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1. Introduction 

Volcanoes are geologic manifestations of highly dynamic and complexly coupled physical 

and chemical processes in the interior of the Earth. Most volcanism on Earth occurs at plate 

boundaries in places where tectonic plates move apart (e.g. Iceland) and in places where 

tectonic plates come together with one plate plunging (subducting) below the other into the 

mantle (e.g. Pacific ring of fire). Conversely, intraplate volcanism is a type of volcanism 

occurring far from plate boundaries and whose origins are rather controversial. 

To know the working mode of a volcano in a given region it is necessary to understand the 

interplay between tectonics, deformation processes and magma transport through the 

lithosphere (e.g. Vigneresse, 1999; Petford et al., 2000). Deformation-induced fault-fracture 

networks have been regarded as efficient pathways through which magma is transported, 

stored and eventually erupted at the Earth’s surface (e.g. Clemens and Mawer, 1992; Petford 

et al., 2000). At active volcanoes, magmas rise toward the surface and can stagnate at 

different levels in the lithosphere, giving rise to magma bodies of different shape and size 

(Marsh, 2000). Nearly all volcanic eruptions are supplied with magma through dykes and 

inclined sheets whose initiation and eventual propagation to the surface or, alternatively, 

arrest at some depth in the volcano, depend on the stress state in the volcano 

(Gudmundsson, 2006). At the surface of active volcanic edifices, the majority of eruptive 

fissures have a radial configuration and tangential or oblique fissures are rare. However, 

within many eroded volcanic edifices, dykes and dyke-fed eruptive fissures commonly have 

more complex patterns, resulting from regional stresses, magmatic reservoirs, anisotropies 

or variations in topography (Acocella et al., 2009).  

Geophysics can provide information on the geometry of plumbing system and magma 

chambers, as well as on the mechanisms of emplacement of dykes. Among the different 

branches of geophysics, seismology is the most powerful tool to obtain information about 
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the inner structure of volcanoes and the geometry of their plumbing systems. Volcanoes 

generate seismic energy at frequencies ranging from zero (static displacement) to a few tens 

of Hz. Generally, two different groups of seismic signals can be distinguished in volcanic 

areas (Chouet, 1996): the former, involving processes originating in the solid, is associated 

with shear failures in the volcanic edifice and the related seismic events are called volcano-

tectonic (VT) earthquakes; the latter (hereafter referred to as seismo-volcanic signals) 

involves processes originating in the fluid and includes long-period (LP) events and 

volcanic tremor, sharing the same spectral components (0.5-5 Hz), and very-long-period 

(VLP) events characterized by dominant period of 2-100 s (Ohminato et al., 1998).  

In the last 30 years, the Earth has been widely investigated through a variety of seismic 

tomographic methods, leading to many interesting results at both regional and global scale. 

In volcanic environments, several tomographic high-resolution studies, involving the joint 

use of local VT earthquakes and artificial explosions have led to important discoveries on 

volcano plumbing systems both in the shallow and deeper zones (e.g. Achauer et al., 1988; 

Lees and Crosson, 1990). It is noteworthy that, since the ability to resolve feeding conduits, 

magma chambers, and zones of solidified magmatic intrusion relies on both the distribution 

of elastic sources at depth and of receivers at the surface, objects smaller than a few km 

generally cannot be reliably resolved. In this sense, what we can define with seismic 

tomography is generally a ''large'' volcanic structure with minimum dimensions of 1-3 km3. 

Smaller structure composing the shallow portion of the plumbing system can be studied by 

volcanic tremor and LP and VLP events, which, as aforementioned, are driven by fluid 

processes. The study of these signals can provide information not only on the geometry of 

the shallow portion of the plumbing system, but also on the variations in time of the magma 

batches stored inside it (Chouet, 2003). 

This chapter deals with the investigation of the plumbing system at Mt. Etna by using 

seismic signals with the aim of understanding how Etna volcano structure works and its 

relationship with the geodynamics of eastern Sicily. In particular, section 2 summarizes the 

main structural features of Mt. Etna, some theories regarding its origin, as well as some 

information about the volcano’s recent activity. Section 3 focuses on the investigation of 

the deep plumbing system by seismic tomography reporting also the previous 

seismological studies. In section 4 examples of study of the shallow plumbing system by 

the analyses of the seismo-volcanic signals are shown. Finally, section 5 summarizes the 

main conclusions.  

2. Tectonic setting of Mt. Etna volcano  

Mt. Etna is one of the most active volcanoes in the world, located on the densely inhabited 

eastern coast of Sicily (Italy). It is characterized by almost continuous eruptive activity from 

its summit craters and fairly frequent lava flow eruptions from fissures opened up on its 

flanks. Mt. Etna is a composite, quaternary, basaltic volcano set in a region of complex 

geodynamics, where major regional structural lineaments play an important role in the 

dynamic processes of the volcano (e.g. Gresta et al., 1998; Fig. 1). It covers an area of about 

1,250 km² with a basal circumference of 140 km and reaches a maximum elevation of 3330 

m. On the volcano summit four active craters are currently opened: Voragine, Bocca Nuova, 

South East Crater, and North East Crater (hereafter referred to as VOR, BN, SEC and NEC, 

respectively; Fig. 2). 

www.intechopen.com



Interplay between Tectonics and Mount Etna’s Volcanism:  
Insights into the Geometry of the Plumbing System 

 

75 

 

Fig. 1. Structural setting of central Mediterranean Sea (modified from Lentini et al., 2006) 
and location of Mt. Etna. 1) Regional overthrust of the Sardinia-Corsica block upon 
Calabride units; 2) Regional overthrust of the Kabilo-Calabride units upon the Apennine-
Maghrebian Chain; 3) External front of the Apennine-Maghrebian Chain upon the Foreland 
units and the External Thrust System; 4) Thrust front of the External Thrust System; 5) Main 
normal and strike-slip faults. KCC: Kabilo-Calabride Chain Units; AMC: Appennine-
Maghrebian Chain Units; ETF: External Thrust System Units; PBF: Pelagian Block Foreland 
Units; QV: Quaternary Volcanoes. Redrawn from Lentini et al. (2006) 

2.1 Structural framework 
Mt. Etna lies on the Sicilian continental crust and is located on the external boundary of the 
Apennine-Maghrebian chain, close to the Gela–Catania Plio-Quaternary foredeep (Bousquet 
and Lanzafame, 2004). It is bordered by three tectonic domains (Fig. 1): the Apennine-
Maghrebian Chain northward and westward; the Hyblean Foreland southward belonging to 
the Pelagian Block, the northernmost part of the African plate (Lentini et al., 2006); the 
Ionian Basin eastward, an oceanic basin opened during the middle-late Mesozoic and 
aborted during the Tertiary (Catalano et al., 2001). The thickness of the crust of eastern Sicily 
has recently been reinterpreted (Cernobori et al., 1996; Continisio et al., 1997; Hirn et al., 
1997; Nicolich et al., 2000) allowing the crustal structure in eastern Sicily and the Moho 
topography beneath the Ionian Sea to be better defined. The Moho has been located at a 
depth of 30 km beneath the central Hyblean Plateau, rising to 22 km in the Gela-Catania 
foredeep and to 21–18 km just offshore Catania (Nicolich et al., 2000). 
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Mt. Etna is sited in an anomalous external position with respect to the arc magmatism and 
back-arc spreading zones associated with Apennines subduction (Doglioni et al., 2001). 
 

