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1. Introduction 

The biliprotein C-phycocyanin (C-PC) is a light-harvesting photoreceptor in cyanobacteria 
and in red algae (Rhodophyta and Cryptophyta) with applications as a natural colorant in 
nutritional industry and cosmetics (Prasanna et al., 2007) and as a fluorescent marker in 
medical and biological studies (Glazer, 1994; Sun et al., 2003). The protein is composed of 

two homologous subunits - α and β (Stec et al., 1999; Contreras-Martel et al., 2007), 
respectively with one and two phycocyanobilin chromophores, covalently attached to 
cysteine residues. The subunits form ǂǃ complexes which aggregate into ǂ3ǃ3 trimers and 
ǂ6ǃ6 hexamers, the latter being the functional unit of the protein. C-PC has been shown to 
display a variety of pharmacological activities, related to the antioxidant, anti-inflammatory, 
neuro- and hepato-protective, anti-tumour and wound-healing mechanisms (Romay et al., 
2003; Ge et al., 2006; Li et al., 2005; Madhyastha et al., 2008). These properties have attracted 
attention to the compound as a possible radio-protective agent. It has been demonstrated 
that rats exposed to 5 Gy of X-rays and fed phycocyanin normalized their antioxidant 
system within 4 weeks after exposure (Karpov et al., 2000).  
Recently, we studied the effects of C-PC in combination with ionizing radiation on 
lymphocytes, isolated from nuclear power plant workers, exposed to low doses of ionizing 
radiation (IR), and compared them with the effects on lymphocytes from nonexposed controls 
(Ivanova et al., 2010). We found that the biliprotein stimulated the expression of the 
antioxidant enzymes manganese superoxide dismutase (MnSOD), catalase and glutathione-S-
transferase (GST) during the early radiation response of lymphocytes from workers, but not 
from controls. Since the biliprotein positively affects the antioxidant defense pathways, it 
might be of interest for the radioprotection of occupationally exposed people.  
In this study we have further characterized the effects of C-PC on the early radiation response 
of lymphocytes from unexposed controls and from workers, exposed to low doses of radiation. 
We quantified the level of persisting radiation-induced DNA double-strand breaks (DSBs) in 
the presence and absence of C-PC. DSBs are the most dangerous type of DNA lesions, induced 

by several genotoxic agents, including gamma IR (γ-IR). The ability of cells to readily process 
DSBs is of vital importance for genomic integrity, as failure to repair these lesions results in 
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chromosomal breakage, fragmentation and translocation. Moreover, impaired or defective 
rejoining of radiation-induced DNA strand breaks usually correlates strongly with the 
individual susceptibility to cancer (Alapetite et al., 1999; Berwick & Vineis, 2000).  
The amount of persisting DSBs in cells was determined by the comet assay (CA), a quick, 
simple and reliable method for analyzing DNA damage and repair that requires a small 
number of cells and can be performed on both freshly isolated and cryopreserved cells 
(Decordier et al., 2010). Due to its sensitivity, the method is preferred in human 
epidemiological studies related to biomonitoring (Möller et al., 2000; Touil et al., 2002). 
Additionally, the CA is able to provide information on different types of DNA damage/repair 
and detect cellular damage in a wide dose range of exposures from 0.05 to 10 Gy (Kalthur et 
al., 2008; Mohseni-Meybodi et al., 2009; Palyvoda et al., 2003). The experiments were 
performed on human lymphocytes, which, due to their radiosensitivity and circulation 
throughout the body, reflect the overall state of the organism and are the cellular type most 
frequently used for assessment of the systematic radiation response (Collins et al., 2008; 
Decordier et. al., 2010). A major problem with CA is that its sensitivity often leads to detection 
of a high variation within a single individual. A reliable methodology should be able to detect 
differences between individuals, but should show a minimal intra-individual variation. 
Therefore, prior to the epidemiological experiment, in an attempt to achieve minimal intra-
individual variation and a linear dose-response curve, we carefully tested a number of 
conditions. We attained a stable linear dose-response dependence of DNA lesions, persisting 
2h after exposure in the dose range from 0.5 to 8 Gy gamma rays.  
Our data indicated that C-PC might stimulate the repair of radiation-induced DNA lesions 
in lymphocytes from both occupationally exposed subjects and non-exposed controls. 
Moreover, the biliprotein seems to limit the manifestations of high radiosensitivity. 
Interestingly, we registered a pronounced lower genotoxicity of C-PC in lymphocytes from 
workers with cumulative doses higher than 20 mSv. Additionally, the effects of C-PC were 
age-dependent.  

