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This chapter presents the implementation of seismological and earthquake engineering 
principles and the development of innovative computer code using Matlab platform. Since 
earthquakes remain the greatest natural disaster for modern society, causing loss of life and 
millions of damages to the urban environment, the efforts of earth scientists and engineers 
lie in providing the tools for quick and adequate assessment of potential damage.  
The foundation of seismic hazard analysis is based on the accurate scientific estimation of 
anticipated ground motion at a site following the occurrence of a strong earthquake. The 
seismic parameters involved in this estimation are the magnitude of the earthquake, the 
distance between the epicenter and the site in question, the description of the site’s 
geological formations and additional characteristics of the earthquake’s rupture style. 
Nowadays, knowledge about the level of the anticipated shaking near cities or villages is 
directly linked with past observations. In scientific practice the above statement describes 
the development of elaborate empirical mathematical models, which are based on the 
available seismological data. Seismological data collection and analysis is a demanding 
time"consuming task, related with Digital Signal Processing and Data Archiving. The goal of 
this chapter is two"fold; firstly to provide an insight of the necessary Digital Signal 
Processing steps, easily performed through Matlab, leading to the derivation of earthquake 
engineering parameters and secondly testing traditional regression analysis and 
optimization in order to develop empirical equations modeling the aforementioned 
parameters.  
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According to modern data acquisition practice once an earthquake, exceeding a specific 
threshold occurs, ground motion time"series recorded by digital seismometers or 
accelerometers, usually at a sampling frequency equal to 200 samples"per"second, are 
transmitted to the data analysis center. No matter the progress of modern technology, 
scientists in earthquake prone countries cannot simply ignore the older analog acceleration 
time series, which in many cases can be irreplaceable. Matlab through �	�� !�	"
 function 
provides the necessary tool to produce an equally sampled time series at a given sampling 
interval. After this processing stage, the main objective is to remove the undesirable long 
period and high frequency noise, which can be attributed to various sources like the 
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mechanical hysteresis of the instrument or exposure to wind gasps and industrial 
environment (Segou et al., 2008). The subsequent processing steps are related with: 
1.� Visualization of time series and calculation of the peak ground acceleration parameter 
2.� Computation of Fourier amplitude spectrum  
3.� Filter design of the appropriate Infinite Impulse Response filter for the specific time 

series  
4.� Phase Preserving Implementation of the "previously designed" filter in the frequency 

domain 
5.� Graphical comparison of the Fourier amplitude velocity spectrum for the filtered and 

unfiltered time series, to determine whether the noise of the record has been 
successfully removed 

6.� Computation of the response acceleration spectra  
7.� Calculation of earthquake engineering parameters, like spectrum intensity (SI), useful to 

assess potential structural damage. 
For the aforementioned steps a number of Matlab functions such as ��� and 
��� for domain 
conversion and #���	� for Infinite Impulse Response (IIR) filter design of Butterworth type 
have formed the core of Proschema software (Segou & Voulgaris, 2010), developed in 
Matlab R2009a version. 
The visual inspection of the time series at the beginning of strong motion processing allows 
to determine the quality of the recording, decide whether removal of spurious spikes, 
known as �	�!
�
��, is needed or if any other pre"processing steps are required. Figure 1 
displays the time series of acceleration through the !���  function using �
��!��	
function to 
derive the time line of the horizontal axis based on the sampling rate of the instrument in 
the field. Peak ground acceleration value (PGA) represents the maximum absolute 
amplitude of this acceleration time series (Amp) and it can be calculated using the  �$ and 
�#� functions. 
 

 

Fig. 1. Time series of acceleration. 

In strong motion processing it is usual to implement a phase"preserving IIR filter in order to 
avoid phase delays, which will eventually distort the onset of the earthquake. Figure 2 
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presents a comparison between causal and phase–preserving filtering during strong motion 
processing. Figure 3 presents the uncorrected acceleration and filtered acceleration time 
series using five different pairs of cut"off frequencies combined in a phase preserving pass"
band Butterworth filter‘s implementation. 
 