 

Fig. 2. Structural map of Mt. Etna with the location of the main fault and fissure systems. 
The location of the summit craters is shown in the inset in the upper left corner (VOR = 
Voragine, BN = Bocca Nuova, SEC = South-East Crater, NEC = North-East Crater). Redrawn 
from Azzaro et al (in press) 
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The structural features of Mt. Etna appear rather complex. On the volcano surface different 
fault and fissure systems can be recognized (Fig. 2). The most outstanding tectonic features 
at Mt Etna are clearly recognizable on the east and south-east flanks of the volcano, where 
the clearest morphological evidence of active faulting exists (Fig. 2). Here, seismogenic 
faults can be related to the NNW–SSE Malta Escarpment that is the main lithospheric 
structure in the eastern Sicily. Other seismogenetic faults (Patanè et al., 2005), though not 
recognizable on the surface, can be linked to the NE–SW, ENE–WSW fault systems that 
control the tectonic evolution of the northern margin of the Hyblean Plateau (Torelli et al., 
1998).  The eastern flank of Mt. Etna is characterized by frequent shallow seismic activity 
(depth <7 km) and by a seismic creep along some faults. Conversely, the western flank of Mt 
Etna, normally characterized by a deeper seismicity (depth >5 km), is considered the most 
stable sector of the volcano. In the western sector, there is only slight morphological 
evidence of faulting, such as some short segments of faults observable on the south-western 
flank (e.g. Ragalna fault). However, it must be noted that the faults with morphological 
evidence may represent only a part of the tectonic structures present in the Etnean area and 
hidden fault segments could be covered by the huge pile of volcanic products (e.g. Azzaro, 
1999). 
Following, some of the main tectonic features are discussed:      
Timpe fault system. The normal faults belonging to this system dip toward the Ionian Sea and 
represent the most outstanding structural feature of the volcano. They displace a large part 
of the eastern flank by a 20 km long and 5 km wide belt of mainly extensional structures, 
striking from N to NW. Running from the coast to the south toward the inner volcano slope 
to the north, the fault system consists of a series of parallel seaward-facing step-faults 
segmented into individual steep fault escarpments up to 8 km long and up to 200 m high, 
that offset late Pleistocene to Holocene volcanics and historical lava flows. Acireale fault to 
the south and Moscarello fault to the north, represent the main elements of the Timpe fault 
system, and the N-S trending S. Alfio fault represents its northernmost apex. Timpe fault 
system is associated with shallow-depth (<7 km) seismicity including the occurrence of 
several earthquakes with M equal to 4.5 (Azzaro et al., 2000).  
Pernicana fault system. It is located in the north-eastern flank of the volcano, trends E-W and 
can be considered the most active fault in the Etnean area, as testified by the slip rate 
estimations and geodetic measurements (up to 2.8 cm/y; Rasà et al., 1996; Neri et al., 2004; 
Bonforte et al., 2011). This system develops eastward from the NE rift (from 1850 m a.s.l.) to 
the coastline, over a distance of about 20 km. The westernmost part is mainly characterized 
by normal dip-slip motion, whereas the easternmost one by left strike-slip motion. The 
Pernicana fault system is partially characterized by a scarp with a maximum morphological 
height of 70-80 m between 1000 and 1500 m a.s.l. At lower elevations (starting from 800 to 
700 m a.s.l.) this system has a less defined morphological expression (Acocella and Neri, 
2005). Despite its continuity, Pernicana can be roughly divided into two main portions 
(western and eastern), characterized by differential times and amounts of displacement as 
evidenced during the 2002-2003 eruption (Neri et al., 2004). The western Pernicana, about 11 
km long (from the NE Rift to Presa), shows the larger displacement even though the long-
term slip rates are similar in both portions. Moreover, the western portion is associated with 
shallow (< 2-3 km) and moderate seismic activity (2<M<3.5; Azzaro et al., 1998). The eastern 
portion, about 9 km long (from Presa to the coastline), is aseismic and was recognized 
during the 2002-2003 eruption. These different styles of deformation may be due to the 
different rheological properties of their substratum (Neri et al., 2004).  
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Mascalucia-Trecastagni fault system. It is located in the southeastern flank and is composed of 
NNW-SSE-striking faults displaying prominent linear scarps near the towns of Mascalucia 
and Trecastagni (Azzaro, 2004). It is mainly characterized by strike-slip motion and by 
shallow seismicity, with focal depth of 1-2 km (Lo Giudice and  Rasà, 1992). 
Ragalna fault system. It is located in the southwestern flank of the volcano and comprises two 
linked structures, the main one extending for as much as 5 km in a roughly N direction 
towards the summit area of the volcano (Rust and Neri, 1996; Azzaro et. al., in press). 
Examination of the fault system in the field indicates dominantly dip-slip extensional 
displacement (Rust and Neri, 1996). The active faults of this system bound a triangular 
structure like horst (Rust and Neri, 1996).  
The volcano is also characterized by a peculiar arrangement of the eruptive fissures that 
diverge from a radial distribution typical of stratovolcano edifices. The fissures are mainly 
concentrated on three sectors of the volcano named NE Rift, South Rift and West Rift, as 
previously indicated by several authors (Kieffer, 1975 and 1985; Lo Giudice et al., 1982; 
Mcguire and Pullen, 1989; Fig. 2). 
NE Rift. It is located on the northeastern flank of the volcano and from the summit forms a 

5-km-long, 2-km-wide topographic ridge made up of eruptive fissures, pit craters and 

pyroclastic cones. The swarm of eruptive fissures have dispersion axes ranging from 15°E to 

50°E showing a gradual clockwise rotation along the rift towards NE (Tibaldi and Groppelli, 

2002). The northeastern flank shows another smaller swarm of fissures and cones from the 

northern slope of the Valle del Bove, with dispersion axes ranging from 70°E to 90°E and a 

main ENE trend. 

South Rift. The southeastern flank is characterized by a more scattered distribution of the 

eruptive fissures and cones. Over a 12 km wide sector the dispersion axes of the fissures 

range from 200°E to 140°E. The main belt of the rift develops between the SEC and the 

southwestern rim of the Valle del Bove along a SSE direction, and then continues 

southeastward as the rim swings to an easterly direction. On the southern slope of the 

volcano it forms a more diffuse set of N-S to SSW-NNE striking fissures extending from the 

Montagnola area to Nicolosi, at a distance of about 10 km.  

