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3China 

1. Introduction  

In many signal processing applications, adaptive frequency estimation and tracking of noisy 
narrowband signals is often required in communications, radar, sonar, controls, biomedical 
signal processing, and the applications such as detection of a noisy sinusoidal signal and 
cancellation of periodic signals. In order to achieve the objective of frequency tracking and 
estimation, an adaptive finite impulse response (FIR) filter or an adaptive infinite impulse 
response (IIR) notch filter is generally applied. Although an adaptive FIR filter has the 
stability advantage over an adaptive IIR notch filter, it requires a larger number of filter 
coefficients. In practical situations, an adaptive IIR notch filter (Chicharo & Ng, 1990; Kwan 
& Martin, 1989; Nehorai, 1985) is preferred due to its less number of filter coefficients and 
hence less computational complexity. More importantly, a second-order adaptive pole/zero 
constrained IIR notch filter (Xiao et al, 2001; Zhou & Li, 2004) can effectively be applied to 
track a single sinusoidal signal. If a signal contains multiple frequency components, then we 
can estimate and track its frequencies using a higher-order adaptive IIR notch filter 
constructed by cascading second-order adaptive IIR notch filters (Kwan & Martin, 1989). To 
ensure the global minimum convergence, the filter algorithm must begin with initial 
conditions, which require prior knowledge of the signal frequencies. 
However, in many practical situations, a sinusoidal signal may be subjected to nonlinear 
effects (Tan & Jiang, 2009a, 2009b) in which possible harmonic frequency components are 
generated. For example, the signal acquired from a sensor may undergo saturation through 
an amplifier. In such an environment, we may want to estimate and track the signal’s 
fundamental frequency as well as any harmonic frequencies. Using a second-order adaptive 
IIR notch filter to estimate fundamental and harmonic frequencies is insufficient, since it 
only accommodates one frequency component. On the other hand, applying a higher-order 
IIR notch filter may not be effective due to adopting multiple adaptive filter coefficients and 
local minimum convergence of the adaptive algorithm. In addition, monitoring the global 
minimum using a grid search method requires a huge number of computations, and thus 
makes the notch filter impractical in real time processing. Therefore, in this chapter, we 
propose and investigate a novel adaptive harmonic IIR notch filter with a single adaptive 
coefficient to efficiently perform frequency estimation and tracking in a harmonic frequency 
environment.  
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The proposed chapter first reviews the standard structure of a cascaded second-order 
pole/zero constrained adaptive IIR notch filter and its associated adaptive algorithm. Second, 
we describe the structure and algorithm for a new adaptive harmonic IIR notch filter under a 
harmonic noise environment. The key feature is that the proposed filter contains only one 
adaptive parameter such that its global minimum of the MSE function can easily be monitored 
during adaptation. For example, when the input fundamental signal frequency has a step 
change (the signal frequency switches to a different frequency value), the global minimum 
location of the MSE function is also changed. The traditional cascaded second-order adaptive 
IIR notch filter may likely converge to local minima due to its slow convergence; and hence an 
incorrect estimated fundamental frequency value could be obtained. However, with the 
proposed algorithms, when a possible local minimum is detected, the global minimum can 
easily be detected and relocated so that adaptive filter parameters can be reset based on the 
estimated global minimum, which is determined from the computed MSE function.  
In this chapter, we perform convergence analysis of the adaptive harmonic IIR notch filter 
(Tan & Jiang, 2009). Although such an analysis is a very challenging task due to the 
extremely complicated plain gradient and MSE functions, with reasonable simplifications 
we are still able to achieve some useful theoretical results such as the convergence upper 
bound of the adaptive algorithm. Based on convergence analysis, we further propose a new 
robust algorithm. Finally, we demonstrate simulation results to verify the performance of 
the proposed adaptive harmonic IIR notch filters.  

2. Background on adaptive IIR notch filters 

In this section, we will describe frequency tracking and estimation using standard adaptive 
IIR notch filters and illustrate some issues when we apply them in a harmonic noise 
environment. 