 

Fig. 2. Comparison between phase"preserving (in red) and causal (in blue) implementation 
of an IIR filter. 

Another important aspect is the integration of a sinusoidal signal, such as the acceleration 
time series in this case study (Figure 1). This computation in the frequency domain 
corresponds to the convolution of Fourier amplitude spectrum with the frequency response 
of the perfect integration operator, equal to 1/iω, whereas for differentiation the frequency 
response of the operator is just the inverse of the perfect integrator, simply iω (Karl, 1989). 
After convolution the user can easily select the real part of an array of complex numbers, 
such as the Fourier amplitude spectrum, by using the �	�� function.  
Immediately after filtering the acceleration time series the inspection of velocity and 
displacement time series (Figure 4), calculated after single and double integration 
respectively, is required in order to determine whether the high"frequency and long period 
noise has been removed adequately from the records. 

In more elaborate mathematical calculations, related with the response of a single degree of 

freedom (SDOF) harmonic oscillator �ɺɺ  of a specific damping level ζ subjected to an 

acceleration time series x (Equation 1a), the computational effort required is greater. In order 

to calculate the response spectral acceleration SA at a given period ω, the user should define 

the maximum of the oscillator time series (Equation 1b) for this specific period.  
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22 ( )$ $ $ � �+ ζω + ω =ɺɺ ɺ ɺɺ

 (1a) 

 ( ) ( ) ( ), max� � �
�

� $ � � �ω ζ = +ɺɺ ɺɺ  (1b) 

The calculation of the response spectral acceleration of the damped SDOF harmonic 

oscillator over a range of periods and various damping levels provides the response 

acceleration spectrum (Figure 5), which describes the shaking of typical structures during an 

earthquake. Figure 5 is the output of Proschema software using the ����
 ��	���
 �!	�����


���	�	���
�� option.


 
 
 
 

 
 
 
 

Fig. 3. Uncorrected (in blue) and filtered acceleration (in red) time series. 
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Fig. 4. Filtered acceleration, velocity and displacement time series. 

Once the response acceleration spectrum is computed the calculation of more sophisticated 

earthquake engineering parameters, such as spectrum intensity (SI) follows. Spectrum 

intensity is defined as the integral of pseudo"velocity spectrum of 5% damping level 

between 0.1 s and 2.5 s. The critical issue behind the derivation of SI, and other parameters, 

is related with the common problem of calculation the area under the graph of an unknown 

function. Matlab makes possible the approximation of this unknown mathematical function, 

corresponding to the graph, using the boundary integral method (Liggett & Salmon, 1981) 

through a spline curve using chord"length parametrization and cubic spline interpolation. 

The above can be implemented through the combined use of �
�� function for calculating 

differences and approximate derivatives, at points (SV(ω,ζ), T) between 0.1 s and 2.5 s (Figure 

6), the cumulative sum function �� ��  and the cubic spline approximation function ���!
. 

After the determination of the unknown function, through cubic spline approximation, it is 

straightforward to calculate the area of interest under response spectrum by evaluating the 

cubic spline function in the interval of interest. In Figure 6 the example illustrates the cubic 

spline approximation for computing the engineering parameter SI, using the response 

spectrum of a corrected strong motion record after the removal of high frequency and long 

period noise.  

After computing so many parameters, either single value (1X1), such spectrum intensity (SI) 

and peak ground acceleration (PGA), or one dimensional arrays (1XN) like the acceleration 

time series (Amp) or even multi"dimensional arrays (NXM), the problem of minimizing 

storage requirements arises. To overcome this problem the desirable parameters e.g. PGA, 

can be assigned as fields of a structure array. Assigning fields in a structure array called e.g. 

Output Data Structure (OPD) can be achieved through Command Prompt lines e.g OPD. 

pga=[pga]. 