2. Experimental procedures 

2.1 Subjects and sampling 

The exposed group consisted of 44 workers aged between 26 and 62 years, employed at the 
“Kozloduy” Nuclear Power Plant (NPP), Bulgaria. Cumulative exposure to ionizing 
radiation (IR), estimated from personal dosimeter records, ranged from 0.32 to 330.77 mSv 
and represented the sum of the doses collected for the whole period of occupation in the 
“strictly controlled area”. The control group included 12 non-exposed subjects from the NPP 
administrative staff, aged between 42 and 58 years. In order to exclude external effect on the 
results of this study, we recorded information on the smoking habits, alcohol consumption, 
use of medications and previous diagnostic exposure to X-rays. The studied groups were 
homogenous on the aforementioned criteria and the statistical analysis found no significant 
effects due to any factor. The study was performed under the National Program 
“Genomics” of the Ministry of Health and Ministry of Education, Youth and Science of 
Bulgaria. Informed consent was obtained from all participants.  
Blood (2 ml) drawn by venipuncture and collected in EDTA-coated tubes (Vakutainer, 
Benton Dickinson, Oxford, UK) was delivered to the laboratory and stored at 40C for up to 
24h before processing. The samples from the control and exposed subjects were handled 
concurrently and the assays were run on coded samples.  
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2.2 Isolation, treatment with C-PC and irradiation of lymphocytes from human 
peripheral blood 

C-PC was extracted, purified and concentration-adjusted as previously described (Ivanova 
et al., 2010). 
Peripheral blood mononuclear cells were isolated by density-gradient centrifugation 
(Lymphoflot, Biotest, Dreieich, Germany), suspended in 1 ml RPMI 1640 supplemented with 
10% fetal calf serum (RPMI, Sigma, St Louis, MO, USA) and counted on haemocytometer. 
The lymphocytes from each subject were then split and subjected to four different 
treatments, using the conditions, described by Ivanova (Ivanova et al., 2010) as shown in 
Fig. 1a: (A) 4 hours of incubation with RPMI before lysis; (B) 2 hours of incubation in RPMI, 
followed by irradiation with 2 Gy (137Cs gamma source, dose rate 2.07 Gy/min), incubation 
for another 2 hours and lysis; (C) 4 hours of incubation in RPMI, supplemented with 5μM C-
PC (RPMI-C-PC) before lysis; (D) 2 hours of incubation in RPMI supplemented with 5μM C-
PC, followed by irradiation (as described), incubation for another 2 hours and lysis. All 
above procedures were carried out at room temperature.  

2.3 Single Cell Gel Electrophoresis (Comet assay) 

The neutral comet assay was applied for analysis of radiation- and/or C-PC-induced strand 
breaks in DNA. Three comet test slides were prepared from each treatment, described in 
Section 2.2 and Fig. 1a. Lymphocytes (5 x 105 cells/ml) were suspended in  low melting 
point agarose (final concentration 0.7% in phosphate buffered saline), dropped onto frosted 
glass slides which had been precoated with 0.5% normal melting point agarose, then 
refrigerated (4ºC) for 15 min. To dissolve cellular proteins and lipids, the slides were 
immersed in lysis buffer (10 mM Tris, 100 mM EDTA, 2.5 M NaCl, 1% Triton X-100, pH 8.0) 
for 40 min at 4ºC, and washed 3 times for 5 min in pre-cooled TBE buffer, pH 8.0. 
Electrophoresis was performed in TBE for 20 min at 0.5 V/cm2. Finally, the slides were 
washed in ethanol and air-dried, stained with ethidium bromide (5 µg/ml) and analyzed 
under a fluorescence microscope (Olympus BX41). Double-strand breaks were analyzed by 
the parameter “tail moment” (TM), determined by the Comet Score 1.5 Software for fifty 
cells per slide. This parameter is the product of tail length and % DNA in the tail and is 
considered most informative when low levels of damage are present (Collins et al., 2008).  

2.4 Statistical analysis 

Distributions of variables were determined using Kolmogorov-Smirnoff test (Marques de Sá 
& Frias, 2007). Lilefors and Levene tests were used to determine the homogeneity of 
variance. The effects of different treatments (such as exposure to IR, C-PC treatment or the 
combination of C-PC treatment plus irradiation) were analyzed using one way ANOVA. 
Student t-test for dependent variables was carried out in order to compare every factor pair 
in each group. Results showing p<0.05 were considered significant. As a null hypothesis it 
was presumed that there is no difference between groups.  

