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1. Introduction

We address the biometric authentication setup where the outcomes of biometric observations
received at the verification stage are compared with the sample data formed at the enrollment
stage. The result of comparison is either the acceptance or the rejection of the identity claim.
The acceptance decision corresponds to the case when the analyzed values belong to the same
person.

A possible solution to the problem, called the direct authentication, is implemented when the
outcomes of biometric observations at the enrollment stage are stored in the database, and
they are available to the verifier. The possible incorrect verifier’s decisions are caused by the
fact that these observations are noisy. The probabilities of errors are called the false rejection
and the false acceptance rates. The features of the direct authentication are as follows: 1)
data compression is not included at the enrollment stage; 2) the scheme does not require an
additional external randomness; 3) if the stored data become available to an attacker, then
he knows the outcomes of biometric observations of the person and can pass through the
verification stage with the acceptance decision by presenting these data to the verifier. The
considered below coding approaches to the problem require an external randomness and relax
the constraint that the database has to be protected against reading. These approaches include
the additive and the permutation coding schemes.

Both the direct authentication and an additive coding scheme are illustrated using a proposed
mathematical model for the DNA measurements. We present the model and describe a data
compression method that can be used to approach a uniform probability distribution over the
obtained data for their further use in the additive scheme and other purposes. The processing
of the DNA data also serves as an example of possible processing data generated by an
arbitrary memoryless source.

The additive block coding scheme can be viewed as a variant of stream ciphering scheme
where the data, to be hidden, are added to a key. The subtraction of the noisy version of
the data creates a corrupted version of the key. If the key is a codeword of a code having
certain error—correcting property, then the fact, whether the key can be reconstructed or not,
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300 Advanced Biometric Technologies

characterizes the level of the noise. In the permutation scheme, the enciphering of the input
data is organized by choosing a permutation, which maps the biometric vector to a key
vector. There are many permutations that can be used for this purpose, and it gives additional
possibilities to the designer of the verification scheme.

The efficiency of cryptographic schemes, like the additive and the permutation schemes, is
measured by the difference between the probabilities of the successful attack by an attacker,
who either knows the content of the database or ignorant about these data. The additive
scheme is efficient when the probability distribution over the input vectors is close to a
uniform distribution. This requirement is less critical for the permutation scheme, but input
vectors have to be represented by binary vectors having a fixed number of ones. We will
present a simple numerical example of the implementation of the permutation scheme and
describe an algorithm for the transformation of an arbitrary binary vector to a balanced vector
having the same number of zeroes and ones.

There is a number of open problems in the implementation of coding schemes. One of the
main problems is the representation of real biometric data in digital format, which allows one
to use the memoryless assumption about the data and the Hamming distance as the measure
of closeness of two observations. Another class of problems is constructing the specific codes
and the decoding algorithms having a low computational complexity. We also believe that
there is a request for a general theory of processing noisy data, since the known solutions in
biometrics are mostly oriented to specific measurements (fingerprints, iris, palmprints, etc.)
and a particular application.

The authentication problem belongs to the list of basic problems that have to be solved in
the biometric direction, and it is included in the most of the books on biometrics (see Bolle
et. al (2004), for example). The additive block coding scheme was suggested in Juels &
Wattenberg (1999). The close relationships between the additive scheme and the wiretap
channel, introduced in Wyner (1975), where the verifier receives the signals from the outputs
of two parallel channels in the legitimate case and the signals from only one of channels in
the case of the presence of an attacker. It implies the relevance of information and coding
theory results (see Cohen & Zemor (2006), for example) to the investigation of the scheme.
The permutation scheme was proposed in Dodis, et. al (2004) under the uniform probability
distribution over the permutations. The algorithm for the mapping of an arbitrary binary
vector to a balanced vector, which can be used in the permutation scheme, was described in
Knuth (1986). The available DNA measurement data were received in the BioKey—-STR project
(Korte et. al (2008)).

The text of the chapter is a compressed version of the results in Balakirsky, Ghazaryan & Han
Vinck (2006-2011). The general principles of constructing biometric authentication, which also
include the points of rate—distortion coding, were presented in (2006a), (2006b). The described
mathematical model for the DNA data was introduced in (2008a), and the data processing
scheme was studied in (2009b) as an extension of the transformations for continuous random
variables described in (2007). The similar analysis is relevant to the constructing passwords
from biometric data, as it is indicated in (2010). The general expressions for the additive
and the permutation block coding schemes for an arbitrary probability distribution over the
biometric vectors are given in (2008a), (2009a). The standard technique of probability and
coding theory, which is used in the chapter, can be found in Gallager (1968).
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2. Notation and basic assumptions

Let B = By x - -+ x By, where By = {0, ..., K; — 1} is a finite set containing K; elements. We
say thatb = (by,...,b,) € Bisabiometric vector and assume that the probability distribution

w = (w(b):lgg{B:b},beB>

is known. Moreover, let w be a memoryless probability distribution, i.e.,

w(b) = [ wr(b) W
=1

for all b € B. We also write
wt(b) = PI‘{Bt = b}
bio

for all b € B;. Denote the most likely biometric vector by b* = (b5, ..., b},),

b* = argmaxw(b).

beB
Then, by (1),
b = b), t=1,...,n,
: arggé%fwlf( ) n
and .
wb*) =]]wi
t=1
where
i b). 2
w} %%),(wt( ) ()
Furthermore, let
wr =Y wi(b) 3)
ber
and
g:—1
H(w) = — Y wi(b)logwy(b). 4)
b=0

Then w; is the probability that two independent runs of the t-th biometric source result in
two equal symbols, and H(wy) is the entropy of the probability distribution w;, which can be
understood as the number of random bits at the output of the t-th biometric source.