At this point the calculation of engineering parameters, such as PGA, corresponds to the 

observations (OBS) of the natural system, reaches to an end. In the next section the 

development of an empirical model, aiming to predict the anticipated peak ground 

acceleration (PGA) during a strong earthquake, is briefly described. 
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Fig. 5. Response acceleration spectrum for various damping levels (0%, 2%, 5%, 10% and 
20% of the critical damping) over two hundred period estimators ranging between 0.01 s 
and 10.00 s.  

 

 

Fig. 6. Engineering parameter calculation after an important earthquake aided by cubic 
spline approximation. 
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The mathematical expression of an empirical model that is frequently used in ground 
motion modelling  is given below:  

 ( ) ( ) ( )�
22 2

10 10log PGA = a+ bM+ cM + d+ eM log R + H h + 	 �+  (2) 

In Equation (2) the seismic magnitude M, distance R (km) and depth H (km) are considered 
to be the independent variables of the model (Equation 2). Random variables were 
introduced in Equation (2) for modeling soil site conditions (e) and style of faulting (f).  
From this point on the scientific effort focuses in solving equation (2), corresponding to the 
determination of the coefficients [a, b, c, d, e, f, h].  
The traditional method to determine the coefficients of Equation (2) corresponds to 
regression analysis whereas modern techniques of mathematical optimization are developed 
over the last decades. The contribution of optimization to geophysics has been interestingly 
growing the last decades due to its efficiently in modelling complex natural systems by 
determining the best solution from a set of alternative solutions (Goldberg, 1989). But which 
is the main advantage of optimization? The answer to this question would be its ability to 
reach the optimal solution for any system even under extreme computational environments, 
either when data"sets are limited but also when vast data"sets of high diversity require the 
determination of a solution describing sufficiently all the samples given. In the following 
section the advantages of optimization versus regression would be analysed and the best 
solver for optimization process would be selected through a test involving a number of 
important deterministic and stochastic algorithms. 

���������

���������
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�

Using the ����
��
�
 function the implementation of mixed effects technique can be a first 
approach to modelling using regression analysis, leading to the determination of the 
coefficients of Equation (2). The results however revealed that this method was not 
successful in determining coefficients e and f, corresponding to the random effects terms of 
the model, due to the poor representation –in the database" of different types of soils and 
styles"of"faulting, respectively.  

����"�
���!�
����

In theory, traditional regression analysis "discussed in previous paragraph" is expected to 
provide one possible solution for any given equation. Nowadays optimization addresses 
the necessity for determining the best solution for data"sets of complex physical systems. 
As described previously the effort lies in determining the optimal solution for the 
mathematical model of Equation (2), which leads to the implementation of constrained 
optimization techniques. The mathematical problem corresponds to the minimization of 
misfit represented by the sum of squares of the residuals, between the logarithms of 
observed and predicted values (Equation 3). Constrained minimization problems have 
some basic pillars which are briefly given as: (1) the existence of a candidate theoretical 
solution, to initiate optimization (2) the existence of an objective function, to evaluate 
whether minimizing the misfit is achieved (3) a set of linear constraints serving as bounds 
for the coefficients’ determination and (4) the determination of convergence criteria 
(Rothlauf, 2006). 
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%& !�	� �#�=∑  (3) 

