated with the 
neurobehavioral symptoms observed in individuals with 22q13 deletions.  
In 2008, four independent studies consistently reported the association of the CNV on 
16p11.2 locus with autism. Weiss et al. adopted Affymetrix 5.0 SNP array to find CNVs in 
751 multiplex families from the Autism Genetic Resource Exchange (AGRE) (Weiss et al., 
2008). They identified 32 high- and 15 low- confidence regions. Among the candidate loci, 
microdeletion and microduplication on 16p11.2 were validated to be associated with ASD. 
This association was further confirmed in clinical testing data from Children’s Hospital 
Boston and in a large population data from Iceland (deCODE genetics data). Kumar et al. 
screened 180 ASD cases and 372 controls using a 19K whole-genome tiling bacterial artificial 
chromosome (BAC) array to identify submicroscopic copy number changes specific to 
autism (Kumar et al., 2008). They observed ~500-kb sized recurrent microdeletion on 
16p11.2 in two cases with autism but not in the controls. When they assessed the frequency 
of this putative autism-associated genomic disorder, 0.6% of the ASD cases showed the 
alterations while none in controls. The variation was confirmed by FISH, microsatellite 
analyses and array-CGH. Christian et al. also used the same 19K whole-genome tiling BAC 
array to identify ASD-associated CNVs in the 397 cases and 372 control set (Christian et al., 
2008). Among the 51 candidate CNVs, recurrent CNVs were identified in the loci including 
15q11-q13, 22q11, and 16p11.2. They were confirmed by FISH, microsatellite analysis, or 
quantitative polymerase chain reaction (PCR) analysis. Marshall et al. performed whole-
genome screening for 427 ASD cases and 500 controls using Affymetrix 500K SNP arrays 
(Marshall et al., 2008). Of the 277 CNVs identified only in the cases, the CNVs on 16p11.2 
locus appeared in around 1% of the ASD cases, which included both duplications and 
deletions. There exist SHANK3-NLGN4-NRXN1 postsynaptic density genes, DPP6-DPP10-
PCDH9 (synapse complex), ANKRD11, DPYD and PTCHD1 in other associated CNVs.  
New CNVs in addition to the known ones have been suggested to be associated with ASD 
in the subsequent studies. Glessner et al. performed a whole-genome CNV analysis with 859 
cases and 1,409 controls using Illumina HumanHap550 BeadChip (Glessner et al., 2009). 
They generated 78,490 CNV calls and the positive findings were further evaluated in an 
independent cohort of 1,336 ASD cases and 1,110 controls. Through this approach, they 
identified several known ASD-associated genes as well as novel candidate CNVs. For 
example, they identified the CNVs in the loci including 15q11–q13, 22q11.21, NRXN1 and 
CNTN4, which were previously reported to be associated with autism (Kim et al., 2009; 
Roohi et al., 2009; Fernandez et al., 2008). However, some of the genes or loci previously 
known to be associated with ASD such as AUTS2 (Kalscheuer et al., 2007), NLGN3 (Jamain 
et al., 2003), SHANK3 (Moessner et al., 2007) and 16p11.2(Weiss et al., 2008) were not 
replicated in their study. Especially 16p11.2, a locus consistently reported to be associated in 
four previous independent studies, did not show a significant association in this study. 
Several new susceptibility genes such as NLGN1 and ASTN2 were identified in this study. 
Both genes encode neuronal cell-adhesion molecules. In Chubykin et al’s report, mutations 
in neuroligin superfamily members were identified in the individuals with ASD (Chubykin 
et al., 2005). ASTN1 is a neuronal protein receptor integral in the process of glial-guided 
granule cell migration during development (Zheng et al., 1996). Furthermore, CNVs of the 
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genes involved in the ubiquitin pathways, such as UBE3A, PARK2, RFWD2 and FBXO40, 
were observed in the ASD cases but not in the controls. Bucan et al. conducted high -density 
genotyping of 912 multiplex families from the AGRE collection and 1,488 controls using 
Illumina HumanHap550 BeadChip (Bucan et al., 2009). They identified more than 150 loci 
harboring rare variants in multiple unrelated patients and the positive findings were further 
validated in an independent cohort of 859 ASD cases and 1,051 controls by genomic 
quantitative PCR. Among the candidate loci, there are previously reported ones such as 
NRXN1(Marshall et al., 2008), UBE3A (Glessner et al., 2009), and 15q11-q13 (Christian et al., 
2008) and novel ones such as BZRAP1 and MDGA2.  
In 2009, Cho et al. reported the ASD associated CNVs in east-Asians. They performed 
whole-genome BAC array-CGH with 28 ASD cases and with 62 controls and identified 38 
CNVs including those harboring two significant loci, 8p23.1 and 17p11.2 (Cho et al., 2009). 
DEFENSIN gene family are located in the 8p23.1 CNV locus and often showed copy number 
polymorphisms in earlier studies (Linzmeier & Ganz, 2005). Although there have been no 
direct clues to connect the copy number loss of DEFENSIN gene and ASD, immunological 
dysfunction has been suggested to be associated with autism (Rutter, 2005). 
Most recently, Pinto et al. analyzed the genome-wide features of rare CNVs in autism using 
Illumina 1M SNP arrays (Pinto et al., 2010). Based on 996 cases and 1,287 controls, they 
identified 5,478 rare CNVs. By examining parent-child transmission, the authors found the 
226 de novo and inherited CNVs which were not present in controls. As a whole, ASD cases 
were found to carry a higher number of de novo CNVs than controls (1.69 fold, P=3.4X10-4). 
A number of novel genes such as SHANK2, SYNGAP1, DLGAP2 and the DDX53–PTCHD1 
in the CNVs were found to be associated with ASD in this study. Also, through gene set 
enrichment analysis, cellular proliferation, projection and motility, and GTPase/Ras 
signaling were found to be affected by the CNVs identified in their study. This approach 
demonstrated the new paradigm of autism research based on functional pathway and cross-
talk.  