We will use the component-wise transformation of the vector b to another vector z and
organize it in such a way that the probability distribution over the vectors z is close to a
uniform distribution. Introduce the following notation. Let us fix g; < K; as an integer power
of 2and let Z; = {0,...,q: —1}. Letusmap b € By toz € Z; if and only if b € By, where
By, ..., Bt g1 are pairwise disjoint sets whose union coincides with B;. One can see that such
a specification uniquely determines z and we denote it by z(b|g;). Let

zp = (2(b1lg1), - -, 2(bulgn)) ®)
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denote the result of the mapping B — Z = Z; x --- x Z,, which is parameterized by the
vector q = (41, . ..,qn) and the partitionings of the sets By, ..., B,. We also denote

Qi(z) = ) wi(b)

beB;

forallz € Z; and
n
Q(z) = [ [Qu(z)
t=1

for all z € Z. Furthermore, let
max,e z, Q(z)

(6)

or = min,ecz, O(z)

Let the noisy observations of the biometric vector b be specified by the conditional probability
distributions
(V(©'Ib) = Pr{B' =b'|[B=b},b' c B), b€ B,

and let ;
V(bb) = HVt(bet) (7)
for all b,b’ € B. We also write
Vi(t/|b) = Pr{B{ =b'| B = b}
forall b, b’ € B; and pay special attention to the conditional probability distributions such that
Vi(blb) =1—¢, forallb € B, (8)

where ¢ > 0 is a given constant.
The transformation B — Z preserves the V channel in a sense that (8) implies

Vi(zplb) = Y Vi(b'[b) > Vi(b|b) =1—¢
b'eB,

for all b € B;. Therefore, the V; channel By — B; is transformed to another V;,, channel
Z; — Zy such that
Vigi(z|z) > 1—¢, forallz € Z;. )

Let
Ham(b,b') = [{t € {1,...,n} : bt # 0} }|

denote the Hamming distance between the vectors b, b’ € B and let
Dr(b) = {b’ € B: Ham(b,b') < T} (10)

denote the set of biometric vectors located at distance T or less from the vector b. The
conditional probability of generating a vector belonging to the set Dr(b), given the vector
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b, is defined as
V(Dr(b)lb) = ). V(b'|b). (11)
b'eDr(b)

Notice that if conditions (8) are satisfied, then

T n
vDrbb) = 1 () a-er e 12)

d=0

forallb € B.

3. Mathematical model for the DNA measurements

The most common DNA variations are Short Tandem Repeats (STR): arrays of 5 to 50 copies
(repeats) of the same pattern (the motif) of 2 to 6 pairs. As the number of repeats of the motif
highly varies among individuals, it can be effectively used for identification of individuals.
The human genome contains several 100,000 STR loci, i.e., physical positions in the DNA
sequence where an STR is present. An individual variant of an STR is called allele. Alleles
are denoted by the number of repeats of the motif. The genotype of a locus comprises both
the maternal and the paternal allele. However, without additional information, one cannot
determine which allele resides on the paternal or the maternal chromosome. If the measured
numbers are equal to each other, then the genotype is called homozygous. Otherwise,
it is called heterozygous. The STR measurement errors are usually classified into three
groups: (1) allelic drop—in, when in a homozygous genotype, an additional allele is erroneously
included, e.g. genotype (10,10) is measured as (10,12); (2) allelic drop—out, when an allele of a
heterozygous genotype is missing, e.g. genotype (7,9) is measured as (7,7); (3) allelic shift,
when an allele is measured with a wrong repeat number, e.g. genotype (10,12) is measured as
(10,13).

The points above can be formalized as follows. Suppose that there are n sources. For all
t =1,...,n, there is a probability distribution

T = <7Tt(i),i€ {Ct,...,Ct—l—kt—l}),

where ¢, k; are given positive integers. Let the probability that the t-th source generates the
pair (i,j), where i,j € {ct,...,ct + ki — 1}, be defined as

Pr { (A1, Ar2) = (i,]) } = m(i) ().
e { (A1, 42) = (i) } = (i) ()
Thus, we assume that A;; and A;, are independent random variables that contain
information about the number of repeats of the ¢t-th motif in the maternal and the paternal
allele. We also assume that (A1, A12),...,(An1,An2) are independent pairs of random
variables, i.e.,

Pr {(Al,Az) = (i,j)}:ﬁ Pr {(At,l,At,z) = (it, jt) }

DNA -1 DNA

where Al = (Al,l/-"/An,l)r A2 = (Al,2/~~~rAn,2) andi = (il,...,in),j = (jl,...,jn).
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Let
St = (min{At,l/At,Z}/maX{At,l/At,2})-
Then
Pr {5 = (i) } = m(ij),
where

77 (i) if j =i,
7t (i, j) = {Zm(i)nt(]’), ifj >,
0, if j < i,
Denote By = {0, ...,K; — 1}, where Ky = k¢(kt + 1) /2, order K; probabilities belonging to the
distribution
7ty = <ﬁt(i,j),i,j e {ct... cotki—1},j> i)

in the decreasing order, assign them indices b = 0,...,K; — 1, and replace 7; with the
probability distribution

wp = (wt(b),b € {0,...,Kt—1}>,

i.e., the probability distributions 7t; and w; contain the same entries in different order.
The transformations below are illustrated for the THO1 allele (see Tables 2, 3), where t = 12,
Ct = 6, kt = 4, and

(rt4(6),...,m(9)) = (.234,.192,.085, .487).

Then

j=6lj=7]j=8]j=9
i = 6|.0550|.0452|.0200.1143
[nt(i)nt(]’)] - =|i = 7[.0452|.0371.0165|.0939

b=62 i = 8.0200|.0165(.0073|.0416
i = 9/.1143|.0939|.0416|.2376

To compute the entries of the probability distribution 7;, we transform this matrix to the right
triangular matrix below. The entries above the diagonal are doubled, and the entries below
the diagonal are replaced with the zeroes.

j=6j=7]j=8j=9

i = 6/.0550].0903|.0401| 2286

7)o =|i= 0371].0329|.1878
= li=8 0073|.0833

i=9 2376

The ordering of the non-zero entries of this matrix brings the probability distribution wy. Its
entries and parameters w;, Wy, defined in (2), (3), are given below.