It should be noted that for consistency in this example the same objective function, linear 
constraints and convergence criteria have been used during the implementation of the 
aforementioned solvers.  
Techniques used during optimization to exhaust the search space are classified generally in 
three classes: (1) Calculus based techniques (2) Guided Random search techniques and (3) 
Enumerative techniques (Filho et al., 1994). In this paper calculus based versus guided 
random search techniques will be test through comparison of different solvers whereas 
enumerative algorithms will be discarded since “they cannot compete to the robustness 
race” when compared with the aforementioned techniques mainly due to the characteristics 
of their search domains (Said, 2005). 
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Calculus based techniques are further divided in Direct and Indirect Search methods (Filho 
et al., 1994). Indirect Search methods as Non Linear Least Squares "in this example" is the 
most common approach in data fitting problems in earth sciences corresponding to the 
implementation of the maximum likelihood criterion (Draper & Smith, 1987) for 
determining the best solution setting the value of the objective function in Equation (3) to 
zero.  
Pattern Search, on the other hand, is a Direct Search method used broadly in its generalized 
form in optimization of non"continuous and non"differentiable functions (Hookes & Jeeves; 
1961; Dolan et al., 2003). An initial population of possible solutions serves as set of starting 
points. During optimization the available search space is either increasing or decreasing, 
depending on a gradient, in the effort to improve the solutions suggested previously (Audet 
& Dennis, 2003). The latter are then evaluated, for their effectiveness to minimize the misfit 
between predicted and observed values, using an objective function (Equation 3). Direct 
search methods are considered to be the simplest variation of deterministic algorithms used 
in optimization criticized for their efficacy to search sufficiently large solution spaces 
(Goldberg, 1989). 
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Guided random search techniques are classified in Genetic Algorithms and Simulated 
Annealing (Filho et al., 1994). Both algorithms use information in order to guide their search 
for the optimal solution of the system. The development however of Genetic Algorithms is 
based on natural selection principles whereas Simulated Annealing relies on 
thermodynamic processes. 
Fogel et al. (1966) developed Genetic Algorithms (GA), alternatively known as evolutionary 
programming, as “a technique in which candidate solutions to given tasks were represented 
as finite"state machines, which were evolved by randomly mutating their state"transition 
diagrams”. Holland (1975) focused on how genetic operators observed in nature, such as 
survival"of"the"fittest, crossover and mutation could be introduced into evolutionary 
computing. During the last decades Genetic Algorithms applications has been described in 
the works of De Jong (1975), Grefenstette (1986), Goldberg (1989), Davis (1991), discussed in 
Mitchell (1996) thourougly, pointing out their strength in determining solutions for complex 
natural systems. The robustness of Genetic Algorithms in geophysics has been only recently 
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described by researchers (Stoffa & Sen, 1991; Tavakoli & Pezeshk, 2005), making the 
aforementioned solvers known for their application in constrained minimization problems 
(Goldberg, 1985). GA’s are not limited by restrictive assumptions, concerning the continuity, 
the existence of derivatives and the unimodality of the function in terms of computational 
geometry. This is an advantage over regression analysis which often determines local 
minima as the solution of a given equation (Goldberg, 1989), while at the same time the 
suggested solution is highly dependent on a single point of initialization.  
In the following paragraph we focus on the initialization, the process of improvement and 
the destination of constrained minimization by using stochastic solvers such as GAs. By 
keeping the analogy to biological systems a number of chromosomes/strings form the 
genetic prescription for the development and the operation of the organism. In our case the 
chromosomes/strings are composed by six genes/characters, representing the set of 
coefficients of Equation (2). 
GAs start with a possible solution or a set of possible solutions corresponding to a theoretic 
attenuation curve and continues with optimization in order to determine the optimal 
solution for the given data set. In this study both initialization options have been tested, 
corresponding either to a single starting point (Simple Genetic Algorithm) or multiple 
random"generated starting points (Genetic Algorithm with initial Population Develoment), 
forming an initial population of candidate solutions each one satisfying the given linear 
constraints for the determination of the coefficients of Equation (2). In order to ensure well"
dispersed and random initial population development, for the adequate representation of 
the search space, Latin Hypercube sampling was used (Diaz"Gomez & Hougen, 2006). The 
technique was elaborated by Iman et al. (1981) as stratified sampling without replacement, 
whereas in recent years risk analysis software employs Latin Hypercube sampling in 
preference of Monte Carlo approach for population development. 
During optimization every candidate solution/string satisfying the given linear constraints 
is evaluated, through the objective function of Equation (3), for its effectiveness in 
minimizing the misfit, hence bringing the response value of the system near a desired value. 
Within a generation (group of solutions) fitness scaling serves the purpose of ranking each 
candidate solution to facilitate the selection of the best solutions that should surviving in the 
next generation. In that way, mimicking nature, the fitter solution survives and can be a 
parent individual to the next generation whereas worst fit solutions are penalized.  
In the present study a number of 200 generations is considered, each one with population 
size of 600 individuals/solutions. Stochastic operators like the cross"over, mutation and 
survival"of"the"fittest guarantee diversity of the population (Pan, 1995) forcing the GA to 
search the solution space intensively, thereby reducing the possibility that the algorithm will 
return a local minimum (Goldberg, 1985). In terms of survival, 2 elite individuals/solutions 
are guaranteed to survive to the next generation in this study. A crossover fraction equal to 
0.8 specifies the percentage of individual/solutions, other than elite children, produced by 
crossover in the next generation. Crossover mimics natural recombination between two 
parent chromosomes/solutions during which the offspring chromosome/solution has 
changed values of specific genes/numbers with respect to the parent genes/numbers. In 
this example two point cross"over has been implemented where the selected string is 
divided into 3 segments and then 2 segments are exchanged with the corresponding 
segments of another string. Mutation, on the other hand, alters a randomly selected 
character/coefficient within a string/solution to create a new possible solution. Adaptive 
mutation, used in this example, generates new directions in the search space, with respect to 
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the last successful or unsuccessful generation, bounded by the linear constraints set for the 
coefficients. 
By combining the aforementioned stochastic operators, three versions of GAs, aim to test the 
relation between diversity of the population and performance, corresponding to 
1.� Simple Genetic Algorithm (SGA)  
2.� Genetic Algorithm with initial Population Development (GADP)  
3.� Hybrid Genetic Algorithm (HGA). 
It is noted that Hybrid Genetic Algorithm (HGA) introduces the solution, determined a 
priori by a Simple Genetic Algorithm (SGA), to a deterministic solver, which requires the 
existence of derivatives, in order to provide local optima once the Genetic Algorithm has 
determined the neighborhood of the global optima (Il"Seok et al., 2004). The author included 
this enhanced evolutionary algorithm in the comparison to test the efficiency of the 
interaction between stochastic and deterministic solvers. 
Simulated Annealing is a meta"heuristic algorithm proposed by Kirkpatrick, et al. (1983) and 
Cerny (1985) for the determination of global minima. It mimics the physical process where 
metals are slowly cooled so that eventually their crystal structure is frozen. The latter state 
corresponds to the determination of the optimal solution, using a minimum energy 
configuration during its implementation (Bertsimas and Tsitsiklis, 1993). 
In this study optimization starts from a randomly generated initial population and a 
hypothesis for a parameter, known as Temperature, slowly decreasing from 100° C by a 
factor of 0.0059° C in the process of determining the optimal solution. During 
implementation each new possible solution is evaluated, for its effectiveness in minimizing 
the objective function (Equation 3), then in case of a lower misfit value the suggested 
solution is adapted. Simulated Annealing, an important solver in stochastic minimization 
problems (Bohachevsky et al., 1986), has been reported to successfully determine global 
minima however the author agree with the results of Ingber (1993) that this algorithm 
requires fine tuning to specific problems relative to other solvers.  