3. SNPs in autism 

Before the establishment of GWAS, the genome-wide linkage analysis has been used for the 
discovery of the mutations in diverse diseases (OMIM http://www.ncbi.nlm.nih.gov/omim). 
Location of the disease genes were successfully narrowed down by linkage disequilibrium 
mapping studies, but linkage approach was not always successful especially for complex 
diseases. In many cases, the significant linkage loci were not replicated. One potential reason 
is that the effect of a single risk variant on the pathogenesis of complex disease might be too 
small to be detected. Small genetic effects could be detected with greater power by 
association analyses such as GWAS with large case-control population (Risch & Merikangas, 
1996). In other words, to identify common risk alleles in the common complex diseases, 
population-wide analysis with more common and dense variants is required. SNP-GWAS 
can be an ideal approach for unbiased screening and also be adopted for high-density 
linkage analysis. SNP-GWAS became a matured technology for exploring novel associations 
between genetic variants and complex diseases because over 12 million of SNAs have been 
catalogued and high density array fabrication/analysis technologies have been developed. 
In neuropsychiatric disorders with unknown etiology such as ASD, SNP-GWAS have been 
actively adopted to explore the genetic background of the diseases (Table 2). In this chapter, 
we will review the major SNP-GWAS results for ASDs.  
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Initial 
Sample Size 

Replication 
Sample Size

Region
Reported 
Gene(s) 

Strongest 
SNP 

p-value of 
discovery 
set (OR*) 

p-value of 
replication 
set (OR*) 

Platform Reference 

72 families 
(148 cases) 

1,295 trios 7q35 CNTNAP2 rs7794745 2.14E-05 <0.005 
Affymetrix 

500K 
Arking et 
al., 2008 

 
1,031 families 
(1,553 cases) 

2,073 trios 5p15 
SEMA5A, 
TAS2R1 

rs10513025
1.7E-06 
(0.55) 

6.1E-03 
(0.76) 

Affymetrix 
5.0 /500K 

Weiss et al., 
2009 

438 families 487 families 5p14.1 Intergenic rs10038113
2.75E-05 

(0.67) 
3.28E-03 

Illumina 
Human 
1Mv1 

beadchip 

Ma et al., 
2009 

780 families 
(1,299 cases) 

