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1. Introduction 

1.1 Sources of biomass 
The two main sources of biomass for energy generation are purpose-grown energy crops 
and waste materials (Larkin et al., 2004). Energy crops, such as Miscanthus and short 
rotation woody crops (coppice), are cultivated mainly for energy purposes and are 
associated with the food vs. fuels debate, which is concerned with whether land should be 
used for fuel rather than food production. The use of residues from agriculture, such as 
barley, canola, oat and wheat straw, for energy generation circumvents the food vs. fuel 
dilemma and adds value to existing crops (Chico-Santamarta et al., 2009). In fact, these 
residues represent an abundant, inexpensive and readily available source of renewable 
lignocellulosic biomass (Liu et al., 2005). 

1.2 Current issues related to biomass utilization 
The main problem with agricultural straw is its relatively low density in its original or baled 
forms. The bulk density of loose and standard baled straw is approximately 40 kg/m3 and 
100 kg/m3, respectively, compared with the bulk density of unprocessed wood residue, 
which is approximately 250 kg/m3 (Demirbaş, 2001; Tripathi et al., 1998). The relative low 
density of straw makes it more expensive to transport compared to wood and coal because a 
lower mass of straw can be transported per unit volume. Additionally, a larger storage 
area/volume is required for baled straw compared to wood chip. Densification into pellets 
increases the bulk density of biomass (McMullen et al., 2005; Obernberger and Thek ,2004) 
and as a result, the net calorific content per unit volume is increased (Bhattacharya et al., 
1989) and the storage, transport and handling of the material is easier and cheaper 
(Balatinecz, 1983; Bhattacharya et al., 1989; Kaliyan and Morey, 2006). 
The quality of fuel pellet is usually assessed based on its density and durability. High bulk 
density increases storage and transport capacity of pellets (Adapa et al., 2007; Mani et al., 
2003). Since feeding of boilers and gasifiers generally is volume-dependent, variations in 
bulk density should be avoided (Larsson et al., 2008). A bulk density of 650 kg/m3 is stated 
as design value for wood pellet producers (Obernberger and Thek 2004). Low durability of 
pellets results in problems like disturbance within pellet feeding systems, dust emissions, 
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and increased risk of fire and explosions during pellet handling and storage (Temmerman et 
al. 2006). 
Densification of straw and determining the optimal parameters involved is an art in itself. 
The entire process involves securing of baled straw from agricultural fields, size reduction 
(chopping and grinding), application of pre-treatment (chemical, physico-chemical, and 
biological), determining the physical and frictional properties of straw grinds, 
lignocellulosic characterization of straw, lab-scale and pilot-scale densification of grinds into 
pellets to determine the effect of various independent parameters on quality (density and 
durability), and energy analysis/ balance (Fig. 1). This chapter will only address the effect 
and need of lignocellulose characterization, pre-treatment and size reduction, and physical 
properties on densification of agricultural straw. 
 

 
Fig. 1. Processing steps involved in converting straw from field to pelletized product. 
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2. Lignocellulosic biomass characterization 

