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Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes-RJ 
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1. Introduction 

Since the discovery of the photoacoustic effect by Bell in 1881 (Bell, 1880), the so-called 
photoacoustic techniques have experienced great expansion. Since 1980, approximately, 
they have been used in a wide range of scientific areas. The photoacoustic and related 
photothermal techniques have proved to be a valuable tool to thermal characterization of 
solids, liquids and gases (Vargas & Miranda, 2003). This is one of the non-destructive laser-
induced photothermal techniques that are based on the detection of periodic thermal waves 
generated due to a non-radiative de-excitation in the sample, which is illuminated by a 
chopped or pulsed optical excitation. In this chapter, thermal and structural characteristics 
of hardmetal (WC-10%wt Co) alloys were examined. 
Hardmetal is a composite material (ceramic-metal) comprised by hard tungsten carbide – 
WC grains or particles, embedded into a tough binder – normally cobalt - Co (Allibert, 
2001). Co percolates the WC particles, forming the WC-Co structure – the most common 
hardmetal alloy. 
The hardmetal’s formation occurs through the liquid phase sintering of the as compacted 
WC and Co powders, at temperatures roughly about 1400ºC, in which Co spreads around 
WC grains and particles, enabling homogeneity, density, hardness and other desired 
properties. 
Both phases can be modified, aiming at achieving the final desired properties (Upadhyaya, 
2001). As an example, the binder phase amount is linked to the hardmetal properties, that is, 
as large is the Co amount, as lower is the hardness, but the fracture toughness is 
substantially improved. 
Hardmetals present high hardness, good wear resistance, and considerable fracture 
toughness, allied with interesting thermal properties. These materials have been widely 
used in industry, due to the excellent combination among wear, impact, compressive 
resistance, high elastic modulus, corrosion and thermal shock resistance (Allibert, 2001; 
Fang et al., 2009). Therefore, due to the high stability and excellent mechanical properties, 
their main applications includes the cutting tools in general, oil and gas well drills, forming 
parts – such as wire drawings tools, high energy milling components, among others (Gille et 
al ., 2002). 
Thermal characterization plays an important role to qualify hardmetals, rare are the 
literatures with the purpose of analyzing these properties (Faria Jr. et al., 2005, Kny & 
Neumann, 1985). This study intends to discuss the thermal behavior in six diversified WC-
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10%wtCo samples (table 1), which are sintered in a not-conventional route metallurgic 
powder named high pressure-high temperature (HPHT), normally used to produce 
synthetic diamonds. For more details of HPHT see references (Faria Jr. et al., 2005, Osipov, 
et al., 2003).  

2. Experimental 

2.1 Samples 
Figure 1 shows the route employed to process the hardmetal WC-10%wtCo. Commercial 

powders of WC and Co, mean both particle size of 5┤m, were purchased from Derivata 

Ind.Com. These powder were manually mixed to perform the desired stoichiometry. The 

theoretical density of this hardmetal is 14.7g/cm3. Mixture was divided in samples of 1g 

each, approximately. Samples were put into a graphite cylinder that acts as a heater (current 

flow during pressing) and then assembled into a calcite capsule – responsible for the gasket 

formation, that ensures a good high pressure distribution into the material. Sintering 

treatments were carried out using a special hot press (by Ryazantyashpressmash - O138B 

type – 2500tons) – industrial scale, commonly used for diamonds’ synthesis.  

 

Powder mix of WC + 10%wt Co 

↓ 

Assembling the powder mixtures into a graphite cylinder, inside a calcite capsule 

↓ 

High pressure – High Temperature Sintering 

↓ 

Characterization: structure, microstructure and thermal properties 

Fig. 1. Experimental flowchart for the HPHT hardmetal sintering (Rodrigues et. al, 2005) 

2.2 Hardmetal processing 
Hardmetals’ processing is carried out by the conventional powder metallurgy – PM 

techniques, where the starting powders are blended, compacted in a determined part 

dimensions and geometry, and then sintered, whose objective is to acquire a product with 

controlled chemical composition, near net shape and mechanical properties (Borges et al., 

2008). Therefore, sintering is the most important processing step. 