$�������
����
 ����
�����
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In order to test the efficiency of the optimization solvers a subset of the database was used, 
corresponding to rock site conditions, with the purpose of determining the coefficients of 
Equation (2) for peak ground acceleration and unspecified style"of"faulting. The solvers 
implemented for this test correspond to: (1) Simple Genetic Algorithm (SGA), (2) Genetic 
Algorithm with initial Population Development through Latin Hypercube sampling 
(GADP) (3) Hybrid Genetic Algorithm (HGA), (4) Simulated Annealing algorithm (SA) (5) 
Non Linear Least Squares (NLLSQ) (6) Non Linear Least Squares with initial population 
development (NLLSQDP) and (7) Pattern Search algorithm (PS). Although the author 
provided some basic principles of the solvers in the previous section, details and theoretical 
comparison between the solvers can be found in recent literature (Wetter and Wright, 2003; 
Gabere, 2007; Alander, 2009; El"Mihoub et al, 2006; Solomatine, 1998 among others). 
Before evaluating the performance of these solvers it is meaningful to describe their relative 
computational efficiencies. The major difference between the two main categories of 
stochastic solvers (GAs, SA) is that GAs can either automatically produce a starting point 
(SGA) or they can be enhanced by initial population development (GADP), whereas 
Simulated Annealing requires a priori definition of initial conditions (Davis, 1987). The latter 
requirement applies for deterministic algorithms (NLLSQ, NLLSQDP, PS) as well. The 
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difference however between Simulated Annealing (SA) and deterministic solvers (NLLSQ, 
NLLSQDP, PS) is that the latter depend on the existence of derivatives in order to continue 
their iterations.  
The evaluation of the performance of optimization solvers follows a qualitative and 