West Rift. On the west flank eruptive fissures and cones are more radially distributed, even 

if a concentration of these elements appear over a 4.5 km wide sector between 245°E and 

280°E marking the so-called West Rift characterized by WSW and W main trends of the 

eruptive axis (Bellotti et al., 2010). 

2.2 Geological history and origin of volcanism 
According to Branca et al. (2004), the beginning of volcanism in Etnean region is due to the 

northward migration of the Plio-Pleistocene Hyblean magmatic source. Volcanism began at 

about 500 ka ago through submarine eruptions on the Gela–Catania foredeep basin. About 

300 ka ago fissure-type eruptions occurred on the ancient alluvial plain of the Simeto River 

forming a lava plateau. From about 220 ka ago, the eruptive activity was localized mainly 

along the Ionian coast where fissure-type eruptions built a shield volcano. Between 129 and 

126 ka ago volcanism shifted westward toward the central portion of the present volcano 

(Branca et al., 2007). This change caused a variation in the volcanic chemical composition 

(from subalkaline to purely alkaline) as well as in the type of volcanism, which from fissural 

became central and shifted westward. The stabilization of the plumbing system marked the 

beginning of the construction of small polygenic edifices (e.g. Trifoglietto volcano) in Valle 
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del Bove from 107 ka to 65 ka ago (De Beni et al., in press). About 57 ka ago, another 

westward shift of the plumbing system started the building of the stratovolcano (De Beni et 

al., in press) that represents the main bulk of the Mt. Etna edifice. This volcanic center 

reached its maximum areal expansion about 40 ka ago, proceeding up to 15 ka when four 

plinian eruptions formed a large summit caldera, historically named Ellittico Crater (Coltelli 

et al., 2000). The final evolution of this process took place during the Holocene, when 

eruptive activity resumed inside the caldera and expanded outside to cover the previous 

Ellittico edifice forming the volcanic succession of the present active volcanic center (Branca 

et al., 2004). 

The complex geological history and tectonic setting of Mt. Etna have given rise to a great 

number of models to interpret its origin and the peculiar features for a very active basaltic 

volcano that is so unusually located in front of an active thrust belt: 
- Rittmann (1973) interpreted the intersection of three main fault systems, trending ENE, 

NNW and WNW, as the mechanism that created a weakness zone for magma uprising.  
- Tanguy et al. (1997) proposed how the upwelling of the asthenosphere first caused 

extensive melting of a mantle diaper, allowing tholeitic magma to accumulate near the 
mantle-crust interface. Then, increasingly alkaline basalt was generated and fed the 
entire volcanism of Mt. Etna by undergoing continuous but limited differentiation in a 
subcrustal reservoir.  

- Monaco et al. (1997) infer that the magmatism at Mt. Etna can be related to the 

dilatational strain on the footwall of an east-facing, crustal scale normal fault located 

along the Ionian shore. In fact, on the basis of structural, seismological and 

volcanological studies of 2001 and 2002-2003 eruptions, Monaco et al. (2005) state that 

the conditions of magma ascent are strongly dominated by extensional structures 

related to this dilatational strain.  

- Gvirtzman and Nur (1999) advanced the idea of the “suction” of asthenospheric 

material from under the neighboring African plate to cause the voluminous melting 

under Mt. Etna. Such lateral flow is expected when descending slabs migrate 

backwards in the mantle. A similar model was also developed by Doglioni et al. (2001). 

According to these Authors, the right lateral transfer along the Malta escarpment is a 

transtensional “window” between the Sicilian and Ionian segments of the Apennines 

slab.  

- According to some Authors, Mt Etna’s magmatism is related to the instability of the 

eastern flank of the volcano. Indeed, deformation measurements carried out by GPS, 

SAR and so on, suggest that the eastern flank of the volcano is sliding toward the sea 

(e.g. Froger et al., 2001; Lundgren et al., 2003; Palano et al., 2008). Some authors believe 

this sliding motion may cause the decompression of the plumbing system, facilitating 

the uprise of magma to the surface (Branca et al, 2003; Neri et al., 2004). The location of 

the sliding surface is open to debate. Lo Giudice and Rasà (1992) postulate a shallow 

slip surface (0-1 km a.s.l.) consistent with the very shallow seismicity (depth < 1.5 km). 

Borgia et al. (1992) and Rust and Neri (1996) suggest a detachment as deep as about 5 

km occurring within weak sediments of the Gela-Catania Foredeep. Bousquet and 

Lanzafame (2001) envisage a decollement between the volcanic pile and the 

sedimentary substratum (1-2 km a.s.l.). Finally, Tibaldi and Groppelli (2002) suggest 

that both a shallow and a deep decollement surface can characterise, at the same time, 

the eastward sliding of the volcano. The unstable zone is confined by the Pernicana 
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fault to the northwest, by the NE rift and the fissure systems in the summit area, and by 

the Ragalna fault system to the southwest. The Trecastagni-Mascalucia fault system is 

likely originated by differential movements within the collapsing sector of the volcano 

(Rust and Neri, 1996). 

- Chiocci et al. (2011), by studying the marine geological and geophysical data of the 

continental margin facing the volcano, found a large bulge offsetting the margin that is 

deeply affected by widespread semicircular steps, interpreted as evidence of large-scale 

gravitational instability. Such features extend inshore to the mobile eastern flank where 

the larger ground deformations are measured. Both submarine instability and subaerial 

flank sliding are bounded by two regional tectonic lineaments to accommodate the 

basinward movement of this large sector of the continental margin topped by the Etna 

volcanic pile. The Authors infer that the instability process involving the Sicilian 

continental margin facing Etna volcano during the last 0.1 Ma may be considered a very 

large mass-wasting phenomenon. This is due to the magmatic intrusion rather than any 

tectonic process related to a late-orogenic phase of the Apennine Chain thrusting this 

portion of the continental margin. Indeed, the bulge has no trace of any compressive 

structures, as previously expected by Borgia et al. (1992) and Rust et al. (2005). 

Conversely, it is pervaded by extensional and transtensional structures representing the 

brittle response to a large-scale and long-lasting gravitational instability affecting the 

continental margin. This model implies that an extensional tectonics induced by the 

sliding of the volcano eastern flank has been acting continuously over the last 0.1 Ma 

since the bulge collapse effects are propagating upslope. The continuous decompression 

at the volcano summit favors the ascent of basic magma without lengthy storage in the 

upper crust, as one might expect in a compressive tectonic regime. This may be the 

cause or one of the main contributory causes of the growth of a very active basaltic 

volcano on top of such an active thrust belt as the Apennine Chain in Sicily. 