2.1 Adaptive second-order IIR notch filters 
Fig. 1 presents a basic block diagram for a second-order adaptive IIR notch filter for 
estimation of a single sinusoid.  As shown in Fig. 1, the input sinusoid with frequency 
f needed be estimated and tracked is given below:  

 ( ) cos(2 / ) ( )sx n A fn f v n     (1) 

where A and  are the amplitude and phase angle; and ( )v n  is a zero-mean Gaussian noise 

process. sf  and n  are the sampling rate and time index, respectively. 
 

Second-order adaptive
IIR

notch filter

( )x n ( )y n

 

Fig. 1. Second-order adaptive IIR notch filter 
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To estimate the signal frequency, a standard second-second order adaptive IIR notch filter 
(Zhou & Li, 2004) is applied with its transfer function given by 

 
1 2

1 2 2

1 2 cos( )
( )

1 2 cos( )

z z
H z

r z r z




 

 
 


 

 (2) 

The transfer function has one notch frequency parameter   and has zero on the unit circle 

resulting in an infinite-depth notch.  r  is the pole radius which controls the notch 

bandwidth. It requires 0 1r   for achieving a narrowband notch. Making the parameter 

  to be adaptive, that is, ( )n .  The filter output can be expressed as  

 2( ) ( ) 2 cos[ ( )] ( 1) ( 2) 2 cos[ ( )] ( 1) ( 2)y n x n n x n x n r n y n r y n           (3) 

Again, when r  is close to 1, the 3-dB notch filter bandwidth can be approximated as 

2(1 )BW r  radians (Tan, 2007). Our objective is to minimize the filter output power 
2[ ( )]E y n . Once the output power is minimized, the filter parameter   will converge to its 

corresponding frequency f  Hz. For a noise free case, the minimized output power should 

be zero. Note that for frequency tracking, our expected result is the parameter ( )n  rather 

than the filtered signal ( )y n . A least mean square (LMS) algorithm to minimize the 

instantaneous output power 2( )y n  is often used and listed below: 

 ( 1) ( ) 2 ( ) ( )n n y n n       (4) 

where the gradient function ( ) ( ) / ( )n y n n     can be derived as following: 

 2( ) 2sin[ ( )] ( 1) 2 sin[ ( )] ( 1) 2 cos[ ( )] ( 1) ( 2)n n x n r n y n r n n r n              (5) 

and u is the convergence factor which controls the speed of algorithm convergence. Fig. 2 
illustrates the behavior of tacking and estimating a sinusoid with its frequency value of 1 
kHz at a sampling rate of 8 kHz for a noise free situation. As shown in Fig. 2, the LMS 
algorithm converges after 2600 iterations. Again, note that the estimated frequency is 1 kHz 
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Fig. 2. Frequency tracking of a single sinusoid using a second-order adaptive IIR notch filter 

(sinusoid: 1A  , 1000f   Hz, 8000sf  ; adaptive notch filter:  0.95r  and 0.005  ) 
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while the filter output approaches to zero.  However, when estimating multiple frequencies 
(or tracking a signal containing not only its fundamental frequency but also its higher-order 
harmonic frequencies), a higher-order adaptive IIR notch filter using cascading second-
order adaptive IIR notch filter is desirable. 

2.2 Cascaded higher-order adaptive IIR notch filters 

In order to track the fundamental frequency under a harmonic environment, we can cascade 

second-order IIR notch filters to obtain a higher-order IIR notch filter whose transfer 

function is yielded as  

 
1 2

1 2 2
1 1

1 2 cos ( )
( ) ( )

1 2 cos ( )

K K
k

k
k k k

n z z
H z H z

r n z r z




 

 
 

 
 

    (6) 

The filter contains K  stages ( K  sub-filters). ( )k n  is the adaptive parameter for the k th 

sub-filter while r  is the pole radius as defined in Section 2.1. For an adaptive version, the 

output from each sub-filter is expressed as 

 2
1 1 1( ) ( ) 2 cos[ ( )] ( 1) ( 2) 2 cos[ ( )] ( 1) ( 2)k k k k k k k ky n y n n y n y n r n y n r y n              (7) 

Note that the notch filter output ( )y n  is from the last stage sub-filter, that is, ( ) ( )Ky n y n . 