2.2.1 Sintering  
In this step, the compacted powders are submitted to high temperature, into a furnace. 

During sintering several hardmetal structural changes occurs, such as densification and 

grain growth. 

Sintering parameters like time, temperature and environment are designed for controlling 

the porosity level, grain size, hardness or any other desired property. 

During the sintering, the Co is the binder for the WC particles, that is, the liquid phase 

agent. The industrial sintering temperature ranges from 1350 to 1550°C, so that Co forms an 
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eutectic at about 1275ºC, along with W and C – this is the so called liquid phase sintering - 

LPS (Allibert, 2001; Wang et al., 2008). 

The LPS process is divided in 3 densification stages: rearrangement, solution-precipitation 

and solid state sintering. 

During the first stage, the compacted body behaves as a viscous solid, because the 

densification depends upon the liquid amount, particles’ size, and solubility of the WC 

particles in the eutectic liquid. It forms the necks among the particles’ contact points. 

The solution-precipitation stage is characterized by the smaller WC particles dissolution in 

the liquid, which precipitates on the solid surfaces of the bigger ones. This stage enables a 

large densification, grains’ accommodation, pores’ elimination and necks’ growth. 

The last stage occurs when the liquid saturates. Grain growth there occurs, along with slight 

pore closure. It favours densification, but it is important to control the grain growth, to 

ensure good properties. 

LPS is usually performed in furnaces with vacuum system (10-1 to 10-2 mbar), or under 
low pressure of gas – 0,1 MPa – for example, argon. In the last case, the goal is to reduce 
the porosity, and to ensure an oxygen free environment (North et al, 1991). It is common 
the use of a post-sintering process. In some cases, the use of hot isostatic pressing, at 
200MPa, with the use of the same temperature and time of the previous LPS is necessary 
for full density. 

2.2.2 High Pressure – High Temperature technology - HPHT 
High pressure are those superior to 2 GPa, where some interesting changes in the materials’ 

properties beggin to occur, like phases transformations, electrical conductivity and others 

(Rodrigues, 2006). That’s why this technology is widely used in the production of superhard 

materials. 

Superhard materials (SHM) synthesis such as diamond and cubic boron nitride, for 

example, takes place mainly in the high pressure device (HPD), using pressures ranging 

from 4 to 10 GPa, and temperatures of 1200 to 2000°C.  The HPD are mounted inside the 

working space of special hydraulic presses, employing loads of 500 to 30,000 tons. 

The high pressure generation is directly linked to the presses capacity and HPD construction 

type. The most common types of HPD are Belt, Anvil and the Multipistons. These devices 

are made in hardmetal – high hardness and compression resistance, with good fracture 

toughness, and can be processed in relatively large parts (Rodrigues, 2006). The amount of 

Co in this hardmetal is 4 to 6 % in weight (Bolsaitis, 1980). Table 1 shows the sintering 

parameters of WC-10%wtCo samples produced by HPHT. 

 

Number 
of 

Samples 

 
Pressure/Temperature/Time 

Number 
of 

Samples 

 
Pressure/Temperature/Time 

1 5GPa/1200oC/1min. 1 5GPa/1200oC/2min. 

1 5GPa/1300oC/1min. 1 5GPa/1300oC/2min. 

1 5GPa/1400oC/1min. 1 5GPa/1400oC/2min. 