2.3 The recent volcanic activity since 2000 
Two main types of volcanic activity may be distinguished into persistent activity at the 
summit craters and periodic flank eruptions. The former is characterized by phases of 
degassing alternating with mild strombolian activity, occasional lava fountains, and lava 
overflows. Flank eruptions occur from lateral vents usually located along fracture systems. 
The past decade at Mt. Etna was characterized by different kinds of activity. From 2001 to 
2003, two large eruptions characterized by very intense explosive activity took place in the 
southern and northeastern flanks of the volcano. Successively, Etna remained quiet for 
about 20 months up to September 2004 when an eruption, differing significantly from the 
two previous, erupted essentially degassed magma from two vents within Valle del Bove 
(e.g. Di Grazia et al., 2006). After a 15-month-long period mainly characterized by degassing, 
the eruptive activity resumed on the eastern flank of SEC in late 2006 with strombolian 
activity, lava fountaining and lava overflows. During 2007, six episodes of intense lava 
fountaining/strombolian activity took place at SEC. Finally, after a lava fountain occurring 
on 10 May 2008 at SEC, a new eruption took place on 13 May from an eruptive fissure that 
opened east of the summit area (EF; Cannata et al., 2009c; Fig. 10). This eruption, ending on 
6 July 2009, was characterized by a strong Hawaiian activity at its beginning and by a long 
phase of gradually decreasing strombolian activity and lava flows during the following 
months (Aloisi et al., 2009). 
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3. Mt. Etna’s deep plumbing system: tomographic analysis 

Since 1977, seismic surveys and seismological studies have progressively improved our 
knowledge of Etna’s structure, but there is still no clear evidence for the presence of a large 
magma chamber in the crust. In the last two decades, tomographic inversions of P- and S-
wave arrival times from local earthquakes have been performed with various techniques 
allowing a good definition of the P-wave velocity structure beneath the volcano down to 18-
24 km depth, more detailed down to 10 km depth (Chiarabba et al., 2000; Laigle et al., 2000; 
Patanè et al., 2002; Chiarabba et al., 2004; Patanè et al., 2006). However, none of these studies 
have evidenced the presence of a large anomalous region of relatively low-velocity in the upper 
crust beneath the volcano. One of the recent ideas about the deep structure of Mt. Etna is the 
presence of a melted lens capping a mantle upward beneath the volcano (Hirn et al., 1997) with 
a Moho transition at less than 20 km deep (Nicolich et al., 2000). Following, the main features 
revealed by Mt. Etna velocity and attenuation tomographies are reported and discussed. 

3.1 Active seismic surveys and tomographic studies 
The first noteworthy seismic investigation of the crust and upper mantle in Sicily was 
performed in 1968 by seismic refraction surveys and covered the whole island with only one 
profile near Etna, located just to the north (Cassinis et al., 1969). The interpretation of seismic 
sections revealed a low velocity zone in the eastern Sicily continental crust, close to Mt. Etna 
between 9 and 24 km depth, interpreted as a region with high temperatures due to the 
proximity of a deep magma chamber under the volcano. Following this early active seismic 
exploration, only in 1977 a deep seismic sounding focused on Etna’s structure, with both a 
detailed survey and deployment of a temporary seismic array (Colombi et al., 1979). Based 
on data acquired during these experiments, Sharp et al. (1980) investigated Mt. Etna’s 
structure and the physical properties of the low-velocity anomaly previously observed near 
the area. They modelled this anomaly as a low-velocity, tri-axial ellipsoid body extending 
under the entire volcanic area at midcrustal depths (15-25 km), interpreted as a large 
partially molten magma chamber.  
Since the 90’s, seismological studies have progressively improved our knowledge of Etna’s 
structure and in the last two decades, tomographic inversions of P- and S-wave arrival times 
from local VT earthquakes have been performed with various techniques (Hirn et al., 1991, 
1997; Cardaci et al., 1993; De Luca et al., 1997; Laigle et al., 2000; Chiarabba et al., 2000; 
Patanè et al., 2002; Patanè et al., 2003; Chiarabba et al., 2004).  None of these tomographic 
studies showed the presence of a large anomalous region of relatively low-velocity within 
the crust beneath the volcano interpretable as a large magma chamber. Conversely, the most 
important feature is the presence of a wide central high-velocity body (HVB) embedded in 
the pre-Etnean sediments, interpreted as a main solidified intrusive body (cooled batches of 
magmatic intrusions), which is also an almost aseismic volume surrounded by an active 
seismic region. This HVB shows a roughly ellipsoidal shape in the upper crust (depth ~10 
km) with a NNW-SSE horizontal axis and a vertical axis extending between 0 and 9 km 
below sea level. However, basalt melt rising through the continental intermediate crust may 
not produce a slow anomaly and the clear large high Vp body observed in the tomographic 
images can be related to the volumes where the magma is stored in the crust before the 
eruption. This seems to be supported by the existence of the wide, elongated aseismic zone 
located just beneath the summit craters (Chiarabba et al., 2000; Patanè et al., 2004) and by 
results regarding the spatial distribution of b-values (Murru et al., 1999). De Gori et al. (2005) 
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tried to yield insights into the physics of the volcanic plumbing system by determining the 
three-dimensional Qp structure. This attenuation tomography evidenced the presence of a low 
Qp body located at shallow depth (0–3 km b.s.l.) beneath the south and southwestern sides of 
the edifice, where the magma was likely stored during 1994–2001. Since attenuation is a 
physical parameter sensitive to the thermal state of the crustal volume traveled by seismic 
wave, this interpretation of the low-Qp anomaly, also confirmed by Martinez-Arevalo et al. 
(2005) for the 2001 eruption, is consistent with the intense recent volcanic activity (2001 and 
2002–2003) that concentrated in the southern part of the summit area. Finally, the Patanè et al. 
(2006) inversion allowed the improvement of even the most recent velocity tomographic 
results (Patanè et al., 2002; Patanè et al., 2003; Chiarabba et al., 2004) and a better definition of 
the shallow structure, down to 7 km depth, and shape and geometry of the upper portion of 
high-velocity Vp volume. However, the most notable result of this work concerns the detection 
of anomalous zones with low Vp/Vs values located in the central-southern and northeastern 
part of the volcanic edifice, where geodetic data modeled the dike intrusions feeding the 2002–
2003 eruption, located beneath the eruptive fracture systems.  