quantitative method. Analytically by qualitative criteria the authors refers to inability of the 

solver to determine a possible solution (1) within the given number of generations (2) 

satisfying the linear constraints and (3) in a timely manner. When the above criteria failed, 

optimization was implemented again with different starting points, which is acknowledged 

to be the main source of error that could lead to a solver’s failure. The alternative solution, 

that of relaxing convergence criteria in the case of a solver’s fail, was not considered since it 

would jeopardize the final comparison between different solvers. In the event of a solver’s 

failure to produce a possible solution for second time, it was excluded from the quantitative 

comparison. In that sense Non Linear Least Squares (NLLSQ) solver failing the (2) criterion 

has been implemented again using this time multiple starting points (NLLSQDP). After the 

second failure to determine a feasible solution by returning the initial conditions "describing 

only the theoretical ground motion prediction equation, which was subjectively set by the 

programmer" Non Linear Least Squares (NLLSQ, NLLSQDP) have been excluded from the 

comparison from this point forward. 

Table 1 presents the results of the quantitative comparison of the optimization solvers 

together with the coefficients of Equation (2) together with the numerical details used 

during optimization, such as the linear constraints introduced in the form of lower and 

upper bounds. It is noted that convergence criterion, alternatively known as tolerance, was 

set to 1E"06 for the purpose of this test. The quantitative comparison has been based in two 

criteria (1) the standard error, in logarithm base 10, and (2) the average sample log"

likelihood (LLH) value (Scherbaum et al., 2009) of the resulting ground motion prediction 

equation as derived by a specific solver. 

The standard error (σk) has been calculated as the mean of absolute residuals between 

observed and predicted by the model gk (where k denotes the index of the solver) ground 

motion values described in the equation below: 

 ( )
1

� 
 � 
�#� � $
'

σ =   (4) 

Assuming that the set of observations adequately describes nature, the likelihood L(gk|x), of 

the model gk given the set of observations x, would represent how close model gk describes 

reality. According to Scherbaum et al. (2009) the average sample log"likelihood (LLH) 

estimator has been calculated as the mean of log"likelihood values over N number of x 

samples 

 ( )( ) ( )( )
1

1
log log

'

� � 




( � $ � $
' =

= ∑  (5) 

It is noted that the sigma value is calculated as the standard deviation of the residuals in log 
10 units, for consistency with Equation 2, using the ��� function. It is noted that the 
calculation of log"likelihood estimator of Equation 5 has been made through the function 
��� �
�	.  
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Initial Points 1.00000 0.15000 0.00300 "0.50000 0.01000 0.01000 
  