3. Results  

3.1 C-PC induces changes in DNA response to irradiation in non-irradiated subjects 
included in the control group 

First we wanted to analyze whether the cells of each individual responded with an increase 
in DNA lesions to the different treatments. For this we determined the standard deviation 
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for the TM values which we had calculated from each triplet of comet test slides. Average 
TM values which increased for different treatments with more than two standard 
deviations, were considered elevated. Thus, as evident from Table 1, in vitro irradiation 
alone generates elevated levels of persisting DNA lesions in the lymphocytes from all 
(100%) of the non-exposed subjects included in the control group. 5 μM C-PC by itself also 
causes an increase in the lesions in more than half (67%) of the cases suggesting that 
treatment with C-PC is toxic for more than half of the subjects, included in the control 
group. Notably, when incubated with C-PC prior to irradiation, the samples from only half 
of the subjects show levels of DNA lesions, higher than those of the non-treated samples. 
This means that C-PC treated cells do not accumulate additional lesions upon radiation 
exposure. Thus, despite the fact that C-PC shows some toxicity, it also seems to protect cells 
from additional radiation damage. 
There was a significant increase in the median value of the parameter TM, upon irradiation of 
cells which were grown in the absence of C-PC (Fig. 1b, B vs. A, t11=6.4). In contrast, for cells 
grown in C-PC supplemented medium, the median value slightly decreased upon irradiation 
(Fig. 1b, D vs. C, t11=2.36). The lower median TM value, calculated for the combined treatment, 
C-PC plus irradiation (D), in comparison to the separate treatments with C-PC (C) or 
irradiation (B), suggested that the biliprotein exerted radio-protection. Residual damage 
calculations (B minus A vs. D minus C) confirmed these findings (data not shown).  
The relatively high levels of data dispersion (wide confidence intervals), observed in all 
conditions (Fig. 1b) are consistent with high inter-individual variations in the cellular 
response of the control subjects. Notably, the cells irradiated after treatment with C-PC (D) 
showed a lower level of data scattering than that of treatments (B) or (C), which was 
comparable to the dispersion range of values found for the non-treated samples (A). This is 
evidently due to a reduction of the maximal TM values in (D). This observation suggests 
that the biliprotein limits the manifestations of high radiosensitivity.   

3.2 C-PC induces changes in the DNA response of lymphocytes from workers with 
very low cumulative doses of radiation 

The average annual exposure of 17 subjects with very low cumulative doses, ranging from 
0.32 to 12.12 mSv, did not exceed 1 mSv/year - the public dose limit, mandated by ICRP 
(ICRP 60, 1990), and these workers were unified in a group with very low dose occupational 
exposure. Cumulative doses and data on the levels of DNA damage in the workers are 
summarized in Table 2. Similar to the non-exposed control group, the additional, in vitro 
irradiation of the cells generated а significant increase in the levels of persisting lesions (Fig. 
1c, B vs. A, t16=3.63) in the majority of cases (76%). Treatment of the cells with C-PC also 
generated elevated levels of unrepaired DNA strand breaks in the majority (82%) of the 
subjects (Fig. 1c, C vs. A, t16=3.11). Notably, after irradiation, samples, which had been pre-
incubated with C-PC, showed lower median levels of DNA breaks  as well as a reduction in 
the number of the subjects with higher levels of persisting DNA lesions (59% of the subjects) 
when compared with the samples which were irradiated only (Fig. 1c, D vs. B, t16=2.68) or 
incubated with C-PC without in vitro irradiation (Fig. 1c, D vs. C, t16=2.77). This result was 
similar to the effect of the protein on the non-exposed control group and demonstrated its 
radio-protective effect on the subjects with a very low dose occupational exposure.  
As seen in Fig. 1c, the exposure of the cells only to C-PC or to IR (B and C) elevated the 
median values of TM and extended the range of the data dispersion. This is consistent with 
the cellular toxicity of the two agents. The data dispersion towards the higher break 

www.intechopen.com



The Biliprotein C-Phycocyanin Modulates the 
DNA Damage Response in Lymphocytes from Nuclear Power Plant Workers 

 

331 

extremes was more drastic with C-PC (C) than with irradiation alone (B), although the 
median values of damage levels in C-PC treated cells (C) was lower than that of irradiated 
cells (B). Notably, in combination, C-PC and radiation (D) induced a well pronounced 
decrease in the median values of TM, which were brought down almost to the levels of the 
controls (A). Additionally, the combination of the two agents (D) narrowed the range of 
data dispersion, again bringing it close to that of controls (A).  In conclusion, for this group 
we observed a beneficial effect of C-PC on lymphocytes treated prior to radiation exposure, 
despite the toxicity of the protein.  This conclusion was further confirmed by residual 
damage calculations (B minus A vs. D minus C). 
 