3.2 Shape and geometry of the intermediate and deep plumbing system 
Mt. Etna’s tomographic models contribute significantly to clarify whether and how tectonic 
control of magma ascent works at Mt. Etna, revealing a broad complex of intrusive meshes 
in the upper and middle crust. In particular, we analyze the results obtained by the last 
tomographic study performed by Patanè et al. (2006) integrating it with previous results and 
new unpublished data. In summary, the main features revealed by Mt. Etna Vp tomography 
(Patanè et al. 2006, Fig. 3a) are: 

• A shallow high Vp anomaly (Vp ranging between 3.5 and 5.5 km/s) beneath the 
southern craters, the South Rift and mostly beneath the central-southern sector of the 
Valle del Bove, between 0 and -1 km depth, is interpreted as a solidified intrusive 
complex (Fig. 3a). Contours for 3.5-5.0 km/s at 0 km show that the high velocity 
anomaly aligns with the present-day south and northeastern Rifts. The presence of the 
old shallow plumbing system feeding the past Mt. Etna eruptive centers (e.g. 
Trifoglietto volcano), located along the central-southern part of the Valle del Bove, is 
also evidenced both at 0 and -1 km a.s.l.. The analysis of the isosurface image at Vp of 
3.5 km/s (Fig. 3b), reveals a complex pattern of solidified magma chambers and 
conduits with variable dimensions in the very shallow crust (between 0 and -1 km 
a.s.l.). These higher velocity volumes can be linked to: i) the wide plutonic body mainly 
located beneath the Valle del Bove (Patanè et al., 2003, 2006); ii) the solidified magma 
reservoirs feeding the S, NE and ENE Rift zones. 

• A clear high Vp body (Vp ranging between 5.5 and 6.7 km/s),  NNW-SSE to NS 
trending located beneath the central craters extended toward S and SSE, between -2 and 
-7 km a.s.l. (wide 5-7 km in longitude and  8-10 km in latitude) is interpreted as high 
density cumulates, fractionated by the magma during its ascent, stocked and congealed 
at depth (Fig. 3 a). 

Considering now the two different inversions by Patanè et al. (2003) and Chiarabba et al. 
(2004), extended also to the deep structure although at lower resolution, the main features 
observed at major depth are: 

• A narrow high Vp body (Vp ranging between 6.8 and 7.5 km/s), 4-6 km laterally wide, 
beneath the central-southern part of the volcano between 8 and at least 18 km depth 
(Fig. 4a), interpreted as the deeper part of the plumbing system. 

www.intechopen.com



Interplay between Tectonics and Mount Etna’s Volcanism:  
Insights into the Geometry of the Plumbing System 

 

83 

• The presence of a melted lens capping a mantle upward beneath the volcano with a Moho 
transition at depth less than 20 km (Fig. 4a, b), as suggested by Nicolich et al. (2000), 
seems to be supported by recent tomographic results at regional scale (Barberi et al., 2006). 

Therefore the high Vp intrusion is the main structural feature of the volcano, testifying to its 
intense past history, and revealing the accumulation of a very large volume of non-erupted 
volcanic material. Seismicity seems to occur at its borders and defines a main aseismic 
volume (Fig. 3b).  
 

 

Fig. 3. (a) Mt. Etna’s Vp velocity model (Patanè et al. 2006), between 1 a.s.l. and 7 km b.s.l.,  
in the well-resolved regions of the model . The gray lines are elevation isolines (every 1000 
m). In the top left square the historical eruptive fissures (orange lines) and major faults 
(black lines) are shown. b) Isosurface image at Vp of 3.5 km/s for the central-eastern and 
northern sectors of the volcano. A complex pattern of solidified magma chambers and 
conduits with variable dimensions is recognizable. At the top, historical eruptive fissures 
(orange lines) and major faults (black lines) are shown. Major faults are also projected in red 
in the 3D block. c) Cumulative isosurfaces for different velocities Vp showing the 3D 
geometry of the HVB down to 10 km depth. The seismicity occurring during 2001-2003 is 
also shown (red dots), evidencing how the HVB is almost an aseismic volume surrounded 
by an active seismic region 
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The bulk of the high Vp body, located to the southeast of the central craters, suggests that 

the Valle del Bove has been the main site for magma accumulation in the past as confirmed 

by the presence of the old eruptive centers (e.g.  Trifoglietto). The high Vp body NNW-SSE 

to NS trending between -1 and -5 km depth appear rooted at greater depth. At present, the 

ascent of magma is controlled by the pervasive high Vp intrusion and seems to occur at its 

western border. Very shallow dike emplacement at the border of the intrusive body occurs 

mostly on NNW-trending fracture system, such as those of the 2001 and 2002-2003 

eruptions.  

 

 

Fig. 4. a) Regional Vp model of the lower crust and uppermost mantle from Barberi et al. 
(2006). b) Moho topography (km b.s.l) of the northwestern part of the Ionian basin (redrawn 
from Nicolich et al., 2000) 

4. Mt. Etna shallow plumbing system: seismo-volcanic signal analysis 

Although the VT earthquakes are the key to tomographic studies in volcanoes, they cannot 

provide precise information about the location and geometry of the shallow magma 

conduits (Almendros et al., 2002). In fact, the understanding of the complex velocity 

structure in the shallow part of the volcano requires estimation of both P- and S- waves 

variations with a spatial resolution of the order of several hundred meters, which is still not 

yet available at Mt. Etna.  

A more useful approach consists of investigating the seismo-volcanic signals, whose 

variations and features are often closely related to eruptive activity. Indeed, they are 

generally considered as an indicator of the internal state of activity of volcanoes (Neuberg, 

2000). For this reason their investigation can be very useful for both monitoring and 

research purposes. Because of the peculiar characteristics of the seismo-volcanic signals, 

different from the tectonic and VT earthquakes in terms of both waveforms and source 

mechanisms, new techniques have been developed to investigate their features. In Fig. 5 

examples of VT earthquake, volcanic tremor, LP and VLP events recorded at Mt. Etna are 

shown.  

According to Murray (1990), shallow reservoirs at Mt. Etna are temporary and are 

occupied by magma only during short periods preceding a single eruption or an eruptive 

cycle. Patanè et al. (2008) demonstrated how the locations of the tremor sources and of the 

long-period seismic events can be used at Mt. Etna to constrain both the area and the 

depth range of magma degassing, highlighting the geometry of the shallow conduits 

feeding the central craters. In this work the Authors, by a careful analysis of the seismo-
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volcanic signals recorded during two powerful lava fountaining episodes taking place on 

4–5 September and on 23–24 November, 2007 from SEC, discover the magma pathway 

geometry feeding the eruptive activity at SEC. The imaged conduits consist of two 

connected resonating dike-like bodies, NNW-SSE and NW–SE oriented, extending from 

sea level to the surface. In addition, we show how tremor, long-period (LP), and very- 

long period (VLP) event locations and signatures reflect pressure fluctuations in the 

plumbing system associated with the ascent/discharge of gas-rich magma linked to the 

lava fountains. 

Thus, in this section we will focus on the most recent eruptive activity of this volcano taking 
place in 2008-2009, showing the inferences about the volcano dynamics and the shallow 
system feeding this eruption drawn by the seismo-volcanic signal investigation. Fig. 6 
shows a digital elevation model of Mt. Etna with the locations of the stations used to record 
the seismic signals during such an eruption. In Fig. 7 the seismic signal acquired by the 
vertical component of ECPN during 1-13 May 2008, together with the number of LP events 
and the seismic RMS, is shown. 
 