After minimizing its instantaneous output power 2 ( )Ky n , we achieve LMS update equations 

as 

 1( 1) ( ) 2 2 ( ) ( )k
k k K Kkn n y n n        (8) 

where ( )Kk n  is the gradient function which can be determined from the following 

recursions: 

 
( 1) 1 ( 1)

2
( 1) 1

( ) ( ) 2sin[ ( )] ( ) 2 cos[ ( )] ( 1)

( 2) 2 sin[ ( )] ( ) 2 cos[ ( )] ( 1) ( 2)

Kk K k k K k K k

K k k K k Kk Kk

n n n y n n n

n r n y n r n n r n

    

    
  

 

   

      
 (9) 

Fig. 3 shows an example of tracking a signal containing up to its third harmonic 

components, that is, sin(2 / ) 0.5cos(2 2 / ) 0.25cos(2 3 / )a s a s a sf n f f n f f n f          , 

where af  represents the fundamental frequency in Hz and the sampling rate sf  is 8000 Hz. 

We cascade three second-order adaptive IIR notch filters for this application. For our LMS 

algorithm, the initial conditions are set to  1(0) 2 1200 / 0.3sf      radians, 2(0) 0.6    

radians, 3(0) 0.9  radians. The fundamental frequency starts from 1225 Hz, and then 

switches to 1000 Hz and 875 Hz after 10000 iterations and 20000 iterations, respectively. Fig. 
3a shows the input and outputs from each filter stage while Fig. 3b displays the tracked 

frequency values, where 1( ) af n f , 2( ) 2 af n f  and 3( ) 3 af n f . 

With the prior knowledge of the fundamental frequency, the notch filter initially starts from 

the location nearby the global minimum. The fundamental frequency and harmonic 

frequencies are tracked with corrected frequency values, that is, 1225, 2x1225, 3x1225 Hz for 

first 10000 iterations, 1000, 2x1000, 3x1000 Hz from 10001 to 20000 iterations, and 875, 1750, 
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(b) 

Fig. 3. Frequency tracking of a signal with its fundamental component, second and third 

harmonics by using second-order adaptive IIR notch filters in cascade ( 0.95r   and 

0.002  ) 

2625 Hz from 20001 to 30000 iterations, respectively. We can see that the algorithm 

exhibits slow convergence when the fundamental frequency switches. Another problem is 

that the algorithm may converge to a local minimum if it starts at arbitrary initial 

conditions. As shown in Fig. 4, if the algorithm begins with initial conditions: 

1(0) 2 400 / 0.1sf      radians, 2(0) 0.2    radians, 2(0) 0.3  radians, it converges 

to local minima with wrong estimated frequencies when the fundamental frequency of the 

input signal is 1225 Hz. When this fundamental frequency steps to 1000 Hz and 875 Hz, 

respectively, the algorithm continuously converges to local minima with incorrectly 

estimated frequency values. 
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(b) 

Fig. 4. Frequency tracking of a single with its fundamental component, second and third 
harmonics by using second-order adaptive IIR notch filters in cascade 

(sinusoid:  1A ,  1000f  Hz,  8000sf ; adaptive notch filter:   0.95r and   0.005 ). 
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3. Adaptive harmonic IIR Notch filter structure and algorithm 

As described in Section 2.2, a generic higher-order adaptive IIR notch filter suffers from 

slow convergence and local minimum convergence. To apply the filter successfully, we 

must have prior knowledge about the frequencies to be tracked. The problem becomes more 

severe again after the frequencies switch to different values. Using a grid search method to 

achieve the initial conditions may solve the problem but requires a huge number of 

computations. However, if we only focus on the fundamental frequency tracking and 

estimation, this problem can significantly be alleviated. 

3.1 Harmonic IIR notch filter structure 

Consider a measured signal ( )x n  containing a fundamental frequency component and its 

harmonics up to M th order as 

 
1

( ) cos[2 ( ) / ] ( )
M

m s m
m

x n A mf n f v n 


    (10) 

where mA , mf , and m are the magnitude, frequency (Hz), and phase angle of the m th 

harmonic component, respectively. To estimate the fundamental frequency in such 

harmonic frequency environment, we can apply a harmonic IIR notch filter with a structure 

illustrated in Fig. 5 for the case of 3M   (three harmonics).   
 