2.1 Structure of lignocellulosic material 

Lignocellulosic material refers to plant biomass that is composed of cellulose, hemicellulose, 
and lignin (Fig. 2) (Lin and Tanaka, 2006). The major combustible component of non-food 
energy crops is cellulose, followed by lignin.  
Cellulose: Cellulose is an organic polysaccharide consisting of a linear chain of several 
hundreds to over nine thousand β(1→4) linked D-glucose (C6H10O5)n units (Crawford, 1981; 
Updegraff, 1969). Cellulose, a fibrous, tough, water-insoluble substance, is found in the cell 
walls of plants, particularly in the stalks, stems, trunks and all the woody portions of the 
plant body (Nelson and Cox, 2005). Cellulose comprises 40-60% of the dry weight of plant 
material (the cellulose content of cotton is 90% and that of wood is 50%) (Encyclopædia 
Britannica, 2008; USDE, 2006). 
Zandersons et al. (2004) and Shaw (2008) reported that binding of wood material during hot 
pressing / densification is mainly dependent on the transition of cellulose into the 
amorphous state. According to Hon (1989), due to the semi-crystalline structure, hydrogen 
bonded cellulose cannot be dissolved easily in conventional solvents, and it cannot be 
melted before it burns; hence, cellulose itself is not a suitable adhesive. This can be 
overcome by breaking the hydrogen bonds, thus making the cellulose molecule more 
flexible (Hon 1989). Cellulose requires a temperature of 320°C and pressure of 25 MPa to 
become amorphous in water (Deguchi et al., 2006). 
Hemicellulose: Hemicellulose is made of several heteropolymers (matrix polysaccharides) 
present in almost all plant cell walls along with cellulose (Fig. 2). While cellulose is 
crystalline, strong, and resistant to hydrolysis; hemicellulose has a random, amorphous 
structure with less strength. Hemicellulose is a polysaccharide related to cellulose and 
comprises 20-40% of the biomass of most plants. In contrast to cellulose, hemicellulose is 
derived from several sugars in addition to glucose, including especially xylose but also 
mannose, galactose, rhamnose and arabinose (Shambe and Kennedy, 1985). Branching in 
hemicellulose produces an amorphous structure that is more easily hydrolyzed than 
cellulose (Shaw, 2008). Also, hemicellulose can be dissolved in strong alkali solutions. 
Hemicellulose provides structural integrity to the cell. Some researchers believe that natural 
bonding may occur due to the adhesive properties of degraded hemicellulose (Bhattacharya 
et al., 1989). 
Lignin: Lignin is a complex chemical compound most commonly derived from wood and is 
an integral part of the cell walls of plants (Lebo et al., 2001; Zandersons et al., 2004). The 
compound has several unusual properties as a biopolymer, not the least its heterogeneity in 
lacking a defined primary structure. Lignin fills the spaces in the cell wall between cellulose 
and hemicellulose (Fig. 2). It is covalently linked to hemicellulose and thereby crosslinks 
different plant polysaccharides, conferring mechanical strength to the cell wall and 
consequently to the whole plant structure (Chabannes et al., 2001). 
Lignin acts as a binder for the cellulose fibres (Fig. 2). van Dam et al. (2004) have reported 
that lignin can be used as an intrinsic resin in binderless board production due to the fact 
that when lignin melts (temperatures above 140°C), it exhibits thermosetting properties. 
Lignin is the component that permits adhesion in the wood structure, and is a rigidifying 
and bulking agent (Anglès et al., 2001). Lehtikangas (2001) reported that water (8-15%) in 
pellets will reduce the softening temperature of lignin to 100-135°C by plasticizing the 
molecular chains. The adhesive properties of thermally softened lignin are thought to 
contribute considerably to the strength characteristics of briquettes made of lignocellulosic 
materials (Granada et al., 2002; Shaw, 2008). 

www.intechopen.com



 
Biofuel's Engineering Process Technology 414 

 
Fig. 2. Location and arrangement of cellulose microfibrils in plant cell walls (Murphy and 
McCarthy, 2005; Shaw, 2008). 

2.2 Rapid characterization of lignocellulosic materials 
The effect of various pre-processing and pre-treatment methods (Fig. 1) on the 
lignocellulosic matrix at the molecular level is not well understood. Applications of pre-
processing methods such as size reduction or increasing porosity, and pre-treatment 
techniques such as steam explosion on agricultural biomass have demonstrated an 
improvement in pellet (compact) quality that can be attributed to the changes in the 
lignocellulosic components and distribution (Bagby, 1982; Focher et al., 1998). Therefore, it is 
critical to rapidly quantify the change in cellulose, hemicelluloses and lignin components of 
biomass due to application of pre-treatment methods. 
Infrared spectroscopy has the potential to produce qualitative and quantitative analytical 
data for samples with minimum or no sample preparation, and at high speed and 
throughput (Adapa et al., 2011b and 2009; Budevska, 2002; Luypaert et al., 2003; Smola and 
Urleb, 2000; Tucker et al., 2000). Traditionally, chemical analyses of the individual 
components (e.g., lignin) of lignocellulosics have been performed by acid hydrolysis 
followed by gravimetric determination of lignin (Kelley et al., 2004). These methods can 
provide highly precise data. However, these methods are laborious, time-consuming, and, 
consequently, expensive to perform and sample throughput is limited. 