Table 1. Parameters sintering of samples WC-10%wtCo sintered by HPHT 
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Figure 2 shows a photograph of an Anvil type HPD, already installed into the press 
aperture. This is the HPD used to sinter the hardmetal WC-10%wtCo of this work, and it is 
commonly used to produce powders of diamonds and cubic boron nitride, as well as to 
sinter them. The HPHT sintering process may be summarized as follows: the mixture of WC 
and Co powders is poured into the calcite gasket – see figure 3. Alumina and graphite discs 
are used for thermal insulation and direct current flux, respectively. The outer polymeric 
ring ensures some deformation stability for the gasket. The gasket is then mounted into de 
HPD. This assembly is installed into the press structure – fig. 2. The press hydraulic system 
generates a primary pressure P1, which raises to P2 inside the HPD – see in fig.4 the scheme 
of the assembly before and after pressure application. When the working pressure is 
reached, the electrical current system is switched on to the desired temperature inside the 
gasket. After the sintering time, the current is turned off, and the pressure is slowly reduced 
to room conditions. The HPD is removed from the press, and the sintered hardmetal sample 
is taken from the gasket. 
 

 

Fig. 2. Anvil type HPD 

 

 

Fig. 3. Gasket with the PVC ring 

Figure 4 shows, schematically, the gasket inside the HPD. 
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Fig. 4. Scheme of the gasket inside the HPD. (1) protective molybdenum cone; (2) anvil; (3) 
graphite disc; (4) alumina disc; (5) gasket prior to loading; (6) PVC ring; (7) mixed powders; 
(8) multi-rings; (9) gasket under loading; (10) deformed PVC ring; (11) the most deformed 
region of the gasket; (q) applied load 

In this research, the HPHT technique was used to sinter hardmetal, aiming at the processing 
time reduction, and avoiding the undesirable phases formation – such as neta phases. 

2.3 Photothermal science 
Phothermal spectroscopy can be applied to a large number of high-sensitivity methods 
which measure optical and thermal properties of a sample. The basis of photothermal 
spectroscopy is a photo-induced change in the thermal state of the sample. The nonradiative 
part of light energy absorbed causes the heating of the sample. This heating is responsible 
for the variation of temperature and thermodynamic changes in the sample. Thus, 
photothermal spectroscopy is based upon measurements of temperature, pressure, or 
density changes that occur due to optical absorption. 
Generally, photothermal spectroscopy is a more direct measurement of optical absorption 
than are optical transmission-based spectroscopies. Sample heating is a direct consequence 
of optical absorption; therefore photothermal spectroscopy signals are directly dependent 
on light absorption. Scattering and reflection losses do not produce photohermal signals. 
Consequently, photohermal spectroscopy more accurately measures optical absorption in 
scattering solutions, in solids and at interfaces. This characteristic makes it mostly attractive 
for application to surface and solid absorption analysis and studies in scattering media 
(Bialkowski, 1996 ). 
The indirect nature of the measurement also results in photothermal spectroscopy being 
more sensitive than optical absorption measured by transmission methods. For example, 
photothermal effects can amplify the optical signal measured. One of the factors for this 
amplification is the possibility to increase the power of the light source and on the optical 
geometry used to excite the sample. Another feature that photohermal spectroscopy is more 
sensitive than transmission is that the precision of the measurements is fundamentally better 
than that of the direct transmission method. The high sensitivity of photothermal 
spectroscopy methods has led to applications for analysis of low-absorbance samples 
(Bialkowski, 1996). 
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Photohermal spectroscopy is usually performed using laser light sources. Lasers can deliver 
high powers or pulses energies over very narrow optical bandwidths, thereby enhancing the 
photothermal signals. 
Here, an open photoacoustic cell (OPC) in the transmission configuration (Vargas & 
Miranda, 1988, 2003, Bribiesca et al., 1999) is employed to evaluate thermal diffusivity and 
the photothermal technique of continuous investigation illumination on the sample in a 
vacuum (Contreras et al., 1997) is used to measure thermal capacity density.  

2.3.1 Photoacoustical investigation – measurement of thermal diffusivity  
The quantity that measures the rate of heat diffusion into a material is the thermal 

diffusivity (α). This property depends closely on the microstructural variations, composition 
and the processing conditions of the sample (Raveendranath, 2006).  
The OPC technique is widely used for several applications aiming at the thermal 
characterization of great variety of samples such as biological liquids and colloids, plant 
leaves, wood (López, 1996) , two layer systems (Mansanares, 1990), semiconductors 
(Calderon et. al., 1997), polymers (Cella et. al., 1989), clays (Alexandre et. al., 1999, Mota et 
al., 2008, 2009), coating materials and so on. Figure 5 shows the schematic thermal 
diffusivity measurement set-up.  
 