 
 
 

R e( )z

Im ( )z




 r

3M 

 
 
 

Fig. 5. Pole-zero plot for the harmonic IIR notch filter for 3M   
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As shown in Fig. 5, to construct a notch filter transfer function,  two constrained pole-zero 

pairs (Nehorai, 1985) with their angles equal to m  (multiple of the fundamental 

frequency angle  ) relative to the horizontal axis are placed on the pole-zero plot for 

1,2, ,m M  , respectively. Hence, we can construct M second-order IIR sub-filters. In a 

cascaded form (Kwan & Martin, 1989), we have 

 1 2
1

( ) ( ) ( ) ( ) ( )
M

M m
m

H z H z H z H z H z


   (11) 

where ( )mH z  denotes the mth second-order IIR sub-filter whose transfer function is defined 

as 

 
1 2

1 2 2

1 2 cos( )
( )

1 2 cos( )
m

z m z
H z

rz m r z




 

 
 


 

 (12) 

We express the output ( )my n  from the mth sub-filter with an adaptive parameter ( )n  as 

 2
1 1 1( ) ( ) 2 cos[ ( )] ( 1) ( 2) 2 cos[ ( )] ( 1) ( 2)m m m m m my n y n m n y n y n r m n y n r y n            (13) 

1,2, ,m M   

with 0( ) ( )y n x n . From (12), the transfer function has only one adaptive parameter ( )n  

and has zeros on the unit circle resulting in infinite-depth notches. Similarly, we require 

0 1r   for achieving narrowband notches. When r  is close to 1, its 3-dB notch 

bandwidth can be approximated by 2(1 )BW r   radians. The MSE function at the final 

stage, 2 2[ ( )] [ ( )]ME y n E e n , is minimized, where ( ) ( )Me n y n . It is important to notice that 

once the single adaptive parameter ( )n  is adapted to the angle corresponding to the 

fundamental frequency, each ( )m n  ( 2,3, ,m M  ) will automatically lock to its harmonic 

frequency. To examine the convergence property, we write the mean square error (MSE) 

function (Chicharo & Ng, 1990) below: 

 

21 2
2 2

1 2 2
1

1 1 2 cos[ ( )]
( ) ( )

2 1 2 cos[ ( )]

M

M xx
m

z m n z dz
E e n E y n

j zrz m n r z


 

 

 


              (14) 

where xx  is the power spectrum of the input signal. Since the MSE function in (14) is a 

nonlinear function of adaptive parameter  , it may contain local minima. A closed form 

solution of (14) is difficult to achieve. However, we can examine the MSE function via a 

numerical example. Fig. 6 shows the plotted MSE function versus   for a range from 0 to 

/ M radians [ 0  to /(2 )sf M Hz] assuming that all harmonics are within the Nyquist limit 

for the following conditions: 3M  , 0.95r  , 1000af   Hz, 8000sf   Hz (sampling rate), 

signal to noise power ratio (SNR)=22 dB, and 400 filter output samples. Based on Fig. 6, we 

observe that there exit four (4) local minima in which one (1) global minimum is located at 1 

kHz. If we let the adaptation initially start from any point inside the global minimum valley 

(frequency capture range), the adaptive harmonic IIR notch filter will converge to the global 

minimum of the MSE error function. 
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Fig. 6. Error surface of the harmonic IIR notch filter for 3M   and 0.95r   

3.2 Adaptive harmonic IIR notch filter algorithms 

Similar to Section 2.2, we can derive the LMS algorithm (Tan & Jiang, 2009a, 2009b) by 

taking the derivative of the instantaneous output power 2 2( ) ( )Me n y n  and substituting the 

result to zero. We achieve 

 ( 1) ( ) 2 ( ) ( )M Mn n y n n       (15) 

where the gradient function ( ) ( ) / ( )m mn y n n      is recursively computed as  

 
1 1 1 1

2

( ) ( ) 2 cos[ ( )] ( 1) 2 sin[ ( )] ( 1) ( 2)

2 cos[ ( )] ( 1) ( 2) 2 sin[ ( )] ( 1)

m m m m m

m m m

n n m n n m m n y n n

r m n n r n rm m n y n

     

   
         

     
 (16) 

     1,2, ,m M   

with 0 0( ) ( ) / ( ) ( ) / ( ) 0n y n n x n n         , 0 0( 1) ( 2) 0n n     .  