2.3 Fourier transform infrared spectroscopy 
Fourier Transform Infrared Spectroscopy (FTIR) can be used to rapidly characterize and 
quantify cellulose-hemicellulose-lignin composition prior to and after application of various 
methods of pre-processing and pre-treatment of biomass (Adapa et al., 2009). The 
quantitative analysis of FTIR absorption spectrometry is based on the Bouguer-Beer-
Lambert law (Sherman Hsu, 1997). According to this law, the intensities of absorption bands 
are linearly proportional to the concentration of each component in a homogenous mixture 
or solution.  
Regression equations to predict the lignocellulosic content of agricultural biomass can be 
developed using pure cellulose, hemicelluloses and lignin as reference samples, and 
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subsequently mixing them in different proportions to determine the change in absorption 
intensity at characteristic peak height (Adapa et al., 2011b). An overview of the experimental 
procedure to characterize the lignocellulosic composition is provided in Figure 3.  
Pure cellulose has five distinct characteristic/ prominent peaks at wavenumbers of 1431, 
1373, 1338, 1319 and 1203 cm-1. Similarly, hemicellulose (xylan) has prominent peaks at 
wavenumbers of 1606, 1461, 1251, 1213, 1166 and 1050 cm-1. The lignin spectrum has 
characteristic peaks at wavenumber of 1599, 1511, 1467, 1429, 1157 and 1054 cm-1. The 
intensity of absorption at characteristic peak heights of cellulose, hemicellulose and lignin 
were used to develop regression equations to predict lignocellulosic composition of any 
agricultural biomass (Table 1) (Adapa et al., 2011b).  
 

 

Fig. 3. Experimental procedure followed to characterize lignocellulosic composition of 
agricultural straw (Adapa et al., 2011b). 
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Equation % Mean 
Absolute 
Deviation %系結健健憲健剣嫌結 = −なぬの.など + ばぱな.ぬの岫鶏茎_なぬなひ岻 − ばひの.のば岫鶏茎_なねぬな岻 − なぬの.には岫鶏茎_なにどぬ岻+ ねぬは.なな岫鶏茎_なぬぬぱ岻 − ひね.にね岫鶏茎_なぬばぬ岻 7.5 %茎結兼件潔結健健憲健剣嫌結 = なはぬぱ.ばに − にのぱな.ばな岫鶏茎_なにのな × 鶏茎_なねはな岻 − なにはど.ひど岫鶏茎_なになぬ岻− にのなぱ.どの岫鶏茎_ななはは岻 + なのばぬ.はひ岫鶏茎_なになぬ × 鶏茎_なにのな岻+ ななぱ.ばね岫鶏茎_などのど岻 + ぬなにぱ.のな岫鶏茎_ななはは × なにのな岻+ になばひ.はの岫鶏茎_なねはな岻 + ひに.ぬは岫鶏茎_なはどは岻 − ににひね.なの岫鶏茎_なにのな岻− のひ.にひ岫鶏茎_なねはな × 鶏茎_なはどは岻 2.5 

%詣件訣券件券 = ばななど.ぱば + ぬぱぱ.ぬに岫鶏茎_なのなな × 鶏茎_なのひひ岻 − なはねねど.ひぬ岫鶏茎_なねはば岻+ ねねば.ぬは岫鶏茎_なのひひ岻態 + なひのばに.ぱに岫鶏茎_ななのば × 鶏茎_なねはば岻+ なぱぬばね.ぬは岫鶏茎_ななのば岻 + なのはのひ.ひぱ岫鶏茎_などのね × 鶏茎_なねにひ岻− ねひのに.ぱど岫鶏茎_ななのば × 鶏茎_なのひひ岻 + ぱどど.にど岫鶏茎_なのなな岻− ぬどぬに.ばの岫鶏茎_なねにひ岻態 − ななにはひ.なは岫鶏茎_なねにひ岻− ひねぱ.どね岫鶏茎_なのなな岻態 + ぬねねね.はひ岫鶏茎_なのひひ岻− なにぬねね.ひど岫鶏茎_などのね岻 − なははぱひ.ねね岫鶏茎_ななのば岻態
3.8 

Note: PH – Characteristic Peak Height (Photoacoustic Units) 

Table 1. Regression equations to predict the lignocellulosic composition of agricultural 
biomass (Adapa et al., 2011b). 