,j199169(79|6,7(89|6,6|68|77|78]|8,8
7t (i, 7)|.2376|.2286(.1878|.0903.0833|.0550|.0401 |.0371|.0329|.0073
b| 0 1 2 3 4 5 6 7 8 9
)

*
t

.2376(.2286(.1878|.0903|.0833.0550{.0401|.0371|.0329.0073
2376
wy 2376 .2376 + ...+ .0073 .0073 = .0609

t
Wi

£l
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b 019 1 825 3] 4]6]7
w; (b)]-2376].0073].2286[.0329(.1878|.0550|.0903|.0833|.0401.0371
zZl 0 1 2 3
Q:(z)| 2449 2615 2428 2508
0:(2) 2615/.2428 = 1.08

Table 1. Example of the mapping {0,...,9} — {0,...,3}.
Let g¢ be the maximum integer power of 2 such that
1/q1 > wy,

where wy is defined in (2). Then one can partition the set B; in q; subsets in such a way the
resulting probability distribution over these subsets is close to a uniform distribution. An
example of the partitioning is given in Table 1. Notice that the entropy of the distribution w;
is equal to 2.851 (see Table 3), while the entropy of the distribution (); is less and it is close to
log g;.

The available experimental data consist of probability distributions 7y, ..., 78, and they are
given in Table 2. The computed parameters are shown in Table 3. We conclude that results
of the DNA measurements can be represented by a binary vector of length 140 bits. However
the probability distribution over these vectors is non-uniform and, roughly speaking, only
109 bits carry information about the measurements. The most likely vector of pairs has
the probability 0.124...0.243 = 1023, and the probability that the sources independently
generate two equal vectors is equal to 0.013...0.046 = 10~°0. The greedy algorithm for
partitioning the sets By,..., By, in qq,...,q, brings the vectors that can be expressed by
logg; + --- +loggqn, = 68 bits with the property that p;...p;, ~ 16, where p1,...,p, are
defined in (6). Therefore, the most likely vector of length 68 bits has the probability 2764,
Notice that the spectrum of components of the vector q can be presented the as the sequence
(9 x Ng), g = 21,...,2%, where N, is the number of indices t with ¢; = g. Namely, the
constructed vector q has the spectrum

(2x7),(4%x8),(8%x9),(16 x3),(32x0),(64x1) (13)
and

28=74+8+9+3+0+1,
68 =7-log2+8-log4+9-log8+3-logl6+0-log32+1-log64.

4. Direct authentication schemes

Let us consider the following setup. Suppose that b, b’ € B are given vectors of length n. If
the Hamming distance between these vectors is not greater than a fixed threshold T, then the
verifier has to make the acceptance decision. Otherwise, the verifier has to make the rejection
decision. Hence, the rules are as follows:

Race: ifb’ € Dr(b), then accept the identity claim (Acc);
RRej: if b’ & Dr(b), then reject the identity claim (Rej).
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~

Name Tt
D8S1179 |.319 .194 .173 .119 .105 .086
D3S1358 |.265 .257 .218 .154 .104
VWA 283 .202 .202 .111 .105 .095
D7S820 |.248 .211 .180 .168 .155 .035
ACTBP2 |.089 .080 .073 .072 .070 .064 .062 .053 .051 .049
.047 .046 .043 .039 .037 .034 .033 .028 .012 .009
D7S820 |.243 .207 .177 .165 .152 .034 .018
FGA 223 .192 .139 .139 .129 .072 .053 .026 .023
D21S11 |.308 .200 .183 .160 .091 .028 .026
D18S51 |.162 .142 .142 .135 .130 .129 .078 .039 .022 .016
10|{D19S433 |.382 .259 .173 .086 .082 .015
11|D13S317 |.339 .248 .124 .112 .074 .051 .048
12|THO1 487 234 192 .085
13|D2S138 |[.182 .146 .122 .117 .114 .093 .079 .041 .038 .033
.029
14\D16S539 |.326 .321 .145 .112 .056 .019 .018
15/D5S818 [.389 .365 .142 .052 .050
16| TPOX 537 .244 119 .056 .041
17|CF1PO |.365 .305 .219 .097 .011
18|D8S1179 |.304 .185 .165 .114 .100 .082 .031 .011 .003
19| VWA1 283 .202 .202 .111 .105 .095
20|PentaD |.265 .214 .189 .156 .089 .060 .014 .010
21|PentaE |.180 .170 .110 .105 .102 .080 .056 .051 .051 .034
.029 .010 .010 .007
22|DYS390 |.422 .282 .164 .103 .014 .011
23|DYS429 |.445 .325 .118 .096 .013
24\DYS437 |.528 .317 .154
25/DYS391 |.513 .451 .018 .016
26|DYS385 |.551 .124 .097 .087 .059 .037 .030 .012
27|DYS3891 |.663 .186 .150
28|DYS38911|.446 .272 .167 .081 .032

Ol = W N -

O 0 3 O

Table 2. The entries of the probability distributions 71y, ..., 7158, which are greater than 0.001,
given in the decreasing order.

“The identity claim” in the description above appears because we assume that the vectors b
and b’ contain outcomes of measurements of some biometric parameters of two people. The
verification is understood as a procedure, which checks whether the difference between the
results is caused by the observation noise or by the fact that people are different.

The direct implementation of the authentication procedure includes the enrollment and the
verification stages (see Figure 1).

The enrollment stage.