To prevent local minima convergence, the algorithm will start with an optimal initial value 

0 , which is coarsely searched over the frequency  range: /(180 )M  , ..., 179 /(180 )M , 

as follows: 

 2
0

0 /

arg (min [ ( , )])
M

E e n
 

 
 

  (17) 

where the estimated MSE function, 2[ ( , )])E e n  , can be determined by using a block of N  

signal samples: 

 
1

2 2

0

1
[ ( , )]) ( , )

N

M
i

E e n y n i
N

 



   (18) 
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There are two problems depicted in Fig. 7 as an example. When the fundamental frequency 

switches from 875 Hz to 1225 Hz, the algorithm starting at the location of 875 Hz on the 

MSE function corresponding to 1225 Hz will converge to the local minimum at 822 Hz. On 

the other hand, when the fundamental frequency switches from 1225 Hz to 1000 Hz, the 

algorithm will suffer a slow convergence rate due to a small gradient value of the MSE 

function in the neighborhood at the location of 1225 Hz. We will solve the first problem in 

this section and fix the second problem in next section. 

To prevent the problem of local minima convergence due to the change of a fundamental 

frequency, we monitor the global minimum by comparing a frequency deviation  

 0| ( ) |f f n f     (19) 

with a maximum allowable frequency deviation chosen below: 

 max 0.5 (0.5 )f BW    (20) 

where 0 00.5 /sf f    Hz is the pre-scanned optimal frequency via (17) and (18); BW  is the 

3-dB bandwidth of the notch filter, which is approximated by (1 ) /sBW r f    in Hz. If 
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Fig. 7. MSE functions for the fundamental frequencies, 875 Hz, 1000 Hz, and 1225 Hz 

( 3M  , 0.96r  , 200N  , and 8sf  kHz) 

maxf f   , the adaptive algorithm may possibly converge to its local minima. Then the 

adaptive parameter ( )n  should be reset to its new estimated optimal value 0  using (17) 

and (18) and then the algorithm will resume frequency tracking in the neighborhood of the 

global minimum. The LMS type algorithm is listed in Table 1. 
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Step 1: Determine the initial 0  using (17) and (18):  

         Search for 2
0

0 /

arg (min [ ( , )])
M

E e n
 

 
 

   for /(180 ), ,179 /(180 )M M     

         Set the initial condition: 0(0)   and 0 00.5 /sf f    Hz 

Step 2: Apply the LMS algorithm: 

         For 1,2, ,m M   

      2
1 1 1( ) ( ) 2 cos( ) ( 1) ( 2) 2 cos( ) ( 1) ( 2)m m m m m my n y n m y n y n r m y n r y n             

      
1 1 1 1

2

( ) ( ) 2 cos[ ( )] ( 1) 2 sin[ ( )] ( 1) ( 2)

2 cos[ ( )] ( 1) ( 2) 2 sin[ ( )] ( 1)

m m m m m

m m m

n n m n n m m n y n n

r m n n r n rm m n y n

     

   
         

     
      

       ( 1) ( ) 2 ( ) ( )M Mn n y n n         

Step 3: Convert ( )n  to the desired estimated fundamental frequency in Hz:  

        ( ) 0.5 ( ) /sf n f n   

Step 4: Monitor the global minimum: 

         if 0 max| ( ) |f n f f   , go to step 1 

        otherwise continue Step 2 

Table 1. Adaptive Harmonic IIR notch LMS algorithm 

3.3 Convergence performance analysis 

We focus on determining a simple and useful upper bound for (15) using the approach in 

references (Handel & Nehorai, 1994; Petraglia, et al, 1994; Stoica & Nehorai, 1998;  

Xiao, et al, 2001). For simplicity, we omit the second and higher order terms in  

the Taylor series expansion of the filter transfer function. We achieve the following 

results: 

 ( , ) ( )( )jH e m H m m
      (21) 

where 

 
1,

2sin( )
( ) ( ) ( )

(1 )( )

M
jm

k mjm jm
k k m

m
H m H e B m

r e re


  

  
 


  

 
  (22) 

The magnitude and phase of ( )H m   in (22) are defined below: 