447 families

5p14.1
CDH10,CD

H9 
rs4307059 

1.1E-05 1.2E-2 
550K/1M 
Illumina Wang et al., 

2009 1,204 cases 
6,491 controls 

108 cases 
540 controls

2.2E-04 
(1.19) 

1.6E-2 
550K/300K 

Illumina 

745 boys in 
social group 
870 boys in 
nonsocial 

group 

1,400 boys 
2p21 

 
Intergenic 

(social traits)
rs11894053

(social traits)
0.02 

 
- 
 

Affymetrix 
500K 

Ronald et 
al., 2010 

 
1,558 families 

2,179 
families 

20p12.1
MACROD2
(Str|Eur)**

rs4141463 
(Str|Eur) 

2.1E-08 
(0.56) 

4.7E-08 
(0.65) 

1M Illumina 
Anney et 
al.,  2010 

*OR: Odds Ratio 
**Str|Eur : strict diagnosis and European ancestry  

Table 2. Genome-wide SNP association studies of autism    

3.1 Common SNPs associated with ASD 

Arking et al. performed a two-stage study on ASD using genome-wide linkage and family-

based association mapping by whole-genome SNP genotyping (Arking et al., 2008). For 

stage I, they selected 72 multiplex ASD families and genotyped the samples using 

Affymetrix 500K arrays. In this approach, they could not find any significant SNPs or 

haplotypes. However, through the genome-wide linkage analysis, they identified 2 

significant loci associated with ASD, 7q35 and 10p13-14. In the most significant locus (7q35), 

they identified that a polymorphism in contactin-associated protein-like 2 (CNTNAP2) gene, 

a member of the neurexin superfamily, is associated with ASD. In the second stage, they 

validated the significant findings of the stage I by examining 145 multiplex families and 

confirmed that CNTNAP2 was an autism-susceptibility gene. This result was the first 

evidence that a common genetic variant in the neurexin superfamily member increases risk 

of autism.  

In 2009, Weiss et al. explored a linkage and SNP association analysis with 1,031 multiplex 

autism families using Affymetrix 5.0 SNP array (Weiss et al., 2009). They found that a SNP 

on 5p15 locus between SEMA5A and TAS2R1 gene was significantly associated with autism. 

In addition, the expression of SEMA5A was found to decrease in brains of autistic patients. 

Taken together the authors suggested a possibility of SEMA5A as an autism risk gene. Wang 

et al. used higher density SNA array and larger study populations to identify common 

genetic risk factors underlying ASDs (Wang et al., 2009). They used two different sets of 

study subjects in discovery stage using Illumina Human 1M beadchip. First set was 780 

families with 1,299 affected children and the second set was 1,204 patients and 6,491 
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controls. They identified six significant SNPs located between cadherin 10 (CDH10) and 

cadherin 9 (CDH9) genes strongly associated with ASD. These two genes encode neuronal 

cell-adhesion molecules. Among the 6 SNPs, the most significant one was rs4307059 (P = 3.4 

× 10−8, odds ratio = 1.19). The SNP was replicated in two independent datasets of 447 

families and 108 case-540 control sets. Combined analysis using all four datasets showed 

that all six SNPs are associated with autism (P values ranging from 7.4 × 10−8 to 2.1 × 10−10). 

Interestingly, 5p14.1 was consistently suggested as a novel risk locus in an independent 

study in the same year. Ma et al. performed GWAS with 438 Caucasian autistic families 

using Illumina Human 1M beadchip (Ma et al., 2009). They found that 96 SNPs were 

strongly associated with autism (P < 0.0001). They validated all 96 significant associations in 

independent samples of 487 families using 550K Illumina BeadChip, which was the same 

array platform to Wang et al’s. A novel locus on 5p14.1 was found to be significantly 

associated with autism both in the discovery and validation dataset.  

The Autism Genome Project (AGP) Consortium performed high-resolution genotyping with 

1,558 families to identify significant SNPs (Anney et al., 2010). For primary analysis, they 

partitioned the dataset along axes of diagnosis and ancestry; spectrum versus strict; 

European versus all ancestries. Based on these partitioned data, they conducted four GWAS. 