3. Pre-treatment of lignocellulosic biomass 

3.1 Need for pre-treatment 
Upon densification, many agricultural biomass materials, especially those from straw and 
stover, result in a poorly formed pellets or compacts that are more often dusty, difficult to 
handle and costly to manufacture. This is caused by lack of complete understanding on the 
natural binding characteristics of the components that make up biomass (Sokhansanj et al., 
2005). The natural binding characteristics of lignocellulosic biomass can be enhanced by 
modifying the structure of cellulose-hemicellulose-lignin matrix by application of pre-
processing and pre-treatment methods (Sokhansanj et al. 2005). It is postulated that by 
disrupting the lignocellulosic matrix of biomass materials via application of various 
chemical, physico-chemical (steam explosion, microwave, and radio frequency heating), and 
biological pre-treatment, the compression and compaction characteristics can be improved 
(Shaw 2008; Kashaninejad and Tabil, 2011). When high molecular amorphous 
polysaccharides are reduced to low molecular components, the polymer becomes more 
cohesive in the presence of moisture (Chen et al., 2004). The cellulose-hemicellulose-lignin 
matrix can be broken down to smaller amorphous molecules through acid or alkaline 
hydrolysis as well as through steam explosion (Ladisch, 1989; Vlasenko, 1997). Alkaline or 
acid solutions are often used for pre-treatment of biomass and the effect of pre-treatment 
depends on the lignin content of biomass. When biomass is treated with dilute alkaline 
solution, the internal surface area of the material is increased by swelling. Swelling causes a 
decrease in the degree of polymerization, separation of structural linkages between lignin 
and carbohydrates and disruption of the lignin structure (Fan et al., 1987). Increased 
moisture content resulting from chemical and enzymatic treatments is a problem, as the 
treated biomass has to be dried prior to densification. Steam explosion results in the 
hemicelluloses being hydrolyzed and water soluble, the cellulose is slightly depolymerized, 
the lignin melts and is depolymerized, which aid in binding particles together during 
densification. Zandersons et al. (2004) stated that activation of lignin and changes in the 
cellulosic structure during the steam explosion process facilitate the formation of new 
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chemical bonds. Lam et al. (2008) reported that the quality (durability) of compacts 
produced from steam exploded sawdust was 20% higher than non-treated sawdust. 

3.2 Physico-chemical pre-treatments 
3.2.1 Steam explosion 

Steam explosion is one of the most applied pre-treatment processes owing to its low use of 
chemicals and limited energy consumption (Harmsen et al., 2010). During steam explosion 
pre-treatment process, the lignocellulosic biomass is heated with high pressure saturated 
steam having temperatures typically in the range of 180-230oC for 2-10 minutes. 
Subsequently, the substrate is quickly flashed to atmospheric pressure; as a result, the water 
inside the substrate vaporizes and expands rapidly, disintegrating the biomass (Grous et al., 
1985; Kokta and Ahmed, 1998; Zimbardi et al., 1999). This causes great reduction in the 
particle size of the substrate (Fig. 4). The heart of the explosion pulping process is the 
reactor, which allows the use of high pressure during heating and cooking. The reactor can 
be of either the batch (Fig. 5) (Jin and Chen, 2006) or continuous type (Fig. 6) (Kokta and 
Ahmed, 1998; Adapa et al., 2010a).  
 
 
 Barley Straw Canola Straw Oat Straw Wheat Straw 
 
 
 
 
 
Non-Treated 

 

 
 
 
 
 
 
 
 
Steam Exploded 

Fig. 4. Photographs showing the non-treated (30 mm hammer mill screen size) and steam 
exploded barley, canola, oat and wheat straw grinds. 