 ( ) | ( )|B m H m   and ( )m H m    (23) 

Considering the input signal ( )x n  in (10), we now can approximate the harmonic IIR notch 

filter output as 

 1
1

( ) ( )cos[( ) ] ( ) ( )
M

M m m m
m

y n mA B m m n n v n    


     (24) 

where 1( )v n  is the filter output noise and note that 
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 [ ( ) ] ( )m m n m n          (25) 

To derive the gradient filter transfer function defined as ( ) ( ) / ( )M MS z z X z , we obtain the 

following recursion: 

 
1

1 1 11 2 2

2 sin( )[1 ( )]
( ) ( ) ( ) ( ) ( )

1 2 cos( )
m

m m m m

mz m rH z
S z H z S z H z H z

r m z r z






  


 
 

   (26) 

Expanding (26) leads to  

 
1 1

1 2 2 1 2 2
1 11,

2 sin( ) 2 sin( )
( ) ( ) ( )

1 2 cos( ) 1 2 cos( )

MM M

M k
n nk k n

n n z r n n z
S z H z H z

r n z r z r n z r z

 
 

 

   
  

   
  

     
   (27) 

At the optimal points, m  , the first term in (27) is approximately constant, since we can 

easily verify that these points are essentially the centers of band-pass filters (Petranglia, et al, 

1994). The second-term is zero due to ( ) 0jmH e   . Using (22) and (23), we can approximate 

the gradient filter frequency response at m   as 

 
1,

2 sin( )
( ) ( ) ( ) ( )

(1 )( )

M
jm jm

M k mjm jm
k k m

m m
S e H e mB m

r e re

 
 

   
 

  
    

   
  (28) 

Hence, the gradient filter output can be approximated by 

 2
1

( ) ( ) cos[( ) ] ( )
M

M m m m
m

n mB m A m n v n     


      (29) 

where 2( )v n  is the noise output from the gradient filter. Substituting (24) and (29) in (15) 

and assuming that the noise processes of 1( )v n  and 2( )v n  are uncorrelated with the first 

summation terms in (24) and (29), it leads to the following: 

 [ ( 1)] [ ( )] [2 ( ) ( )]M ME n E n E y n n        (30) 

 2 2 2
1 2

1

[ ( 1)] [ ( )] ( ) [ ( )] 2 [ ( ) ( )]
M

m
m

E n E n m A B m E n E v n v n       


     (31) 

 
2

1 2[ ( ) ( )] ( ) (1 / )
2

v
M

dz
E v n v n H z S z

j z




    (32) 

where 2
v  is the input noise power in (10). To yield a stability bound, it is required that 

 2 2 2

1

1 ( ) 1
M

m
m

m A B m 


   (33) 

Then we achieve the stability bound as  
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 2 2 2

1

( ) 2 / ( )
M

m
m

m A B m  


    (34) 

The last term in (31) is not zero, but we can significantly suppress it by using a varying 

convergence factor developed later in this section. Since evaluating (34) still requires 

knowledge of all the harmonic amplitudes, we simplify (34) by assuming that each 

frequency component has the same amplitude to obtain 

 2 2 2

1

( ) / ( )
M

x
m

M m B m   


   (35) 

where 2
x  is the power of the input signal. Practically, for the given M , we can numerically 

search for the upper bound max  which works for the required frequency range, that is, 

 
 

 
 

max
0 /

min[arg( ( ))]
M

u  (36) 

Fig. 8 plots the upper bounds based on (36) versus M  using 2 1x   for 0.8r  , 0.9r  , and 

0.96r  , respectively.  

We can see that a smaller upper bound will be required when r  and M  increase. We can 

also observe another key feature described in Fig. 9.  
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Fig. 8. Plots of the upper bounds in Equation (36) versus M  using 2 1x  . 
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Fig. 9. (a) MSE functions; (b) Magnitude frequency responses ( 3M  , 200N  , 8sf  kHz) 

As shown in Fig. 9, when the pole radius r  is much smaller than 1 ( 0.8r  ), we will have a 

larger MSE function gradient starting at 1225 Hz and then the convergence speed will be 

increased. But using the smaller r  will end up with a degradation of the notch filter frequency 

response, that is, a larger notch bandwidth. On the other hand, choosing r  close to 1 