— Store the biometric vector b in the database.
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t| Name |logK:|[logK:|| w; |logg:|H(we)| @i
1/{D8S1179 |4.392 5 0.124| 3 |4.083(0.013
2|D3S1358 | 3.907 4 0.137| 2 3.714 |0.012
3| VWA 4.392 5 0.115| 3 |4.127 {0.010
4|D7S820 |4.392 5 0.105| 3 |4.074 {0.008
5/ACTBP2 |7.714 8 0.014| 6 7.426 10.000
6|D7S820 |4.807 5 0.101| 3 | 4.241 |0.008
7| FGA 5.492 6 0.086| 3 |4.916 |[0.005
81D21S11 | 4.807 5 0.124| 3 |4.130 |0.013
9|D18S51 |5.781 6 0.046| 4 | 5.279 {0.002
10/D19S433 | 4.392 5 0.199| 2 3.593 |0.027
11/D13S317 |4.807 5 0.169| 2 |4.151(0.018
12|THO1 3.322 4 0.238 2 |2.851 |0.061
13|D2S138 |6.044 7 0.053| 4 |5.601 [0.002
14{D16S539 | 4.807 5 0.210| 2 3.776 10.023
15/{D5S818 | 3.907 4 0285 1 3.111 {0.041
16| TPOX 3.907 4 0.289 1 |2.909 |0.087
17|CF1PO 3.907 4 0.223| 2 3.157 {0.029
18/D8S1179 |5.492 6 0.113| 3 |4.487 |0.011
19| VWA1 4.392 5 0.115| 3 |4.127 {0.010
20|PentaD |5.170 6 0.114| 3 |4.325(0.009
21|PentaE 6.907 7 0.062| 4 |5.870(0.002
22|DYS390 |4.392 5 0.239 2 |3.238 {0.039
23|DYS429 |3.907 4 0290| 1 2.972 (0.051
24|/DYS437 |2.585 3 0.335( 1 |2.259 (0.089
25|DYS391 |3.322 4 0464 1 1.902 |0.111
26/DYS385 |5.170 6 0304 1 3.607 |0.093
27|DYS3891 | 2.585 3 0440| 1 2.008 [0.195
28| DYS38911| 3.907 4 0.243| 2 3.145 [ 0.046
128.6| 140 [10~23| 68 | 109.1 |10~V

Table 3. Some characteristics of the probability distributions wy, ..., wpg that describe the
DNA measurements.
The verification stage.

— Read the biometric vector b associated with the claimed person from the database. If b’ € D7 (b),
then make the acceptance decision (Acc). If b’ & Dr(b), then make the rejection decision (Rej).

The basic parameters of the scheme are the false rejection rate FRR, the false acceptance rate
FAR, and the average false acceptance rate FAR, introduced as

FRR = Y w(b)V(b'[b)x{b’ ¢ Dr(b)}, (14)
b,b’'eB

FAR = max Y w(b)x{b’ € Dr(b)}, (15)
b’'eB be s

FAR = ) w(b)w(b')x{b' € Dr(b)}, (16)
b,b’eB
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Bio DB

The enrollment stage

DB b’ € Dr(b)? Acc/Rej

b/

The verification stage

Fig. 1. The data processing in a direct authentication scheme.

where x denotes the indicator function: x{S} = 1 is the statement S is true and y{S} = 0
otherwise. The false rejection rate is the probability of the event that the verifier makes the
rejection decision when the observations belong to the same person. The false acceptance
rate is the probability of the event that the verifier makes the acceptance decision when the
vector b’ is generated by an attacker. The average false acceptance rate is the probability of the
event that the verifier makes the acceptance decision when the vector b’ contains outcomes of
biometric observations of a randomly chosen person.

If the V channel satisfies (8), then the false rejection rate is expressed using (12),

- n n—d d
FRR = E 1-— . 17
d=T+1 (d>( ey 47

To compute the false acceptance rates, we use the generating functions technique.
Let us consider the problem of computing FAR and introduce the generating function

Gt(Z) = wt + (1 — wt)z,
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where z is a formal variable and w; is defined in (3) as the probability that two independent
runs of the t-th source result in two equal symbols. Furthermore, denote

n
G(z) =[] Gt(2)
t=1
and represent the polynomial G(z) as

G(z) = i Coef, [C(z) }zd.
d=0

Then the d-th term of the sum at the right-hand side is equal to the probability that two
independent runs of n sources result in vectors that differ in d components. Hence,

T
FAR = ) _ Coefy [C(z) ]
d=0

Similar manipulations bring the formula

T
Y w(b)x{b' € Dr(b)} = ¥ Coefd[c(z|b’)], (18)
beB d=0

where ;
G(zlb') = TT (i (b)) + (1 = wi(8)))z).
t=1
One can easily see that the sum at the right-hand side of (18) is maximized when b’ = b* and

T
FAR = ) Coefy [ G(z]b™) ],
d=0
where
n

Gzlb®) = [T (wi + (1 - w))z)
t=1

and wj, ..., w; are defined in (2).

Some numerical results for the DNA data are given in Table 4. We conclude that the
probability of successful attack in the case when the attacker does not know the content of
the database can be very small. However, the main problem with the direct authentication
scheme is caused by the point that the biometric vector itself is stored in the database. If an
attacker would have an access to the database, then he does not have any difficulties with the
passing through the verification stage with the acceptance decision. Moreover, the biometrics,
being compromized, is compromized forever and it can be also used for any other purposes.
A possible solution to the hiding problem is the use of the cryptographic “one-way” hash
function Hash : it is assumed that the value of the function can be easily computed for a given
argument, but the value of the argument is hard to get for a given value of the function. If only
Hash(b) is known to the verifier, then he can compute the values of Hash(b) for all vectors
b located at the Hamming distance at most T from the vector b’ and make the acceptance
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FRR
e=005 ¢=0.01| FAR FAR FAR

76-1071 25.1071(7.7-10"2#(2.5-1020([3.4 - 10~ 2!
41-1071 32-1072(1.9-10"%|1.7-10%¢||6.9- 1017
1.6-10"! 2.7-1073(2.0- 107 (3.4 -10~%||6.1- 10~V
49-1072 1.7-107%(1.3-10717|3.7-10740(|3.2. 10~ 1°
1.2-1072 8.1-107°%|5.8-10"10|25-.107%7||1.2- 1013
23-1073 3.1-1077(1.9-10"14{1.2-10734|[3.1- 10712
36-107% 9.8-10774.8-10713|42-10732||6.4 - 1011
49-107°26-10"1019.7.10712|1.1-10-?°||1.0- 10°
56-107058-107121.6-1071012.3.10"%||1.3-1078
56-10771.1-10713|2.1-107?(3.7-107 2|14 -10~7

O© O NI O Ul W N R Ol

Table 4. The false rejection and the false acceptance rates for the DNA measurements.

xeC C
y
beB Encoder M Verifier F— x€C
\ X =x?

b/

Channel

Fig. 2. General authentication scheme.

decision if one of them is equal to Hash(b). Such a scheme is secure up to the security of
hashing, but requires the hash function to be defined over the set of |B| vectors and very large
computational complexity. The block coding schemes can be viewed as solutions introduced
to relax these requirements.