The extent of chemical and structural modifications from steam-explosion pre-treatment 
depends on residence time, temperature, particle size and moisture content (Sun and Cheng, 
2002). However, the severity (Ro) of steam explosion is quantified as a function of retention 
time and reaction temperature (Equation 1) (Overend and Chornet, 1987; Viola et al. 2008).  

 Ro = 建 × exp 岾脹貸怠待待怠替.胎泰 峇  (1) 
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Where T is the temperature in oC and t is the time in minutes.  
According to Zimbardi et al. (1999), the simplest way to carry out steam explosion is by 
batch procedure, hence widely reported in literature. However, the continuous reactors are 
of major interest for industrial applications. They have indicated that although the products 
obtained at the same treatment, severity in batch and continuous reactors are 
macroscopically different at first sight, there is still a lack of understanding to explain these 
differences. Consequently, they have developed experimental relationships between the two 
systems useful in making the data transfer straightforward (Equation 2). 

 健剣訣岫迎剣岻喋銚痛頂朕 = な.のど × 岫健剣訣岫迎剣岻寵墜津痛沈津通墜通鎚 − な岻  (2) 

In addition, studies have been carried out to try to improve the results of steam explosion by 
addition of chemicals such as acid or alkali (Cara et al., 2008; Harmsen et al., 2010; Stenberg 
et al., 1998; Zimbardi et al., 2007). Limitations of steam explosion include the formation of 
degradation products that may inhibit downstream processes (Garcia-Aparicio et al., 2006). 

 

 
Fig. 5. Schematic diagram of the FJM-200 fluidized bed opposed jet mill. 1, Infeed; 2, 
collection; 3, classification section; 4, grinding section; 5, compressed air; 6, discharge 
opening (Jin and Chen, 2006). 
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Fig. 6. The Andritz (ANDRITZ AG, Graz, Austria) continuous biomass steam explosion 
facility for manufacturing of Medium Density and High Density Fiberboards (MDF/HDF), 
Forintek pilot plant at the FPInnovations, Quebec City, Quebec (Adapa et al., 2010a). 