 
(a) Lymphocytes from each subject were treated as follows: A - 4 hours of incubation with 
RPMI before lysis (controls); B - 2 hours of incubation in RPMI, followed by irradiation, 
incubation for another 2 hours and lysis; C - 4 hours of incubation in RPMI, supplemented 
with 5μM C-PC; D - 2 hours of incubation in RPMI supplemented with 5μM C-PC, followed 
by irradiation, incubation for another 2 hours and lysis.   
(b) TM for the different treatments of lymphocytes from non-exposed subjects  
(c) TM for the different treatments of lymphocytes from workers with cumulative doses, 
ranging from 0.32 to 12.12 mSv 
(d) TM for the different treatments of lymphocytes from workers with cumulative doses, 
ranging from 26.77 to 330.77 mSv 
Whiskers represent non-outlier range, boxes: 25-75% confidence intervals (CI), (■) median 
value and (●) outlier values. 

Fig. 1. Treatment patterns and their effects on subjects from different exposure groups 
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3.3 C-PC induces changes in the DNA response of lymphocytes from workers with 
higher cumulative doses of radiation 
This group included 27 professionals with cumulative doses, ranging from 26.77 to 330.77 
mSv. Data, summarized in Table 3, showed, that in this group, in comparison with the two 
previous groups (non-exposed controls and exposed to very low doses of radiation), which 
were characterized by high levels of radiation-induced DNA lesions in the majority of 
samples (100 and 76%, respectively), the number of workers with persisting DNA lesions, 
induced after the in vitro exposure of the cells to 2 Gy gamma rays or treatment with C-PC 
was reduced by half to 48% and 44%, respectively. This is consistent with improved repair 
capacity of the subjects included in this group, which is probably relevant to their chronic 
low dose radiation exposure, which may have acted as in vivo adaptive dose. C-PC showed 
the lowest cytotoxicity in this group of workers since the median TM values and the range 
of data scattering were similar to those in untreated samples (Fig. 1d, C vs. A). This is also 
consistent with a general robustness of the cellular DNA repair capacity of this group of 
subjects, which is evident from the similar TM median of treatments A and B (Fig. 1d) - a 
sign of possible protective adaptation to toxic exposures, developed in subjects with higher 
cumulative doses of radiation. Significant differences in the levels of persisting lesions were 
detected only between the cells, irradiated in vitro and those treated with C-PC (Fig. 1d, C 
vs. B, t24=2.44). It is important to note, however, that regardless of the similarity of TM 
median values of B and A (Fig. 1d), irradiation of cells caused a definite increase in the data 
scattering towards the higher TM values, as compared to non-irradiated cells. Such an 
increase was not evident in the cells treated with C-PC only (Fig. 1d, C vs. A), rendering the 
C-PC treatment in this group less toxic to DNA than in the previous two groups (Fig. 1b and 
1c). However, in contrast to the other two groups of subjects, C-PC treatment in this case did 
not cause a decrease in the amount of radiation-induced DSBs (Fig. 1d, D) – a finding that 
was confirmed by residual damage calculations (B minus A vs. D minus C).  

3.4 The magnitude of the C-PC effect depends on the cumulative doses of exposure 

We compared the ТМ values for each treatment among the three subject groups. As seen in 
Fig. 2, the only significant differences found were for treatment of cells with C-PC only (C),  
which showed that the protein was less toxic for workers with cumulative doses higher than 
20 mSv (Fig. 2, group 3) and this effect contrasted with the toxicity registered for the 
controls and the group of professionals with very low dose radiation exposure (Fig. 2, 
groups 1 and 2). This indicates that chronic occupational exposure might stimulate the 
cellular defense mechanisms and induce resistance to DNA damage, caused by agents, such 
as C-PC. The workers with higher cumulative doses might also be more resistant to 
radiation-induced toxicity since in the same group (Fig. 1d, B) we registered lower median 
values of TM in the lymphocytes irradiated with 2 Gy gamma rays as compared to the TM 
values in the other two groups (Fig. 1b, B and 1c, B). 
It is worth noting the differences between the control (Fig. 1b) and the two groups of 
workers (Fig. 1c and 1d) regarding the median values of the parameter TM. For both groups 
of professionals, we found lower median values of TM upon each of the exposures (C-PC, 2 
Gy or the combination of the two agents) in comparison with the median TM values of the 
non-exposed controls (Group 1). This result suggests that workers possess lower levels of 
persisting DNA lesions than the controls, which is probably due to improved DNA repair 
capacity induced by the low dose professional exposure. This may also be relevant to radio-
adaptive phenomena, mobilizing and activating repair of DNA damage in the groups of the 
professionals.  
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Fig. 2. TM in non-exposed controls (Group 1) and in subjects with cumulative doses, ranging 
from 0.32 to 12.12 mSv (Group 2) or from 26.77 to 330.77 mSv (Group 3) treated with 5 μM 
C-PC. Vertical bars represent 95% CI.  