 

Fig. 5. Waveforms and spectrograms of VT earthquake, volcanic tremor, LP event and VLP 
events recorded at Mt. Etna. The thick red line plotted over the VLP waveform shows the 
signal filtered below 0.15 Hz 

www.intechopen.com



  
New Frontiers in Tectonic Research - At the Midst of Plate Convergence 

 

86 

 

Fig. 6. Digital elevation model of Mt. Etna with the location of the seismic stations used to 
investigate seismo-volcanic signals (green and blue triangles). The green triangles indicate 
the stations used to study both volcanic tremor and LP events, while the blue triangles only 
the volcanic tremor. The red line indicate the eruptive fissure active during 2008-2009 

 

 

Fig. 7. (a) Seismogram of the vertical component of ECPN station, (b) histogram of the 
number of LP events in 4-hour-long windows and (c) RMS time series 
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4.1 Volcanic tremor and LP events  
A peculiar aspect of volcanic tremor at Mt. Etna is its continuity in time, as also observed at 
other basaltic volcanoes with persistent activity such as Stromboli (Italy; Langer and 
Falsaperla, 1996). Most of the energy of volcanic tremor at Mt. Etna is radiated below 5 Hz 
(e.g., Lombardo et al., 1996; Falsaperla et al., 2005; Cannata et al., 2008, 2009a). Another 
interesting feature of the volcanic tremor is its close relationship to eruptive activity, 
highlighted by variations in amplitude, spectral content, wavefield features, and source 
 

 

Fig. 8. (a) RMS time series and (b) spectrogram of the seismic signal recorded at the vertical 
component of ECPN station. (c) Normalised spectrogram and (d) dominant frequencies of 
the seismic signal recorded at the vertical component of ECPN station 
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location of volcanic tremor at the same time as changes in volcanic activity (e.g., Gresta et al., 
1991; Lombardo et al., 1996; Di Grazia et al., 2006; Alparone et al., 2007; Cannata et al., 2008; 
Patanè et al., 2008; Cannata et al., 2009a). The volcanic tremor recorded during 1–15 May 
2008 was investigated by performing several analyses. First of all, in order to get 
information about the time changes of tremor energy, the RMS of the seismic signals 
recorded at the vertical component of ECPN station (see Fig. 6) was calculated within 1-
minute-long sliding windows (Fig. 8a). Successively, since changes of source location 
and/or mechanism of volcanic tremor are generally accompanied by variations of its 
spectral content, the Short Time Fourier Transform (STFT) was performed. We calculated a 
spectrum by 40-secong-long sliding windows of the signal recorded at the vertical 
component of ECPN station. Then, the spectrogram was plotted in Fig. 8b. Moreover, the 
normalized spectrogram of 11-14 May, together with the dominant frequencies, was also 
computed and plotted in Fig. 9c,d. Finally, since the seismo-volcanic signals are generally 
related to dynamics of fluid inside the volcanic edifice, the location of their source is basic 
information for monitoring of volcanoes. Then, the tremor source locations were retrieved 
by following the approach described by Patanè et al. (2008) and Di Grazia et al. (2009), 
inverting the spatial distribution of tremor amplitude in 18 stations (green and blue triangles 
in Fig. 6) using a grid-search approach (Figs. 9,10). We considered the RMS amplitudes of 
the 25th percentile instead of average values. This enables us to efficiently remove undesired 
transients in the signal and consider continuous recordings (Patanè et al., 2008). The source 
location of tremor is found on the basis of the goodness of the linear regression fit (hereafter 
referred to as R2) obtained for each point of a 3-D grid centered underneath the craters (Di 
Grazia et al., 2006). For this grid, we consider a 6 × 6 × 6 km3 volume with a spacing between 
nodes of 250 m. The centroid position of all the 3-D grid points, whose R2 values do not differ 
by more than 1% from the maximum R2, was considered the tremor source location. 
LP and VLP events, whose sources, similar to volcanic tremor, are related to fluid processes 
(such as vibration or resonance of fluid-filled cracks; Chouet, 2003), are also recorded at Mt. 
Etna. A number of papers deal with the relation between eruptive activity and LP events at 
Mt. Etna (Patanè et al., 2008; Di Grazia et al., 2009; Cannata et al., 2010): it was shown how 
occurrence rate, energy, spectral content and/or source location of LP events often change 
before, during and after eruptive activities. LP events recorded during 1 – 15 May 2008 were 
investigated obtaining several parameters: i) occurrence rate; ii) peak-to-peak amplitude; iii) 
source location. About 33,000 LP events were detected during the analysed period by 
STA/LTA algorithm (short time average/long time average; e.g., Withers et al., 1998). 
Similar to all the triggering algorithms based on dynamic thresholds, the event detection by 
STA/LTA is affected by the variation of the background noise level: for instance, if the 
background noise level increases, the threshold in turn will increase, and then the events 
with lower amplitude will be lost. The LP hourly number and the peak-to-peak amplitudes 
were calculated and plotted in Fig. 11a,b, respectively. Moreover, since the frequency and 
damping of a resonant system is strongly influenced by the nature of liquid and gas content 
(Chouet, 2003 and references therein), also the study of the spectral evolution of LP events in 
volcanic areas provides very useful information for monitoring purposes. Thus, a value of 
frequency and quality factor for each LP event were obtained by Sompi analysis (Kumazawa 
et al., 1990) (Fig. 11c,d). A moving median over 200 samples was calculated for both 
frequency and quality factor. Indeed, the median values are less affected by outliers than the 
average values. Finally, a subset of 1700 LP events with high signal to noise ratio at all the 
six stations nearest to the summit area (green triangles in Fig. 6) was selected to perform 
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location analysis. LP events were located by following a new grid-search method based on 
the joint computation of two different functions: i) semblance, used to measure the 
similarity among signals recorded by two or more stations (e.g. Neidell and Taner, 1971; 
Cannata et al., 2009b); and R2 values, calculated on the basis of the spatial distribution of 
seismic amplitude (Patanè et al., 2008; Di Grazia et al., 2009). The 3-D grid of possible 
locations was 6 km×6 km×3.25 km, centered on the volcanic edifice, and with a vertical 
extent from 0 km a.s.l. to the top of the volcano. The horizontal and vertical grid spacing 
was 250 m. The space distributions of both semblance and R2 values were determined, the 
two grids of values were normalised by subtracting the minimum value and dividing by the 
maximum one. Thus, the values belonging to two grids ranged from 0 to 1, and the same 
weights were assigned to semblance and R2. Then, the two normalised grids were summed 
node by node. The source was finally located in the node with the largest composite 
semblance-R2 value. This joint method takes advantage of both LP waveform comparison 
among the different stations and space amplitude distribution. The LP location results are 
reported in Figs. 12 and 13. 
 