They observed the strongest association for SNP rs4141463 in one of the four primary 

association analyses. Located within MACROD2, this marker crossed the GWA significance 

threshold of P < 5 x 10-8. They are performing analysis of combining data to validate the 

results of the primary analysis. 

Despite the expected advantages of large-scale GWAS analysis, none of the candidate 

associations have been replicated so far, which may underscore the genetic and phenotypic 

heterogeneity of ASD and indicate the fact that the effect size of common alleles 

contributing to common disorders is much smaller than expectation (Eapen, 2011).  

3.2 Rare SNPs associated with ASD 

Definition of a rare variant is a variant with frequency <1%. The most deleterious variants 

might be naturally eliminated during evolution, but some remain as rare variants. In 

‘common disease–common variant’ model, most of the rare SNP associations have been 

missed by current GWAS concept. However, rapid development of NGS will facilitate the 

discovery of rare variants. Rare SNP associations are more likely to be detected by re-

sequencing of relevant regions in hundreds or thousands of individuals. It is anticipated 

that advances in re-sequencing technologies will make it feasible to search systematically for 

rare variant effects. 

4. Conclusion 

Human Genome Project has provided insight into a complete sequence of the haploid 
human genome and we also have got new insight of the human genetic variations. Based on 
this new insight, conventional target gene oriented and hypothesis-driven research design 
has been quickly moved to a new paradigm, hypothesis-free mining of novel disease 
associated genes. Indeed, over hundreds of genetic variants which may affect the 
susceptibility of pathogenesis of complex disease have been identified by the GWAS. The 
GWAS have been actively adopted in studying the causative factors of neurodevelopmental 
disorders including ASD. Through GWAS approach, several robust ASD-associated variants 
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in the genes such as NRXN1, SHANK3, NLGN4 and CNTNAP2 were uncovered. However, it 
is too early to say that GWAS have brought reliable-enough insight into ASD. Many of the 
significant CNVs identified in one study were not consistent or not successfully replicated in 
the following studies. New improved algorithms for CNV and CNVR will be needed for 
defining the CNVs more robustly. To sort out the platform to platform variation of CNV 
call, which is one of the obstacles for the meta-analysis, more reliable experimental methods 
should be developed. Re-sequencing large number of individuals without CNVs will help to 
discover the new rare variants. Considering the speed of technological innovations 
including algorithm, high-throughput analysis and NGS, we anticipate that current 
obstacles of GWAS in autism research will be removed soon. However, GWAS result itself 
will not be enough to get clinically applicable insight about the pathophysiology of ASD. 
Integration of GWAS data with other resources such as improved bio-imaging, personal 
whole-genome sequencing, gene-environmental interaction and metagenome analysis data 
about gastrointestinal commensal bacteria will enable us to get a more comprehensive 
insight in designing future personalized care of autism.      

5. Useful website for ASD related data 

- Psychiatric GWAS Consortium(PGC): https://pgc.unc.edu/index.php 
- National Institute of Mental Health Center for Collaborative Genetic Studies on Mental 

Disorders : http://nimhgenetics.org/ 
- Autism Genetic Resource Exchange (AGRE): http://www.agre.org/ 
- Autism Genome Project (AGP):  

http://www.well.ox.ac.uk/monaco/autism/AGP.shtml 
- The International Schizophrenia Consortium (ISC): http://pngu.mgh.harvard.edu/isc/ 
- Genetic Association Information Network(GAIN): 

http://www.genome.gov/19518664#al-4 
- CNV project at the Children’s Hospital of Philadelphia: http://cnv.chop.edu 
- The SGENE project: http://www.sgene.eu/Summary.php 
- Database of Genomic Variants (DGV): http://projects.tcag.ca/variation 
- A Catalog of Published Genome-Wide Association Studies:  

http://www.genome.gov/gwastudies/index.cfm?#searchForm 
- DECIPHER: https://decipher.sanger.ac.uk 
- CNV project: http://www.sanger.ac.uk/humgen/cnv/ 
- GEN2PHEN: http://www.gen2phen.org/ 
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