3.5 Age dependence of the DNA response of lymphocytes treated with C-PC and/or 
irradiated with 2 Gy gamma rays  

All individuals, non-exposed controls and occupationally irradiated workers, were divided 
into two groups. The first one included 24 subjects (3 controls and 21 occupationally 
exposed) of the age from 26 to 46 years. The second group consisted of 32 subjects, all of 
them older than 46 years (9 controls and 23 occupationally exposed). Comparison of all 
mean TM values in the first group showed significant differences between the levels of 
DNA damage in the non-treated samples and the in vitro irradiated lymphocytes in the 
presence and absence of C-PC (Fig. 3a, A vs. B and D, t23=2.35 and t23=2.03, respectively). 
We also observed a significant narrowing of the dispersion of the TM values for the cells, 
irradiated after pre-treatment with C-PC (Fig. 3a, D), indicating reduction of the inter-
individual variability and unification of the radiation responses by C-PC. Notably, the 
dispersion was narrowed predominantly by reducing the non-outlier range from the top – 
indicating that C-PC, combined with radiation, selectively improves the repair capacity of 
cells which, in all other conditions (A, B and C) demonstrate impaired DNA repair 
mechanisms. The last observation suggested that the protein stimulated better the repair of 
the radiation-induced DNA lesions in lymphocytes of the susceptible individuals. This 
observation may be important for the maintenance of genomic integrity in this high-risk 
subgroup of the population.  
Comparison of the TM values obtained for the older group (age 46-62 years, Fig. 3b) showed 
increased levels of persisting DNA lesions (p=0.05) in the cells irradiated in vitro (B, t31= 
3.54), incubated with C-PC (C, t31=2.26), or incubated with C-PC prior to radiation exposure 
(D, t31=2.93), when compared to the control setting in this group (A). As with the younger 
group, the median values of the TM for treatment B, C and D were similar. However, the 
significant top-down reduction in the TM value scattering, described for the younger group 
after irradiation of the cells, pre-treated with C-PC (Fig.3a, D) , was not evident in this group 
of subjects. 
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Fig. 3. Effect of different treatment patterns on subjects, grouped according to age: (a) from 
26 to 46 years and (b) from 47 to 62 years. Note that both groups included exposed subjects 
and non-exposed controls. Whiskers represent non-outlier range, boxes: 25-75% confidence 
intervals (CI), (■) median value and (●) outlier values. 

 
 
 

No. Age TM (Ctrl.) TM (2Gy) TM (C-PC) TM (C-PC + 2Gy) 

1 50 1.85 ± 0.21 3.41 ± 0.32 6.16 ± 0.11 3.88 ± 0.19 

2 48 3.10 ± 0.22 6.80 ± 0.10 6.86 ± 0.07 7.15 ± 0.16 

3 50 3.86 ± 0.13 5.38 ± 0.18 2.38 ± 0.51 4.91 ± 0.29 

4 45 7.71 ± 0.15 9.82 ± 0.13 6.65 ± 0.24 6.24 ± 0.10 

5 58 7.23 ± 0.17 8.24 ± 0.13 8.36 ± 0.08 6.80 ± 0.16 

6 50 3.23 ± 0.04 3.78 ± 0.09 3.93 ± 0.04 4.13 ± 0.04 

7 47 5.38 ± 0.01 7.45 ± 0.04 4.52 ± 0.14 4.12 ± 0.06 

8 53 4.44 ± 0.09 7.28 ± 0.05 5.84 ± 0.01 3.91 ± 0.05 

9 49 1.61 ± 0.09 1.79 ± 0.02 2.07 ± 0.03 2.02 ± 0.09 

10 42 5.21 ± 0.04 7.10 ± 0.12 5.32 ± 0.07 5.13 ± 0.07 

11 54 4.62 ± 0.02 6.68 ± 0.04 6.39 ± 0.05 7.70 ± 0.05 

12 42 5.46 ± 0.02 7.13 ± 0.41 5.28 ± 0.03 5.00 ± 0.26 

 
 

Table 1. Levels of persisting DNA strand breaks determined by TM in lymphocytes of non-
exposed controls treated like in Fig. 1a. 
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No. Age 
Cumulative 
dose (mSv) 

TM 
(Ctrl.) 