 

Fig. 9. Time variations of the location of volcanic tremor recorded during 11-14 May 2008 
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Fig. 10. Map and section of Mt. Etna with the locations of volcanic tremor recorded during 
11-14 May 2008 

www.intechopen.com



Interplay between Tectonics and Mount Etna’s Volcanism:  
Insights into the Geometry of the Plumbing System 

 

91 

 

Fig. 11. (a) Histogram of the number of LP events in 1-hour-long windows. (b) Peak-to-peak 
amplitude of the LP events. (c,d) Frequency and quality factor of the LP events, calculated 
by Sompi method with autoregressive order of 2 
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Fig. 12. Time variations of the location of LP events recorded during 1-15 May 2008 

Finally, in order to understand the LP source mechanisms, moment tensor inversions were 
performed. On several volcanoes Moment Tensor Inversion has been achieved to quantify 
the source processes of LP events (e.g. Ohminato et al., 1998; Chouet et al., 2003; Lokmer et 
al., 2007). Indeed, due to the link between LP activity and fluid dynamics (Chouet, 2003), the 
characterization of the LP source mechanism becomes a fundamental tool for understanding 
processes in magmatic systems. Several studies propose the excitation and resonance of 
fluid-filled resonator systems as the cause of the source mechanism of these particular 
events. Different geometries of the resonators were investigated, such as a crack, a spherical 
inclusion or a conduit simplified to a cylinder. The seismic moment-tensor is a 
representation of a seismic source by a system of equivalent forces acting at a source point, 
including the force couples and single forces resulting from mass transport. We performed a 
moment tensor inversion in the frequency domain (Auger et al., 2006; Lokmer et al., 2007). 
The Green’s Functions (GF) are calculated for a homogeneous velocity model with DEM 
Etna topography. Synthetic seismograms were generated by Discrete Elastic Lattice 
algorithm described by O’Brien and Bean (2004), based on discrete particle scheme. The 
topography model of Mt. Etna covers an area of 19.2 x 16 x 7 km, with a grid node of 50 m, 
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and its origin (x,y,z) is centred on the volcano summit. In order to avoid reflections from the 
model boundaries, we employed at the bottom and at the edges of the model 4.8 km wide 
absorbing boundaries. Moreover we used for the GF computation (i) a Gaussian pulse as 
source function (STF), with a 7.5 Hz cut-off frequency; (ii) velocities for P and S waves of 
2000 ms-1 and 1175 ms-1 respectively, as found by Patanè et al. (2006) and Montellier et al. 
(2009) in their recent tomographic study of Mt. Etna. Several authors demonstrated how the 
topography and the velocity model play an important role to correctly reconstruct the 
moment tensor (e.g. Bean et al., 2008; O’Brien and Bean, 2009). For LP events, which are 
characterized by frequencies above 5 seconds, uncertainties in the GF can be introduced by a 
poor knowledge of the velocity structures. This problem can be resolved by using several 
seismic stations installed very close to the source positions (Bean et al., 2008; Kumagai et al., 
2010; De Barros et al., 2011). For this reason, in order to compute the LP moment tensor 
inversion, we used the LP database recorded by an exceptionally high-density network of 30 
temporary broadband stations, installed during the 2008-2009 Etna eruption (De Barros et al., 
2011). In order to determine the most reliable mechanism type (crack, pipe, or explosion), the 
source of the LP is initially modelled performing an unconstrained inversion. Next, starting 
from the mechanism so obtained, we have constrained the subsequent reversals solution 
(inversions) found to confirm and refine its characteristics. Once the stability of our results is 
verified, it was possible to reconstruct the source mechanisms of the LP in 2008 Etna eruption.  

4.2 Results and interpretation 
The analyses described in the section 4.1 provided information about the volcano dynamics 
and on the shallow part of the plumbing system involved in magma movements before and 
during the first days of the eruption.  
The 10 May lava fountain and the following 13 May eruption onset were preceded by a 
change in the volcanic tremor spectral content (from polychromatic to monochromatic with 
a spectral peak at 1-2 Hz) and by an increase in LP activity (increases in both occurrence rate 
and amplitude of LP events) taking place roughly on 4 May. Such an energy increase of LP 
events can be interpreted as increasing overpressure inside the shallow part of the plumbing 
system. Increases of amplitude and occurrence rate of LP events preceded eruptive activities 
also at many other volcanoes such as Redoubt (Chouet et al., 1994), St. Helens (Moran et al., 
2008) and Colima (Varley et al., 2010). Before the eruptive activity the volcanic tremor was 
located below the summit area at depth ranging from 1 to 2 km a.s.l. (Figs. 9,10), suggesting 
an important magma storage volume in this location, as also suggested by previous studies 
(Allard et al., 2005; Aiuppa et al., 2010). The LP events were located roughly below Bocca 
Nuova at 2-3 km a.s.l., consistent with the LP location obtained in other papers (Patanè et 
al., 2008; Cannata et al., 2009b). The lava fountain was accompanied by a sharp increase in 
the tremor RMS, as observed during other lava fountain activities at Mt. Etna (e.g. Cannata 
et al., 2008), as well as at other volcanoes (e.g. McNutt, 1994). Because of this increase of 
tremor amplitude and then of the background noise level, only a few LP events were 
detected during the lava fountain (Fig. 11a). It is also worth noting that during the whole of 
10 May the LP frequency peak decreased, then suddenly increasing on the following day 
(Fig. 11c). After the lava fountain, the sudden decrease in the seismic dominant frequencies 
observed during 06.00-11.00 on 12 May was due to the arrival of teleseismic waves of the 
Sichuan earthquake (M=7.9) that, according to Cannata et al. (2010), played an important 
role in the 13 May eruption because of the dynamic stress transfer. Focusing on the 13 May 
eruption, it was preceded by a few hours by a further increase in the LP activity, 
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accompanied by changes in LP spectral content (decrease of frequency peak and increase of 
quality factor; Fig. 11c,d), and by a northward shift of the sources of both volcanic tremor 
and LP events (Figs. 10,13). Such a seismo-volcanic source migration was consistent with the 
dyke intrusion in the northern part of the summit area (towards the NE rift zone; Fig. 2), 
inferred by earthquake swarm hypocenters (Di Grazia et al., 2009), ground deformation 
(Aloisi et al., 2009) and a dry fracture field (Bonaccorso et al., 2011). Finally, the onset of the 
13 May eruption was characterised by a sharp RMS increase reaching the maximum values 
of the whole analysed period (Fig. 8a), together with significant changes in spectral content 
(Figs. 8c,11) and shift of tremor and LP sources moving roughly below the eruptive fissure 
(Figs. 9,10,12,13). Also in this case the LP number drastically decreased because of the 
increase of the background noise level (Fig. 11a). All these data suggest the intrusion of a 
gas-rich magma batch east of the summit area.   
 