5. Block coding approach to the authentication problem

The coding problem for biometric verification can be presented as designing codes for the
scheme in Figure 2. Let C C B be a subset whose entries are codewords assigned by the
designer. The encoding is the transformation of a pair (x,b) € C x B, where the vector b is
generated by the source and x is chosen according to a uniform probability distribution over
the code C, to another vector y = (y1, ..., yx) belonging to some finite set ). The mappings

(x,b) =y, (y,b)—x
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xeC C
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b€ B — Encoder Verifier F——> x€C
- X = x?
b/
Attacker

Fig. 3. General authentication scheme from the attacker’s prospective.

are called the encoding and the decoding, respectively. The general requirement to the these
mappings can be presented as

b’ € Dr(b) = (y,b’) = x,
b) =y = {b' £ Dr(b) = (y,b) /o x 19)

In other words, the results of the decoding for the vectors b and b’ have to coincide if and
only if b’ € Dr(b).

Both the vector y and the value of Hash(x) are stored in the database under the name of the
person whose biometric characteristics are expressed by the vector b. Having received the
vector b’ and the name of the person, the decoder reads (y, Hash(x)) from the database and
uses the error—correcting capabilities of the code to decode “the transmitted codeword” x as
%. If Hash(%) = Hash(x), then the identity claim is accepted. Otherwise, the claim is rejected.
From the attacker’s prospective, the authentication scheme can be viewed as the scheme in
Figure 3. The attacker reads the content of the database associated with a person, presents the
name of the person, and generates the vector b’. The goal of the attacker is generating of a
vector leading to the verifier’s acceptance decision. The coding problem can be formulated
as constructing codes that simultaneously satisfy the constraint (19) and guarantee a low
probability of the attacker’s success.

6. Additive block coding schemes

Given a positive integer g, let By and ©y denote the addition and the subtraction modulo g,
respectively,

r o — z+2, ifz+z2 <y,
17 7 \z+7 —g,ifz+2 >9q

ron o — z—2, ifz4+2' >0,
2 7 \z—2'+gq,ifz+7 <0.

www.intechopen.com



312 Advanced Biometric Technologies

Zy Oq Zp/ C
l X @q (Zb @q Zb/) ]
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X Dq b
Attacker

Fig. 4. Wiretap-type additive block coding scheme.

The operations ®©q and ©q, where q = (41, ...,4n), being applied to the vectors of length 7,
are understood as component-wise addition and subtraction modulo gy, ..., gy, i.e.,

/ !/ /
Z@qz = (Zl @ql Zl,...,Zn @qn Z}’l)’
Z@q Z/ = (Zl @lh Z{l,...,Zn @q” Z;’l)'

Let us consider the biometric vector b as an additive noise that corrupts the transmitted
codeword x and the received vector is defined as

y:XEBqu,

where zj, is the result of the transformation of the biometric vector b defined in (5). The
decoding is based on the observation:

y =X @q Zb / <
Ham(zb,zb/) < T} = Ham(YIXEDq Zyp ) <T.
Notice also that
y =Xx®qzp, = Ham(y,x ®qzp) = Ham(y ©q zp/, x) = Ham(x Bq (2p ©q 2p'), X).

Thus, the verifier analyzes the outcomes of transmission of the codeword x over two parallel
channels,

X — X Dq (zp ©q 2zp) (the observation channel),
X — X ®q 2z} (the biometric channel),

while the attacker analyzes only the output of the biometric channel (see Figure 4).
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Fig. 5. The data processing in an additive block coding scheme.
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Processing of a given biometric vector b at the enrollment stage and processing of data at the
verification stage when the verifier considers only the output of the observation channel is
illustrated in Figure 5.
The enrollment stage.

— Choose a key codeword x according to a uniform probability distribution over the code C and
compute the value of Hash(x).

— Store (Hash(x),x ©q zp) in the database.
The verification stage.
— Read the data (Hash(x), y) associated with the claimed person from the database.

— Decode the key codeword, given a received vector z = y ©q 2y, as X. If Hash(X) = Hash(x),
then make the acceptance decision (Acc). If Hash(X) # Hash(x), then make the rejection decision
(Rej).

Let us illustrate the additive block coding and the decoding algorithms that will be described
in a general form by the numerical example. Letg; = --- = g4 = 2, n = 6, and let C be a
binary code consisting of 8 codewords,

X1 X2 X3 X4 X5 X6 X7 X8
000000{001011{010101{011110{100110{101101{110011{111000

For example,
z, = 011011
x = 011110

and the vector y is stored in the database. Having received another vector zy,, the verifier tries
to find a codeword X located at distance at most 1 from the vector y ©q zp,'. For example,

} — y = 000101,

zyy = 111011

y = 000101} — y©6q2zp = 111110 — % = 011110,

and the verifier makes the acceptance decision, since X = x implies Hash(X) = Hash(x). An
attacker wants to submit some vector b’, which also leads to the acceptance. He constructs
the list of candidate vectors as y ©q x, x € C, and finds the vector X such that Q(y ©q x) is the
maximum. For example,

YOqgX1|YyOqgX2|yOqX3|yOqXa|yOqX5|Y OqX6|Y ©Oq X7|Y Oq X8
000101 { 001110 {010000{ 011011 | 100011 | 101000| 110110111101

In particular, if the probabilities ()(z) decrease when the weight of the vector z increases, then
this algorithm brings the vector X = x3, and the attacker’s vector b’ is such that zy = zyo,x,-
Suppose that C is a block code consisting of M codewords x3,...,xp € 21 X -+ X Z; and
having the minimum distance greater than 27T, i.e.,

x,x' € C

x # x'

Then the Hamming balls of radius T centered at codewords, Dr(x), x € C, are pairwise
disjoint sets. As a result, for any y,z,, € Z, there is at most one codeword x € C such

} = Ham(x,x') > 2T + 1. (20)
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that
Ham(y,x ®qzp) < T. (21)

Let us denote this codeword by X(y, z}, ). If the inequality (21) does not hold for all codewords,
we assume that X(y, zy,/) is a fixed vector (for example, the all-zero vector). Thus,

Ham(zb,zb/) S T = Ham(xGBq Zb,XEBq Zb/> S T = )’Z(X EBq Zb,Zb/) = X.