TM 
(2Gy) 

TM 
(C-PC) 

TM 
(C-PC + 2Gy) 

1 33 0.32 3.32 ± 0.28 8.44 ± 0.17 11.29 ± 0.48 4.77 ± 0.51 

2 32 1.15 2.82 ± 0.02 3.75 ± 0.08 3.08 ± 0.04 2.08 ± 0.10 

3 37 1.33 4.36 ± 0.03 11.19 ± 0.13 8.78 ± 0.16 8.34 ± 0.05 

4 35 1.67 4.15 ± 0.03 5.29 ± 0.08 4.45 ± 0.08 4.11 ± 0.17 

5 32 1.79 3.46 ± 0.02 3.98 ± 0.07 3.69 ± 0.02 3.78 ± 0.05 

6 38 1.80 2.35 ± 0.09 2.30 ± 0.04 2.97 ± 0.04 3.08 ± 0.08 

7 55 2.29 4.22 ± 0.14 5.05 ± 0.44 7.77 ± 0.39 4.64 ± 0.18 

8 55 2.29 3.62 ± 0.16 7.35 ± 0.12 7.96 ± 0.13 6.62 ± 0.08 

9 55 2.59 1.24 ± 0.45 1.01 ± 0.18 1.16 ± 0.42 1.69 ± 0.73 

10 55 3.50 5.47 ± 0.02 6.18 ± 0.04 6.58 ± 0.10 4.84 ± 0.03 

11 26 4.71 3.62 ± 0.53 3.90 ± 0.31 5.67 ± 0.09 4.55 ± 0.15 

12 46 6.55 4.50 ± 0.07 6.21 ± 0.09 6.15 ± 0.04 6.38 ± 0.04 

13 52 8.37 4.14 ± 0.03 5.82 ± 0.06 4.39 ± 0.05 3.80 ± 0.10 

14 26 9.32 5.57 ± 0.02 7.07 ± 0.03 7.11 ± 0.04 6.36 ± 0.06 

15 44 9.71 2.14 ± 0.10 4.16 ± 0.09 4.21 ± 0.04 3.56 ± 0.08 

16 30 10.06 1.86 ± 0.27 3.72 ± 0.26 0.86 ± 0.16 1.77 ± 0.09 

17 49 12.12 1.08 ± 0.12 0.91 ± 0.20 0.82 ± 0.02 1.33 ± 0.27 

Table 2. Levels of persisting DNA strand breaks (TM) in lymphocytes of workers with very 
low cumulative doses (0.32-12.12 mSv) treated like in Fig. 1a.  

4. Discussion 

Our study has addressed three main questions: (i) are there significant differences in the 

DNA strand break repair in lymphocytes of workers, chronically exposed to low doses of IR 

and of non-exposed controls; (ii) can the biliprotein C-PC modify the DNA repair capacity of 

lymphocytes and the early cellular radiation response; (iii) is the level of the chronic 

exposure of significance for the impact of the biliprotein on the repair of DNA lesions. To 

answer the questions we assessed the amount of unrepaired DNA lesions in lymphocytes by 

the neutral comet assay 2h after irradiation of the cells in the presence or absence of C-PC.  

The experiments were performed with freshly drawn human G0 phase lymphocytes 
(Kaczmarek et al., 1987), which are known to utilize the NHEJ pathway for the repair of 
DSBs in DNA, supposedly the main lesions, detected by the neutral CA. NHEJ is a relatively 
fast process, which is completed within 2h after the exposure (Lankoff et al., 2006; Palyvoda 
et al., 2003). This was also confirmed by kinetics, utilizing the comet test in our laboratory 
(data not shown). With our setup we have detected changes in the cellular capacity to mend 
breaks in DNA generated after exposure to toxic agents, but not the differences in initial IR-
induced lesions.  
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No. Age Cumulative dose (mSv) TM (Ctrl.)
TM 

(2Gy) 
TM 

(C-PC) 
TM 

(C-PC + 2Gy) 