 

Fig. 13. Map and section of Mt. Etna with the locations of LP events recorded during three 
phases (see dashed black lines and “phase I”, “phase II” and “phase III” in Fig. 12). The radii 
of the red circles are proportional to the number of the locations in each grid node (see black 
circles and numbers reported in the right lower corner of the maps) 

Between 18 June and 3 July 2008, about 30 temporary broadband stations were deployed on 
Mt. Etna very close to the summit craters. This high-density network permitted to better 
investigate on the LP activity. De Barros et al. (2009), classifying more than 500 LP events by 
cross-correlation analysis, obtained two different families with a similar number of events. 
In agreement with previous studies (e.g. Saccorotti et al., 2007; Cannata et al., 2009b), the LP 
source positions were located close to the summit craters, and were slightly different for 
both families. The focal depth hypocentres were found shallow below the summit: from 0 to 
800 m for family 1 and from 0 to 400 m for family 2 (De Barros et al., 2009). For both families 
the inversions show mechanisms with high volumetric components, most likely generated 
by a crack, striking in the SW-NE direction (De Barros et al., 2011). In particular for family 1 
(Fig. 14a) the MT solution shows a subvertical dike striking SSW-NNE; for family 2 the 
crack solution lies on a plane inclined of 45° and striking SW-NE (Fig. 14b). The orientations 
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of the cracks are consistent with local tectonics, which shows a SW–NE weakness direction, 
as testified by the orientation of the NE rift. De Barros et al. (2011) hypothesize that these 
events are not related to the lava flow from the eruptive fracture, instead to the 
decompression phase following the 10 May lava fountain. The LP events studied here show 
similar characteristics to the events occurring after a lava fountain in the 2007, analysed by 
Patanè et al. (2008), which interpreted, in particular, the LP belonging to the family 2 as the 
response to the volcano deflation. This theory is validated by the temporary cessation of the 
LP events after 22 June 2008, suggesting a return of equilibrium of the upper part of volcano, 
where pressure and stress return to a static state. Although the poor knowledge of the 
velocity model can lead to unambiguous explanations of both moment and forces related to 
the mechanism found, this study demonstrated how the LP moment tensor inversion is a 
powerful tool to understand the magmatic processes in the shallow plumbing system of Mt. 
Etna. 
In summary, it was shown how the analysis of seismo-volcanic signals is very effective to 
reconstruct the geometry of the shallow portion of the plumbing system and to investigate 
the magma dynamics in it. Such information is very important for both research and 
monitoring purposes. 
 

 

Fig. 14. Map views (up) and 3-D views (down) of the crack source mechanism obtained for 
the two families of LP events. The circular areas represent the cracks, the normalized 
eigenvectors are represented by solid lines, and the longest of these are the normal cracks. A 
subvertical dike striking SSW-NNE is obtained for family 1, and a crack striking SW-NE that 
lies on a plane inclined of 45° is computed for family 2. Redrawn from De Barros et al. (2011) 
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5. Summary 

Mt. Etna lies in front of the southeast-verging Apennine-Maghrebian fold-and-thrust belt, 
where the NNW-trending Malta Escarpment separates the Sicilian continental crust from the 
Ionian Mesozoic oceanic basin, presently subducting beneath the Calabrian arc (Selvaggi 
and Chiarabba, 1995). Seismic tomographic studies indicate the presence of a mantle plume 
beneath the volcano with a Moho transition at depth less than 20 km (Nicolich et al.,2000; 
Barberi et al., 2006). Geophysical and geological evidences suggest that the Mt. Etna magma 
ascent mechanism is related to the major NNW-trending lithospheric fault (Doglioni et al., 
2001). However, the reason for the Mt. Etna mantle plume draining and channeling the 
magma from the upper mantle source to the surface is not yet clear. All models proposed in 
literature (Rittmann, 1973; Tanguy et al., 1997; Monaco et al.; 1997; Gvirtzman and Nur, 
1999; Doglioni et al., 2001) do not explain why such a mantle plume has originated in this 
anomalous external position with respect to the arc magmatism and back-arc spreading 
zones associated with the Apennines subduction. Some ideas on the subduction rollback 
must be better developed through the comparison with new regional tomographic studies 
that are being released. Moreover, tomographic studies reveal a complex and large 
plumbing system below the volcano from -2 to -7 km a.s.l., wide up to 60 km2 that reduces 
itself in size down to -18 km of depth close to the apex of the mantle plume. Chiocci et al. 
(2011) found a large bulge on the underwater continental margin facing Mt. Etna, and 
suggested that the huge crystallized magma body intruded in the middle and upper 
continental crust was able to trigger an instability process involving the Sicilian continental 
margin during the last 0.1 Ma. This phenomenon induces the sliding of the volcano eastern 
flank observed since the 90s (Borgia et al, 1992; Lo Giudice and Rasà, 1992) because the 
effects of the bulge collapse are propagating upslope, and the continuous decompression at 
the volcano summit favors the ascent of basic magma without lengthy storage in the upper 
crust, as one might expect in a compressive tectonic regime. Taken together, these new 
evidences (tomographic, tectonic, volcanic) are concerned with the exceptional nature of Mt. 
Etna and raise the need to explain the origin of the mantle plume that supplies its 
volcanism. The lower crust and the uppermost mantle need to  be better resolved in future 
experiments and studies. The use of regional and teleseismic events for tomography and 
receiver function analyses is required to explore a volume that has only marginally been 
investigated to date. The relation between the magma source in the mantle and the upper 
parts of the system, as well as the hypothesis above reported on the relation between 
tectonics and volcanism and the role of lithospheric faults, could be resolved only by 
applying seismological techniques able to better constrain broader and deeper models. 
Finally, although the recent tomographic inversions have progressively improved our 
knowledge of Etna’s shallow structure, highlighting a complex pattern of magma chambers 
and conduits with variable dimensions, the geometry of the conduits and the dimensions 
and shapes of small magmatic bodies still require greater investigation. Their precise 
definition is crucial to delineate a working model of this volcano in order to understand its 
behaviour and evolution. For this purpose, at least within the volcanic edifice, the precise 
locations of the seismo-volcanic signals can be considered a useful tool to constrain both the 
area and the depth range of magma degassing and the geometry of the shallow conduits.  In 
this work, we furnish evidences that the tremor and LP locations allowed to track magma 
migration during the initial phase of the 2008-2009 eruption and in particular the initial 
northward dike intrusion, also confirmed by other geophysical, structural and 
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volcanological observations (Aloisi et al., 2009; Bonaccorso et al., 2011), and the following 
fissure opening east of the summit area at the base of SEC. All these evidences, obtained by 
the marked improvement in the monitoring system together with the development of new 
processing techniques, allowed us to constrain both the area and the depth range of magma 
degassing, highlighting the geometry of the magmatic system feeding the 2008-2009 
eruption. 
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