( 0.96r  ) will maintain a narrow notch bandwidth but result in a slow convergence rate, since 

the algorithm begins with a small MSE function gradient value at 1225 Hz. Furthermore, we 

expect that when the algorithm approaches to its global minimum, the cross-correlation ( )c n  

between the final filter output ( ) ( )Me n y n  and its delayed signal ( 1)My n   becomes 

uncorrelated, that is, ( ) [ ( ) ( 1)] 0M Mc n E y n y n   . Hence, the cross-correlation measurement 

can be adopted to control the notch bandwidth and convergence factor. We propose the 

improved algorithm with varying bandwidth and convergence factor below: 

 ( ) ( ) (1 ) ( ) ( 1)M Mc n c n y n y n      (37) 

 | ( )|
min( ) c nr n r r e      (38) 

 | ( )|
max( ) (1 )c nn e      (39) 

where 0 1  , min min( ) 1r r n r r      with min 0.8r   (still providing a good notch 

filter frequency response), max  is the upper bound for min( )r n r r   , and   is the 

damping constant, which controls the speed of change for the notch bandwidth and 

convergence factor. From (37), (38), and (39), our expectation is as follows: when the 

algorithm begins to work, the cross-correlation ( )c n  has a large value due to a fact that the 

filter output contains fundamental and harmonic signals.  The pole radius ( )r n  in (38) starts 

with a smaller value to increase the gradient value of the MSE function at the same time the 

www.intechopen.com



 
Adaptive Harmonic IIR Notch Filters for Frequency Estimation and Tracking 

 

327 

step size ( )u n  in (39) changes to a larger value. Considering both factors, the algorithm 

achieves a fast convergence speed. On the other hand, as ( )c n approach to zeroe, ( )r n will 

increases its value to preserve a narrow notch bandwidth while ( )u n  will decay to zero to 

reduce a misadjustment as described in (31). 

To include (37), (38), and (39) in the improved algorithm, the additional computational 
complexity over the algorithm proposed in the reference (Tan & Jiang, 2009a, 2009b) for 
processing each input sample requires six (6) multiplications, four (4) additions, two (2) 
absolute operations, and one (1) exponential function operation. The new improved 
algorithm is listed in Table 2. 
 

Step 1: Determine the initial 0  using (17) and (18):  

            Search for 2
0

0 /

arg (min [ ( , )])
M

E e n
 

 
 

  for /(180 ), ,179 /(180 )M M     

            Set the initial condition: 0(0)   and 0 00.5 /sf f    Hz, 

                                                        maxu , minr ,  ,   

Step 2: Apply the LMS algorithm: 

           For 1,2, ,m M   

          
1 1 1

2

( ) ( ) 2 cos( ) ( 1) ( 2)

2 ( )cos( ) ( 1) ( ) ( 2)

m m m m

m m

y n y n m y n y n

r n m y n r n y n




      

   
 

           
1 1 1 1

2

( ) ( ) 2 cos[ ( )] ( 1) 2 sin[ ( )] ( 1) ( 2)

2 ( )cos[ ( )] ( 1) ( ) ( 2) 2 ( ) sin[ ( )] ( 1)

m m m m m

m m m

n n m n n m m n y n n

r n m n n r n n r n m m n y n

     

   
         

     
 

            ( ) ( ) (1 ) ( ) ( 1)M Mc n c n y n y n      

            | ( )|
min( ) c nr n r r e      

           | ( )|
max( ) (1 )c nn e      

           ( 1) ( ) 2 ( ) ( ) ( )M Mn n n y n n       
Step 3: Convert ( )n  to the desired estimated fundamental frequency in Hz:  

            ( ) 0.5 ( ) /sf n f n   

Step 4: Monitor the global minimum:   

           if 0 max| ( ) |f n f f   , go to step 1 

           otherwise continue Step 2 

Table 2. New adaptive harmonic IIR notch LMS algorithm with varying notch bandwidth 
and convergence factor 

3.4 Simulation results 

In our simulations, an input signal containing up to third harmonics is used, that is, 