Chopper

Preamplifier

Ref Signal

Lock-in Amplifier

Sample

Silicone
Grease

Air
Chamber

Microphone

Mirror
He-Ne  Laser

 

Fig. 5. Schematic measurement system of the thermal diffusivity (Yunus, 2002) 

Normally, we have used a He-Ne laser (25 mW) as the excitation source. The disc sample 
WC-10% wt Co is mounted on the top of air chamber using vacuum grease and is 
illuminated on the external surface. The laser beam modulation is produced by a mechanical 
chopper (Stanford Research Systems SR540). The resulting PA signal is then subsequently 
fed into a field-effect-transistor (FET) pre-amplifier and leads directly to a “Lock-in” 
amplifier (Perkin Elmer Instruments mod. 5210), where it is possible to obtain the 
photoacoustic amplitude and the phase signal, which are recorded as a function of the 
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modulation frequency in an appropriate software program. The schematic cross-section of 
the OPC configuration is show in figure 6. 
 

 

Fig. 6. Schematic design of an open photoacoustic cell (OPC) 

Applying for the simple one-dimensional thermal diffusion model of Rosencwaig and 

Gersho (Rosencwaig & Gersho, 1976), the expression for the pressure fluctuation (δP) in the 
air chamber is 
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2 2
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where γ is the air specific heat ratio, P0 the ambient pressure, T0 ambient temperature, I0 is 

the absorved light intensity, f is the modulation frequency, and li, ki, and αi are the length, 
thermal conductivity and the thermal diffusivity of the sample respectively. Here i=s 

subscript denotes sample and g denotes gas medium. Also σs=(1+j)as where as=(ω/2αs)1/2 is 
the complex thermal diffusion coefficient of the material. 
If the sample is thermally thin (i.e., lsas <<1), equation (2) reduces to  
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That is, the amplitude of the PA signal decreases as f-1,5 as one increases the modulation 
frequency. In contrast, at high modulation frequencies, such that the sample is thermally 
thick (i.e. lsas >>1), then 
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For thermally thick samples, the amplitude of the PA signal decreases exponentially with 

the modulation frequency as (1/f) exp (-as f ), where as= s s
l π α .  In this case, α is obtained 

from the experimental data fitting from the coefficient (as) in the argument of the 

exponential (-as f ).  
When values of thermal diffusivity are determined from the amplitude data of the 
photoacoustical signal, we should pay attention to the microphone non-linear frequency 
response in relation to acoustical vibrations. Practically, all microphones present this 
irregularity. In our case, our microphone had a good linear frequency response above 20 Hz. 
In order to certify our set-up, a calibration measurement was performed. Figure 7 shows the 
dependence of the photoacoustical (PA) signal on the modulation frequency for the 
aluminium (Al) sample.  
 

2 ,5 3 ,0 3 ,5 4 ,0 4 ,5 5 ,0 5 ,5 6 ,0

1

10
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Fig. 7. Microphone output voltage as a function of the chopping frequency for the 25 µm 

thick Al sample. The signal behaves roughly as 1.5f −  

For frequencies used to calibrate the thermal diffusivity measurement set, the signal 

exhibited a frequency dependency close to 1.5f − . This is the typical behaviour we would 

expect from the thermal diffusion model for a thermally thin sample. In fact, for a 25 µm 

thick Al sample and a thermal diffusivity of 93.28 x 10-6 m2/s (Almond & Patel, 1996) the 

characteristic frequency fc for the transition between the thermally thin and thick regime is 

about 47.5 KHz. 