Hence, if x is the codeword, which was used to encode the vector z;,, and the vector z;, differs
from the vector zj, in at most T components, then the codeword is decoded. Therefore the
false rejection rate is expressed by (14),

FRR= ) w(b)V(b'|b)x{zp & Dr(zp)}
b,b’'eB

The similar conclusion is valid for the false acceptance rate of a randomly chosen person,

FAR = l?gla)(b)a)(b’))({Ham(zb,zb/) <T}.

Let us analyze the situation when an attacker is present. He receives only the result of
transmission of the codeword over the biometric channel and his action can be presented
as the mapping

(Zb1 = y@qxl,...,sz = y@qu) — b = b,

where 111 € {1,..., M} is chosen in such a way that

O(zp, ) = max O(zyp, ). 22

(zb,) = max Of(zp,) (22)

The submission of the vector by, to the verifier implies X = x,7, and the acceptance decision

is made if and only if x;; is the codeword that was used to encode the biometric vector at the

enrollment stage. The probability of the attacker’s success, given the vectors zy, , ..., zy,,, is
equal to

(23)

O(zyp,) maxi<m,<mQ(zp, ) max,e z ()(z) 1 ﬁpt
Y™ Q(zp,) ~ Mmini<puam Qzp,,) ~ Mmingez Q(z) M3

where pq, ..., pn are defined in (6). Since the upper bound (23) holds for any received vector
y, which determines the vectors zy, , ..., zy,,,
1 n
FAR < — [ ] p:. (24)
M3

Let us evaluate the bound (24) using the standard covering arguments of coding theory. Given
the vector q, introduce the generating function
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where

For example, for the DNA data (see (13)),

1 1\7/1 31\8,1 71\9/1 1 \3,1 63 \1

Gona®) = (3732) (1+37) (G+g7) (g 19) (G+ea?)
One can easily see that the d-th coefficient of the polynomial G(z) is equal to the ratio of the
number of vectors X' € Z located at the Hamming distance d from any fixed vector x € Z and

qi-...qn, le.,

n

- {x' € 2: Ham(xX) = d }| = Coely  G(2) .

Therefore,
1
t—1 4t

Since Dr(x1), ..., Dr(xpr) are pairwise disjoint sets,

T
Dr(x)| = ) Coefs[ G(z)]. (25)
d=0

M n
Y [ Dr(xm)| < [Tae
m=1 t=1
and (25) implies
1 T
U > ) Coefy[G(z)]. (26)

d=0
By assuming that there is a code such that (26) holds with the equality and by replacing the
parameters pq, ..., pp With 1’s, we evaluate the false acceptance rate, estimated in (24), as

T
FAR ~ FAR = ) Coef;[G(z)].
d=0

The values of FAR are given in Table 4 for the DNA data. As a result, one can conclude that
the additive coding scheme can give a very efficient solution to the authentication problem
provided that there is a class of specific codes having the certain minimum distance and
corresponding decoding algorithms that require a low computational complexity.

7. Permutation block coding schemes

The permutation block coding scheme can be viewed as a modification of the scheme in
Figure 4 where the sum modulo q in the link to the attacker is replaced by a stochastic
mapping f(x,b), as it is shown in Figure 6. In this section, we will assume that g = 2. In
particular, the modification of a wiretap-type block coding scheme is possible when both
the vector x and b have equal weights and f(x,b) stands for the binary representation of
a permutation 7t that transforms the vector x to the vector b. Formally, let B = {0,1}?, where
{0,1}1 is the set consisting of binary vectors of the Hamming weight w. Thus, the biometric
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Fig. 6. Modified wiretap-type block coding scheme.

vector is a binary vector b of length n chosen by a combinatorial (1, w)-source, i.e.,

wt(b) #w = tljj.r{B =b} =0. (27)

Let C denote a binary code consisting of M different codewords of length n and weight w, i.e.,
CC{0,1} and |C| = M.
The permutation of components of some vector x = (x1,...,%,) € {0,1}]} is determined
by a vector r € P in such a way that w(x) = (xn,,...,%x,), where P is the set of all
possible permutations of components of the vector (1,...,n). Given a vector b € {0,1}7
and a permutation r € P, let 7t~ € P denote the inverse permutation, i.e., ﬂfl(b) =
(bi,(rc)s - - -+ i (7)), where ij(rr) € {1,...,n} is the index determined by the equation T () =
j.
For all vectors x, b € {0,1}1, let

Px—b)={meP:m(x)=b} (28)

denote the set of permutations that transform the vector x to the vector b. Let us introduce the
probability distribution

Txb = (7(7Tx,b), T e P)
in such a way that (7r|x,b) can be positive only if &t € P(x — b). Let us also denote a
uniform probability distribution over the set P(x — b) by

Txb = (V(Tlx,b), w e P),

where .
_ ~ [|P(xb)|7, if Tt e P(x — D),
ﬂﬂ*w_{a if 7 ¢ P(x — b).

For example, let n = 4,k = 2. The set {0, 1}‘2l consists of (3) = 6 binary vectors of length 4
having the weight 2 and P is the set consisting of 4! = 24 permutations of components of the
vector (1,2,3,4). For all x,b € {0,1}%, the set P(x — b) consists of 2!2! = 4 permutations. In
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particular,
P(1100 — 1010) = { 1324, 1423,2314,2413 }.
Notice that
b=l i) = by e l(e) = xo 7 L(e) (29)
b =bde
and

wt(r 1 (e)) = wt(e), (30)

i.e., the decoder observes “the transmitted codeword” x as x @ 7t !(e). If the source
generating the noise vectors is assumed to be a memoryless source, then (30) implies that
the presence of the permutation 7t ~! does not affect the decoding strategy, and the scheme is
equivalent to the one in Figure 6.

Processing of a given biometric vector b at the enrollment stage and processing data at the
verification stage when the verifier considers only the output of the observation channel is
illustrated in Figure 7.

The enrollment stage.

— Choose a key codeword x according to a uniform probability distribution over the code C and
compute the value of Hash(x).