 ( ) sin(2 / ) 0.5cos(2 2 / ) 0.25cos(2 3 / ) ( )a s a s a sx n f n f f n f f n f v n             (41) 

where af  is the fundamental frequency and 8000sf  Hz. The fundamental frequency 

changes for every 2000n   samples. Our developed algorithm uses the following parameters: 

3M  , 200N  , 10  , (0) 0.2c  , 0.997  , 
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min 0.8r  , 0.16r   

The upper bound 4
max 2.14 10    is numerically searched using (35) for 0.96r  . The 

behaviors of the developed algorithm are demonstrated in Figs. 10-13. Fig. 10a shows a plot 

of the MSE function to locate the initial parameter, (0) 2 1222 / 0.3055sf      when the 

fundamental frequency is 1225 Hz. Figs. 10b and 10c show the plots of MSE functions for 

resetting initial parameters (0) 0.25   and (0) 0.22225  when the fundamental 

frequency switches to 1000 Hz and then 875 Hz, respectively. Fig. 11 depicts the noisy input 

signal and each sub-filter output.  Figs. 12a to 12c depicts the cross correlation ( )c n , pole 

radius ( )r n , and adaptive step size ( )n . Fig. 12d shows the tracked fundamental 

frequencies. As expected, when the algorithm converges, ( )c n  approaches to zero 

(uncorrelated), ( )r n  becomes max 0.96r   to offer a narrowest notch bandwidth. At the same 

time, ( )n  approaches to zero so that the misadjustment can be reduced. In addition, when  
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Fig. 10. Plots of MSE functions for searching the initial adaptive parameter 
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Fig. 12. (a) The cross correlation ( )c n  between the notch filter output and its delayed output; 

(b) Varying  notch filter parameter ( )r n ; (c) Varying convergence factor ( )n ; (d) Tracked 

fundamental frequencies ( )f n . 
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Fig. 13. Frequency tracking comparisons in the noise environment 
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the frequency changes from 1225 Hz to 1000 Hz, the algorithm starts moving away from its 

original global minimum, since the MSE function is changed. Once the tracked frequency is 

moved beyond the maximum allowable frequency deviation maxf , the algorithm relocates 

0  and reset 0( )n  ; and ( )n  is reset again after the frequency is switched from 1000 Hz 

to 875 Hz. The improved algorithm successfully tracks the signal fundamental frequency 

and its changes. 

To compare with the algorithm recently proposed in the reference (Tan & Jiang, 2009b), we 

apply the same input signal to the adaptive harmonic IIR notch filter using a fixed notch 

bandwidth ( 0.96r  ) and a fixed convergence factor, 42.14 10   . As shown in Fig. 13, 

the improved algorithm is much robust to noise under various SNR conditions. This is 

because when the algorithm converges, the varying convergence factor approaches to zero 

to offer a smaller misadjustment.  

Fig. 14 shows the comparison of standard deviation of the estimated frequency between two 

algorithms, where we investigate the following condition: 1000af   Hz, 3M  using 5000 

iterations. For the previous algorithm, we use 0.96r  and 410   while for the improved 

algorithm, all the parameters are the same except that 4
max 10  . For each algorithm, we 

obtain the results using 50 independent runs under each given signal to noise ratio (SNR). 

From Fig. 14, it is evident that the developed adaptive harmonic IIR notch filter with 

varying notch bandwidth and convergence factor offers a significant improvement. 
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Fig. 14. Tracking error performance of the proposed algorithm 

4. Conclusion 

In this chapter, we have reviewed the standard adaptive IIR notch filters for applications of 

single frequency and multiple frequency estimation as well as tracking in the harmonic 

noise environment. The problems of slow convergence speed and local minima convergence 

are addressed when applying a higher-order adaptive IIR notch filter for tracking multiple 

frequencies or harmonic frequencies. We have demonstrated that the adaptive harmonic IIR 
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notch filter offers an effective solution for frequency estimation and tracking in a harmonic 

noise environment. In addition, we have derived a simple and useful stability bound for the 

adaptive harmonic IIR notch filter. In order to achieve the noise robustness and accuracy of 

frequency tracking in the noisy environment, we have developed an improved adaptive 

harmonic IIR notch filter with varying notch bandwidth and convergence factor. The 

developed algorithm is able to prevent its local minima convergence even when the signal 

fundamental frequency switches in the tracking process. 
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