1 38 26.77 0.90 ± 0.05 0.78 ± 0.11 3.46 ± 0.08 3.82 ± 0.04 

2 44 28.47 2.05 ± 0.06 4.10 ± 0.10 1.79 ± 0.06 2.80 ± 0.15 

3 53 31.14 4.65 ± 0.18 2.92 ± 0.09 2.44 ± 0.07 4.14 ± 0.28 

4 54 31.43 7.82 ± 0.09 8.54 ± 0.09 6.23 ± 0.05 7.73 ± 0.18 

5 48 36.39 3.47 ± 0.17 2.63 ± 0.20 0.94 ± 0.11 2.27 ± 0.11 

6 56 37.06 1.61 ± 0.15 0.58 ± 0.05 0.76 ± 0.13 1.06 ± 0.06 

7 48 38.05 5.76 ± 0.08 6.84 ± 0.12 6.33 ± 0.03 5.25 ± 0.16 

8 32 38.72 3.74 ± 0.18 5.64 ± 0.26 4.11 ± 0.19 3.90 ± 0.05 

9 45 44.66 1.44 ± 0.20 1.09 ± 0.08 1.30 ± 0.23 1.33 ± 0.30 

10 50 53.19 0.81 ± 0.20 0.58 ± 0.12 0.67 ± 0.10 1.07 ± 0.01 

11 36 56.07 3.97 ± 0.02 3.47 ± 0.16 2.90 ± 0.06 2.39 ± 0.10 

12 49 67.76 4.06 ± 0.02 5.36 ± 0.07 5.17 ± 0.07 5.36 ± 0.03 

13 41 70.46 5.36 ± 0.11 4.05 ± 0.13 3.88 ± 0.15 3.56 ± 0.06 

14 50 73.21 2.54 ± 0.03 3.40 ± 0.12 3.04 ± 0.08 3.24 ± 0.05 

15 45 84.57 4.34 ± 0.45 10.16 ± 0.54 6.16 ± 0.33 4.10 ± 0.15 

16 54 85.80 1.04 ± 0.22 3.21 ± 0.14 1.43 ± 0.08 1.76 ± 0.08 

17 48 87.48 3.95 ± 0.10 6.05 ± 0.03 4.66 ± 0.04 5.88 ± 0.07 

18 56 88.28 3.60 ± 0.05 2.89 ± 0.09 5.00 ± 0.14 7.41 ± 0.05 

19 50 95.02 2.35 ± 0.10 2.76 ± 0.17 2.19 ± 0.18 2.38 ± 0.12 

20 52 95.14 2.10 ± 0.35 10.85 ± 0.96 11.05 ± 1.11 9.01 ± 1.64 

21 62 116.82 2.95 ± 0.12 3.03 ± 0.09 2.98 ± 0.05 2.88 ± 0.17 

22 42 125.17 2.82 ± 0.03 1.65 ± 0.21 0.91 ± 0.07 2.48 ± 0.32 

23 48 126.39 2.55 ± 0.28 11.12 ± 0.41 2.76 ± 0.22 5.06 ± 0.11 

24 41 130.23 1.22 ± 0.80 1.61 ± 0.38 3.45 ± 0.24 4.26 ± 0.32 

25 41 180.61 3.37 ± 0.39 7.97 ± 0.34 4.03 ± 0.43 9.29 ± 0.37 

26 40 246.94 8.21 ± 0.13 4.82 ± 0.14 3.79 ± 0.08 5.02 ± 0.02 

27 48 330.77 2.42 ± 0.16 2.68 ± 0.15 2.52 ± 0.02 2.22 ± 0.11 

Table 3. Levels of persisting DNA strand breaks (TM) in lymphocytes of workers with 
cumulative doses ranging from 26.77 to 330.77 mSv treated like in Fig. 1a. 

The comet assay which we have used is an approach, applied in a number of studies to assess 
the repair capacity of occupationally exposed populations and recently reviewed by Decordier 
(Decordier et al. 2010). The CA method has also been applied in several small pilot studies, 
comparing the DNA repair capacity between cancer patients and healthy subjects (Alapetite et 
al., 1999; Leprat et al., 1998; Djuzenova, et al., 2006; Zhang et al., 2006). In these studies, the CA 
has demonstrated an impaired DNA lesion repair capacity in the lymphocytes of cancer 
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patients, when compared to that of the healthy controls. It has also been shown that CA could 
be a useful approach to study the radiosensitivity and individual risk of radiation therapy 
induced toxicity in cancer patients after in vitro challenging of the cells with ionizing radiation.   
The results of our work have indicated large inter-individual variations in the baseline 
endogenous levels of DNA lesions in lymphocytes from workers and non-exposed controls. 
Notably, the data dispersion covered a relatively large range of values and was registered in 
all three experimental groups, including the non-exposed control group. In the control group 
we observed the highest variation in persisting baseline levels of DNA lesions (Fig. 1b, A). In 