2.4 Measurement of specific heat capacity 

The product of density and specific heat, ρc, was measured using, the photothermal 
technique of temperature evolution induced by continuous illumination of the sample in 
vacuum. The surface sample is painted black and placed inside a Dewar that is subsequently 
vacuum-sealed. The front surface of the sample is illuminated with the He-Ne laser focused 
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on the sample through an optical glass window on the Dewar (figure 8). The back surface of 
the sample has a thin-wire T-type thermocouple. The thermocouple output is measured as 
in function of time by using a thermocouple monitor (model SR630 Stanford Research 
Systems) connected to a computer.  
 

 

Fig. 8. Schematic measurement system of the specific thermal capacity 

The temperature evolution is monitored up to reach a stationary state. Subsequently, we 
turn off the laser and the temperature decrease is monitored, as well. Equations 4 and 5 
represent the temperature increase and temperature decrease, respectively. 

 0 (1 )tI
T e

H

τ−∆ ↑ = −       (4) 

 0 tI
T e

H

τ−∆ ↓ =   (5) 

Finally, equations 6 and 7 present the relationship among the thermal properties. In this 
case, thermal diffusivity and thermal effusivity (e) are defined as in function of thermal 

conductivity (k) and specific thermal capacity ( C ), C=ρc, where c is the specific heat and ρ is 

the mass density.  

 k cαρ=     (6) 

    k cε ρ=  (7) 

Experiments concerning with thermal diffusivity, samples thickness and specific heat 
capacity measurements were performed five, ten and three times to produce the deviations, 
respectively. 

3. Results and discussion  

We show in figure 9 the XRD spectra recorded for samples HPHT sintered hardmetal 
samples. One can observe that there is practically no difference among the samples, only 
WC/Co peaks are observed and the Co3W phase in presented in all the samples. The 
Rietveld analysis confirmed the Co3W phase in low intensity for the whole samples. Figure 
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10 shows the Rietveld analysis for 5 GPa/1200ºC/1min sample. This sample has 83,7% WC 
and 6.3% Co3W. 
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Fig. 9. X-ray diffractogram for the HPHT sintered hardmetals 
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Fig. 10. Rietveld Analysis for the 5 GPa/1200ºC/1min sample 
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Table 2 shows the whole thermal properties reached, using our alternative method. One can 
see in figure 11 a typical curve for thermal diffusivity measurements for the sample 
subjected to 5GPa/1400ºC/2min sintering conditions. It was observed that thermal 
diffusivity values are; in close agreement with previous works (Miranzo et al. 2002, Lauwers 
et al. 2001). However, the values obtained for thermal conductivity are lower when 
compared with other papers (Kny & Neumann, 1985, Miranzo et al., 2002). 
 

Samples α (cm2/s) C (J/cm3 K) k (W/ m K) e (Ws1/2cm-2K-1) 