Lower Bounds 1.00000 0.01000 0.00100 "1.50000 0.00010 0.00100 
  

Upper Bounds 3.00000 0.50000 1.00000 "0.00010 1.00000 2.00000 
  

 
a b c d e h σ LLH 

NLLSQ 1.70166 0.35714 0.00100 "1.22962 0.00010 0.00100 
  

NLLSQDP 1.70166 0.35714 0.00100 "1.22962 0.00010 0.00100 
  

GA 1.82357 0.32641 0.00279 "1.27552 0.00755 0.00116 0.3464 1.8184 

GADP 2.62122 0.11622 0.01568 "1.47212 0.03988 0.00136 0.3426 1.8044 

HGA 1.70170 0.35713 0.00100 "1.22961 0.00010 0.00100 
  

PS 1.50000 0.01000 0.00100 "0.00010 0.00010 1.00100 
  

SA 1.73819 0.32360 0.00608 "1.25514 0.00264 0.55508 0.3484 1.8259 

Table 1. Initial and boundary conditions for the seven solvers used in constrained 
minimization problem. Successful solvers are presented in bold. 

The graphical comparison of the most successful solvers of Table 1 is shown in Figure 7. 
Matlab through the Optimization Toolbox provides core functions for solving minimization 
problems, using a number of suggested solvers such as the deterministic non"linear least 
squares (�������	�
�
 function) and Pattern Search (!���	���	����
 function), the stochastic 
Genetic Algorithm (��
 function) and Simulated Annealing (�
 �����	��#��
 function). 
Especially in the case of Genetic Algorithms the development of initial population of 
possible solutions is achieved through Latin Hypercube sampling using the ����	�
��

function. The adjustment of stochastic operators, such as the survival"of–the fittest, mutation 
and cross"over, for Genetic Algorithms’ implementation can be achieved through the 
���!�
 �	� function whereas for Pattern Search  !��!�
 �	� function is required.  

%��&�����
���
�

Two major conclusions can be drawn from the results of this study: firstly, deterministic 
algorithms, such as Non Linear Least Squares (NLLSQ, NLLSQDP) fail to determine the 
whole set of coefficients since the values of the coefficients c, e and h (Table 1) remain fixed 
to their lower boundary value. The above remark emphasizes the weakness of deterministic 
algorithms leading to the determination of local minima instead of returning a global 
solution for the minimization problem. Secondly, the effectiveness of GAs in solving 
minimization problems, even in their simpler parameterization (SGA), is supported by their 
ranking following the LLH criterion. Thus, the use of Genetic Algorithms aided by initial 
Population Development (GADP) by Latin Hypercube sampling for the constrained 
minimization problem set in Equation (2) is suggested.  
Once the final set of coefficients is determined the seismologist can assess the expected 
ground motion at any given site, located at distance R from the epicenter of a strong 
earthquake with magnitude M. Figure 8 presents the estimated ground motion after a 
magnitude M5 and M6 earthquake at a rock site for various distances using stochastically 
derived ground motion prediction equation using Genetic Algorithm with initial Population 
Developement.  
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Fig. 7. Graphical representation of ground motion prediction equations (see Equation 2) as a 
result of constrained minimization using different solvers for the case of an M6 event at rock 
site for unspecified style of faulting.  

 

 

Fig. 8. Attenuation  of peak ground acceleration (PGA) over a wide range of distances from 
the seismic source.  
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Ground motion prediction equations are an important tool for the scientific and engineering 
community to forecast anticipated ground motion and predict potential economical losses 
and structural damages. Another important application of ground motion prediction 
equations lies in developing possible scenarios for the planning short and long term 
emergency response.  
This chapter describes how Matlab can be used in scientific research for Digital Signal 
Processing, Data Archiving but also for modeling complex natural systems through 
Optimization. Since the number of graduate students writing computer codes from scratch, 
in order to expand the frontiers of their research, continue to grow, core Matlab functions 
can be used to develop new software packages in the future. The application examples of 
this chapter clearly show that in seismological practice, demanding mathematical 
procedures can be implemented and their results can be easily visualized through Matlab.  
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