vitro irradiation with 2 Gy γ-rays or treatment with C-PC of the cells additionally enlarged the 
range of data dispersion, indicating significant differences in the individual susceptibility of 
the subjects to toxic exposures. Exposure to 2 Gy gamma rays exerted the strongest effects on 
data scattering in the group of professionals with cumulative doses higher than 20 mSv (Fig. 
1d, B) whereas C-PC generated highest level of data dispersion in samples from the group  of 
workers, exposed to very low doses of occupational IR (Fig. 1c, C).  
The biliprotein elevated the number of persisting, unrepaired DNA lesions in the group of 
subjects with lower professional irradiation and in the control group. Such toxicity was not 
observed in the group of professionals with higher doses of occupational radiation exposure 
(Fig. 2). This effect might be attributed to induction of adaptive processes, due to the chronic 
exposure to low doses of radiation of the subjects in the last group. Studies of other 
laboratories on the repair capacity of nuclear power plant workers (Toili et al., 2002) or 
workers exposed to xenobiotics, lead or pesticides (Restreppo et al., 2000; Vodicka et al., 
2004; Piperakis et al., 2009) have shown, similar to our results, that workers repair DNA 
damage more efficiently than the non-exposed controls. The authors attributed this 
phenomenon to adaptive response by the sub-chronic genotoxic exposures. The adaptive 
protection, shown in this study is also consistent with the conclusion of our previous study 
(Ivanova et al., 2010). 
Notably, in combination with radiation exposure, C-PC exerted protective effects on 
lymphocytes of controls and of workers exposed to very low doses of radiation. For these 
groups, the lymphocytes, treated with C-PC and exposed to gamma rays, showed reduced 
levels of DNA lesions (in comparison to C-PC treatment alone), which suggested that the 
protein neutralized the genotoxic effects of IR and exerted radio-protection. It seems that the 
biliprotein selectively improved the DNA repair capacity of the individuals with higher 
radiosensitivity, which could be of particular interest for the radio-protection of high-risk 
subgroups of the population and workers.  
The toxic effect of C-PC, registered in this study, is probably linked to the photosensitizing 
properties of the protein (Padula & Boiteaux, 1999; Zhang et al., 1999; Paul et al., 2006). It has 
been shown that visible light, absorbed by the tetrapyrrolic chromophores of 
phycobiliproteins, can generate reactivate oxygen species (ROS), such as hydroxyl radical 
and singlet oxygen, which induce oxidative damage to DNA. The photosensitizing 
properties of C-PC may also contribute to the apoptotic effects of the protein in cancerogenic 
cell lines (Roy et al., 2007; Subhashini et al., 2004) and macrophages (Reddi et al., 2003). 
Apoptotic activity, however, is evident only for higher protein concentrations (>20 μM) and 
longer incubation times of the cells with the protein (>24h). The trends in DNA damage, 
induced by C-PC, were found quite similar to those, induced by ionizing radiation or by 
hydrogen peroxide in the presence of transition metals (Epe, 1995; Padula & Boiteaux, 1999). 
Notably, for subjects with low cumulative doses of IR and for those from the control group, 
we registered higher levels of unrepaired DNA lesions both in cells, treated with C-PC and 
in those, irradiated with 2 Gy. 
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5. Conclusion 

The data from this and from a previous study, carried out in our laboratory, which was 
focused on the effects of C-PC on the enzymatic anti-oxidant defense system of lymphocytes 
(Ivanova et al., 2010), suggest that C-phycocyanin can affect the anti-oxidant and repair 
mechanisms in lymphocytes, and modulate the early radiation response. They showed that 
the protein impacts the repair of deleterious forms of DNA damage, generated upon 

exposure of the cells to γ-rays, which is essential for the preservation of genomic integrity. 
Notably, the biliprotein might selectively improve the DNA repair capacity of the 
individuals with higher radiosensitivity, which could be of particular interest for the radio-
protection of the high-risk subgroups of population and workers. The protein induced 
significantly less persisting DNA lesions in the group of workers with higher doses (>20 
mSv, Fig. 2, group 3) in comparison with the other two groups, which is relevant to adaptive 
phenomena induced by the chronic occupational exposure of the subjects. However, the 
present study should be considered a pilot one and additional experiments are needed to 
decide whether the protein could be applied for the protection of occupationally exposed 
individuals (such as nuclear power plant workers, miners, some medical doctors and pilots), 
and subgroups of the population with higher susceptibility to the toxic effect of ionizing 
radiation.  
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