— Given a pair of vectors (x,b) € {0,1}2 x {0,1}2, choose a permutation 7t € P according to the
probability distribution vy y,.

— Store (Hash(x), 7t) in the database.
The verification stage.
— Read the data (Hash(x), 7t) associated with the claimed person from the database.

— Apply the inverse permutation 7t~ to the vector b’ and decode the key codeword given a received
vector 7t~ 1(b’) as . If Hash(%) = Hash(x), then accept the identity claim (Acc). If Hash(X) #
Hash(x), then reject the identity claim (Rej).

One can easily see that if the code C satisfies (20), then (29), (30) guarantee that the false
rejection rate FRR and the false acceptance rate for a randomly chosen person FAR are the
same as for the additive block coding scheme. Therefore, the reasons for introducing the more
advanced permutation scheme are caused by possible decrease of the false acceptance rate for
an attacker. We will derive a general formula for the FAR and demonstrate the effects for a
specific assignment of input data.
Let

Y= (’)’x,b/ x,b € {Ofl}znu)
denote the list of conditional probability distributions over the set P. In general, the attacker
applies a fixed function ¢ : P — {0,1}" to the permutation 7t stored in the DB and submits
the vector b’ = () to the verifier. Let us assume that the verifier decodes the key codeword
as the vector x[7r =1 (b’)]. The probability of successful attack can be expressed as

FAR= — Y Y w(b) ¥ (b blx{sla " (p(m))] = x}, (1)

xeC b TEP
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Fig. 7. The data processing in a permutation block coding scheme.

and one can easily see that FAR is maximized when the attacker applies the maximum a
posteriori probability decoding, which results in

y(rr) = re(argmaxypio (lx) ),

where
Thio(7X) = Y w(b)y(m|x,b). (32)
b

Then

1
FAR = — max Y- (7T]X).
M 7-[;7) cC ,Yblo( | )
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Notice that (yp;o(7r]x), 7T € P ) is the conditional probability distribution over the set P and

Z Vbio(ﬂlx) =1

TeP

Notice also that the vector x € {0,1}}, and the permutation 7t € P uniquely determine the
vector b? € {0,1}", such that 7 € P(x — bY). Namely, b® = 7r(x), and the sum at the
right-hand side of (32) contains at most one non—zero term.

The attacker has two simple possibilities: 1) fix a codeword x’ € C and submit the vector
b’ = m(x'); 2) submit the most likely biometric vector. In the first case, the attacker has to
know the code C and the stored permutation 7r. In the second case, he does not know these
data and equivalent to an attacker, who does not have access to the database and ignorant
about the code. One can easily see that the probabilities of successful attacks are equal to
1/M and w*, respectively. Therefore the probability of successful attack under the maximum
a posteriori probability decoding of the key codeword is bounded from below as follows:

1
FAR > {—,*}
-~ ImaxXx M w

Letn =8, w = 4, M = 4. Let the codewords x1, ..., x4 and the biometric vectors that can be
processed at the enrollment stage be specified as

700001111 ]
X1 00110011 by 00110011
x> | | 01010101 .| _ | o1010101
xs | _ |10101010 |7 | . | = | 10101010 |~
X4 11001100 be 11001100

| 11110000 |

ie., C={xq,x2,x3,x4} and B = { by,...,bg}. Then, for all pairs of vectors (x,b) € C x B,
|P(x = b) | = (4!)> =576 (33)
and
| Pesp(x = b) | = 4(2)" = 64, (34)

where Pe_,3(x — b) denotes the set of permutations 7t € P(x — b) such that 7t (x’) € B for
allx’ € C.
Let us illustrate our considerations by the following examples:

' 12563478 ! 12653478
m'(x) | = 00001111, |#"(x;)| =]00001111].
7' (xp) 01010101 ' (x2) 01100101

The permutations 77/ and 7t” belong to the set P. Furthermore, 7/(x;) = 7" (x1) = by.
However 7/(xp) € B, while ”(x) ¢ B. Suppose that 7t’ is the permutation stored in
the database. The attacker applies this permutation to all codewords of the code C and
constructs the list 7t/(x1),..., 7/(x4). All entries of this list are possible biometric vectors.
If the permutation 7t”’ is stored in the database, then the list 7t’(x1), ..., 77/(x4) contains only
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2 biometric vectors. The probability of successful attack is greater in the second case, and the
permutation 77’ can be considered as “a bad” permutation.

The most of the permutations are bad permutations (see (33), (34)). This observation leads
to the statement that the uniform probability distribution over the set P(x — b), where x
is the selected codeword and b is the biometric vector, can bring a rather poor performance.
Namely, suppose that the probability distribution over the set B is uniform, i.e., w(b) = 1/6
forall b € B. Let x be the codeword of the code C used at the enrollment stage. If vy, = Y4,
then the permutation is uniformly chosen from the set containing 576 entries. Only 64 of these
permutations have the property that the set 7t(x), x € C contains 4 biometric vectors, and the
probability of successful attack is equal to 1/4. For the other 512 permutations, the set 7t(x),
x € C, contains 2 biometric vectors, and the probability of successful attack is equal to 1/2.

Thus

64 512
FAR = —(1/4) + ——(1/2) =17/36.
576( / >+576( /2) /36

Let us assign 7y p as a uniform probability distribution over the set Pc_,5(x — b) consisting
of 64 entries. In all cases, the list 7t(x), x € C, contains 4 biometric vectors, and the probability
of successful attack is equal to 1/4. As a result, the probability of successful attack is expressed

as
64

il
which is approximately twice less the value obtained with the uniform probability
distribution. Moreover, we obtain that the lower bound 1/M on the probability FAR is
attained with the equality.

Let us consider a non—uniform probability distribution over the set B. Namely, let a €
[1/4,1/2] be a fixed parameter and let

FAR = 1/4) =1/4,

w(by = { @ if b € {00001111,11110000},
~ \1/4—a/2,ifb € B\{00001111,11110000}.

Notice that the set P¢_,5(x; — by) contains 32 permutations 7t such that

{rr(x1), (x2), w(x3), t(x4) } = {b1, b2, bs, bg}

and 32 permutations 7t such that

{m(x1), w(x2), w(x3), t(x4) } = {b1, b3, by, bs}.