5 GPa/1200ºC/1 min 0,340 ±0,005 1,0 ± 0,039 34,0 ± 0,040 0,58 ± 0,050 

5 GPa/1200ºC/2 min 0,380 ±0,023 1,0 ± 0,042 38,0 ± 0,050 0,62 ± 0,061 

5 GPa/1300ºC/1 min 0,270 ±0,046 1,0 ±0,082 27,0 ± 0,094 0,52 ± 0,107 

5 GPa/1300ºC/2 min 0,250 ±0,013 0,83 ± 0,020 20,7 ± 0,020 0,41 ± 0,020 

5 GPa/1400ºC/1 min 0,370 ±0,030 1,30 ± 0,080 48,1 ± 0,115 0,79 ± 0,156 

5 GPa/1400ºC/2 min 0,400 ±0,006 1,0 ± 0,041 40,0 ± 0,043 0,63 ± 0,058 

Table 2. Thermal properties of WC-10%wtCo sintered by HPHT 

In this case, it is desirable that, within the thermal diffusivity (α), the thermal conductivity 
(k) also could have higher values, because the hard metal works in extreme stress situations, 
moreover, it is really important that the material reaches in a faster way its thermal balance, 
so increasing the useful life. 
A possible justification for lower values is that in the conventional sintering route, due to the 
long time that is necessary firing process, metallic phases appear (W3Co3C, Co6W6C), which 
do not occur for sintering at the HPHT method.  Another important factor for the low values 
of thermal properties is due to the not good homogeneity of the Co mixture. Although our 
samples present Co addition, there is phonons contribution from the phase WC heat 
transport. It is necessary a good crystal homogeneity for a good thermal flow, because 
phonons transport heat along the crystalline structure. As our HPHT samples present 
coalescence, porosity, phase transitions, etc, therefore phonons are easily spread out. 
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Fig. 11. Thermal diffusivity of the 5 GPa/1400ºC/2 min HPHT sintered hardmetal 
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The samples 5GPa/1300ºC/1min and 5GPa/1300ºC/2min presented lower values of 
thermal properties due to their microstructure, which do not present a good homogeneity of 
the WC/Co mixture, during the whole production process. Figure 9 shows the 
microstructure of the sintered body 5GPa/1300ºC/2min, where great cobalt lakes and a not 
homogeneous distribution of the Co binder are shown. 
The samples sintered in 1200ºC and 1400ºC presented greater thermal property values. In 
figure 12 and figure 13 we can note the microstructure of 5GPa/1200ºC/1min and 
5GPa/1400ºC/2min samples.  
 

 

Fig. 12. Microstructure of 5GPa/1300ºC/2min sintered body 

The typical hardmetal microstructure can be observed, with the grain growth of some 
particles of WC (white), porosity (black), and cobalt distribution (dark gray). A more 
homogeneous microstructure in figure 14 is observed, which presents a better cobalt 

distribution and presents Co lakes of the order of 5 to 15 µm, while figure 13 shows Co lakes 

of the order of 10 to 25 µm. The presence of a slight gray phase is observed in figure 12 (with 
form of spots), which are uniformly distributed. We attribute to the Co3W phase, identified 
in figure 9.  
 

 

Fig. 13. Microstructure of 5 GPa/1200/1 min sintered body 
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Fig. 14. Microstructure of 5 GPa/1400ºC/2 min sintered body 
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Fig. 15. Specific Heat Capacity of the 5 GPa/1400ºC/2 min HPHT sintered hardmetal 

The thermal energy absorption (specific heat capacity) is lower among the samples due to a 
not good distribution of the metal binder.  Figure 15 shows a typical curve of specific heat 
capacity measurements in this case 5GPa/1400ºC/2min sample.  

The thermal effusivity was determined by e kC= , which is directly influenced by the 

thermal conductivity and specific heat capacity. Probably, commercial hardmetals present 

very higher effusivity in relation to our samples. But, unfortunately, nothing can be stated, 

because no references were found for comparisons. We intend that these data can play an 

important role for this kind of material. 

4. Conclusions 

The goal of this exploratory work was reached. The open photoacoustic cell method is very 
satisfactory and readily provides thermal properties measurements for hardmetals. The 
metallic phases (W3Co3C, Co6W6C) occur, normally to the conventional route, while in the 
HPHT process there is not enough time to produce these phases. The specific heat capacity 
presented lower values due to the components distribution characteristics. The cobalt binder 
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did not disperse homogeneously in the samples, originating large Co lakes. On the other 
hand the thermal diffusivity values are quite realistic to the commercial hardmetals. We can 
conclude that is necessary more attention to the preparation sample process, mainly in the 
components mixture phase. The time of the WC-Co mixture should not have been sufficient 
for a good cobalt distribution in the sample, which harmed the results of some thermal 
properties. For the first time, effusivity values were determined in relation to these 
materials. 
Essentially, for cutting and drilling tools, thermal properties play an important role in the 
production process. Manipulating the powders and the sintering process, it is possible to 
change the thermal parameters. For instance a hardmetal under study should present low 
thermal effusivity, that is, the outer heat flow should be blocked. Large amount of heat into 
the material should be avoided. However, it should present high diffusivity, high 
conductivity, and high thermal capacity. This way, they should expand the time-life of the 
tool. 
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