Let us denote the subsets of these permutations by P/, 5(x; — by) and P/ s(x; — by),
respectively. Let

() Yx; by 7 Yx.,be D€ uniform probability distributions over the set Pe_,5(x; — b1);

() Yx; bys Yy, bs De uniform probability distributions over the set P, 5(x; — by);

(C) Yxy,bss Yy, b, De uniform probability distributions over the set P;_, 5(x; — by).

If 1 € Pp_, g(x1 — by), then the a posteriori probabilities associated with the biometric vectors
b1, by, bs, bg are equal to

35 (0/2,1/2a/2,1/2~a/2,a/2).

www.intechopen.com



322 Advanced Biometric Technologies

b #i b wi b wi b w b wi b w b @wi b w b @i b w
0000 0 2 1100 2{0001 1 11001 2|0010 1 1 1010 20100 1 1 1100 2{1000 1 3 0110 2
1111 4 2 0011 2|1110 3 1 0110 2|1101 3 1 0101 2{1011 3 1 0011 20111 3 3 1001 2

Table 5. Transformation of vectors of length n = 4 and weights 0,1,3,4 to balanced vectors,
where @, w are the Hamming weights of the vectors b, b and i is the length of the prefix of
the vector b, which has to be inverted to obtain the vector b.

However a/2 > 1/2 —a/2, and the attacker outputs either the key codeword, which is
mapped to the vector by, or the key codeword, which is mapped to the vector bg. Similar
considerations can be presented for the permutations belonging to the set P/, 5(x; — by).
As a result, we conclude that

FAR = 64(a/64) = a,

i.e., the lower bound w* on the false acceptance rate is attained with the equality.

Let us consider the error—correcting capabilities of the verifier, who processes data of a
legitimate user. Let P, denote the probability that the vector b’ differs from the vector b
in w positions, w = 0, ..., 8. Then, assuming that the vectors b’ are uniformly distributed over
the set of vectors located at a fixed distance from the vector b, we obtain that the probability
of correct decoding for the code C and the threshold T = 2 is equal to

1—FRR = Py + P; + (16/28)D,

since the decoder makes the correct decision for all error patterns of weight at most 1 and for
16 error patterns of weight 2 (the total number of error patterns of weight 2 is equal to 28).
Suppose that the processed biometric vectors are constructed as a concatenation of L vectors
b ,...,b (L) e B, i.e., the total length of the vector is equal to 8L. Suppose also that the vectors
b, ..., bML) are independently generated according to a uniform probability distribution
over the set B. Let the verifier make the acceptance decision if and only if such a decision
is made for all L entries. Then the probability of correct decision is equal to (1 — FRR):. On
the other hand, the probability of successful attack, when the probability distributions 71,
are used is equal to (1/4). This example illustrates the possibility of constructing the desired
probability distribution over the permutations only for the subblocks of input data, and the
search for good distributions is computationally feasible.

Notice that the fixed Hamming weight of the possible biometric vectors is the constraint that
has to be satisfied to implement the permutation block coding scheme. It can be done if the
observer takes into account only a fixed number of the most reliable biometric parameters.
For example, in the case of processing fingerprints, one can put an n; x np grid on the
2-dimensional plane (in this case, n = 111, ) and register the w most reliable minutiae points in
the cells of that grid. In general case, the biometric binary vector of length 1 can be viewed as
a vector of n features where positions of 1’s index the features that are present in the outcomes
of the measurements. The total number of the most reliable features taken into account by the
authentication scheme can be fixed in advance.

Another useful possibility is known as balancing arbitrary binary vector by the inversion of its
prefix in such a way that the obtained vector has weight | n/2]. The corresponding statement
is presented below, and the examples of the transformation are given in Table 5. One can see
that, for any binary vector b € {0,1}", one can find an index i € {0,...,n} in such a way that
the vector b is transformed to a balanced vector by the inversion of the first i components,
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ie, (i —w;) +@—w; = |n/2|, where @ and @; denote the Hamming weight of the vector
b and the Hamming weight of the prefix of length i of the vector b, respectively. The proof
directly follows from the observation that the path on the plane whose coordinates are defined
as (J, wj), j=0,...,n, starts at the point (0, wt(b)), ends at the point (n,n — wt(b)), and has
increments +1. Therefore, there is at least one index i such that @; = |n/2]. Notice that the
case w = |n/2] can be viewed as the most interesting one meaning the characteristics of the
permutation block coding scheme. The claim above shows that an additional storage of the
value of the parameter i used to transform an arbitrary binary vector to a vector belonging to

the set {0, 1}7[” /2] makes the implementation of such a scheme possible in general.

The mapping of the pair (x,b) to a binary string stored in the database can be viewed as
the encryption of the message b, which is parameterized by a key codeword x € C chosen
at random. An interesting point is the possibility of decreasing the probability of successful
attack, when an attacker tries to pass through the authentication stage with the acceptance
decision, by using a randomized mapping, although the values of additional random parameters
are public. In the permutation block coding scheme, a randomly chosen permutation that
transforms the vector x to the vector b is used for these purposes. As the set of possible
permutations has the cardinality, which is exponential in the length of the vectors, the designer
has good chances to hide many of biometric vectors that differ from the most likely vector b*
into the information that can correspond to the vector b*. Thus, one can even reach exactly the
same secrecy of the coded system as the secrecy of the blind guessing of the biometric vector,
when the attacker does not have access to the database and ignorant about the code. In other
words, one can talk about the possibility of constructing permutation block coding schemes
that have a perfect algorithmic secrecy. This notion is different from the usual definition of
perfectness, which is understood as the point that the conditional entropy of the probability
distribution over the key codewords, given the content of the database, is equal to log M.
In our example presented in the previous subsection, the a posteriori probability distribution
over the key codewords certainly depends on a particular permutation, and the conditional
entropies of these distributions can be much less than the entropy of a uniform probability
distribution. Nevertheless, an optimum attacker cannot use this fact, and his observations do
not introduce changing in the decoding algorithm.
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