3.2.2 Microwave and radio frequency (RF) heating 

Dielectric heating is an alternative method to conventional heating. Unlike 
conduction/convection heating, which is based on superficial heat transfer, dielectric 
heating is based on volumetric and rapid heat transfer (de la Hoz et al., 2005). When 
lignocellulosic materials are placed in an electric field for dielectric heating pre-treatment, 
dipole molecules such as water or other dielectric materials, rotate vigorously to orient in 
the field. More polar components will absorb more energy, and thus, “hot spots” will be 
created in non-homogeneous materials. It is hypothesized that this unique heating feature 
results in an “explosion” effect in the particles and improves the disruption of the 
lignocellulosic structures. In addition, the non thermal effects of electromagnetic field 
accelerate the disintegration of the crystal structures (de la Hoz et al., 2005). Dielectric 
heating can be categorized as microwave or radio frequency depending on the wavelength 
used in the heating devices (Oberndorfer et al., 2000).  
Microwave is electromagnetic waves between 300 MHz (wavelength 1 m) and 300 GHz 
(wavelength 1 mm). This range of spectrum lies between infrared and radio frequency 
radiation. Microwave irradiation has been extensively used in many processes because of its 
high heating efficiency and easy operation. Microwave energy can penetrate into materials 
and heat them quickly and uniformly. Microwave irradiation is considered to create thermal 
and non thermal effects. It has been applied as an efficient pre-treatment technique to 
enhance the hydrolysis of biomass materials. Some studies have demonstrated that 
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microwave irradiation can change the structure of lignocellulosic materials and degrade or 
reduce lignin content, reduce cellulose crystallinity, and increase porosity and surface area 
of the materials (Azuma, 1984; Zhu et al., 2006b; Kashaninejad and Tabil, 2011).  
This pre-treatment involves microwave irradiation of immersed biomass in an aqueous 
environment. Different types of lignocellulosic materials have been pre-treated using 
microwave irradiation including wheat straw (Ooshima et al., 1984; Zhu et al., 2006b; 2006c; 
Kashaninejad and Tabil, 2011), barley straw (Kashaninejad and Tabil, 2011), rice straw 
(Ooshima et al., 1984; Zhu et al., 2005; 2006a), rice hulls (Magara and Azuma, 1989), 
sugarcane bagasse (Ooshima et al., 1984; Magara and Azuma, 1989; Kitchaiya et al., 2003), 
switchgrass (Hu and Wen, 2008; Keshwani et al., 2007) and woody materials (Azuma et al., 
1984). These materials were subjected to microwave pre-treatment of 2450 MHz in the range 
of 250 to 1000 W. The temperature of operation ranged from 70 to 230˚C, while heating time 
varied from 5 to 120 minutes. However, higher microwave power with short pre-treatment 
time and the lower microwave power with long pre-treatment time had almost the same 
effect on chemical composition of lignocellulosic materials (Zhu et al., 2005; 2006b; 
Kashaninejad and Tabil, 2011).  
In order to increase the efficiency of microwave heating pre-treatment, some researchers 
have combined microwave treatment with alkaline treatment such as NaOH or Ca(OH)2. 
Some used alkaline solution during microwave heating treatment (Zhu et al., 2005; 2006a; 
2006b; 2006c; Keshwani et al., 2007; Kashaninejad and Tabil, 2011) and some applied the 
alkaline solution before the lignocellulosic materials were subjected to microwave 
irradiation (Zhu et al., 2006a; Hu and Wen, 2008). Combination of microwave irradiation 
and alkali treatment improves the degradation of biomass by accelerating the reactions 
during the pre-treatment process compared with the conventional heating chemical pre-
treatment process. Remarkable changes (Table 2) have been reported in the chemical 
composition of biomass samples after microwave-alkali pre-treatment, particularly in 
hemicellulose, lignin, and cellulose contents (Kashaninejad and Tabil, 2011). It has been 
reported that alkali treatment dissolves lignin and hemicellulose, and microwave irradiation 
facilitates dissolving these components in alkali solutions (Jackson, 1977; Kumar et al., 2009; 
Lesoing et al., 1980; Zhu et al., 2005). Biomass samples pretreated by microwave-alkali 
technique have lower lignin, hemicellulose, and cellulose than samples pretreated by 
microwave-distilled water or untreated samples. Moreover, degradation and 
depolymerisation of lignin to smaller phenolic components is another influence of 
microwave-alkali pre-treatment that could be considered as binder in densification process. 
The pellets made from microwave-chemical pre-treated biomass grinds have significantly 
higher density and tensile strength (Table 3) than the untreated or samples pre-treated by 
microwave alone (Kashaninejad and Tabil, 2011). 
Radio frequency (RF) can penetrate more deeply into the materials compared with 
microwave heating because the radio frequency wavelength is up to 360 times greater than 
microwave (Marra et al., 2007). This unique characteristic is an advantage to treat large 
amount of material and it is easier to scale up the process. While radio frequency as a 
heating method has been widely applied in food-processing industries, there is not much 
report on application of radio frequency heating for lignocellulosic materials pre-treatment. 
Hu et al. (2008) used radio frequency heating in the NaOH pre-treatment of switchgrass to 
enhance its enzymatic digestibility. Because of the unique features of radio frequency 
heating (i.e., volumetric heat transfer, deep heat penetration of the samples, etc.), 
switchgrass could be treated on a large scale, at high solids content, and with a uniform 
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temperature profile. At 20% solids content, radio frequency-assisted alkali pre-treatment (at 
0.1 g of NaOH/g of biomass loading and 90°C) resulted in a higher xylose yield than the 
conventional heating pre-treatment. The optimal particle size and alkali loading in the radio 
frequency pre-treatment were determined to be 0.25-0.50 mm and 0.25 g of NaOH/g of 
biomass, respectively. 
 

Treatment 
Wheat straw Barley straw 

Protein Lignin Ash Starch Cellulose Hemicellulose Protein Lignin Ash Starch Cellulose Hemicellulose 

Untreated 1.99b 8.33a 6.33f 1.11d 44.99b 27.96a 1.61d 11.95a 6.03d 0.79c 46.93a 27.40a 

Microwave-
distilled 

water 
2.24a 8.01c 8.87e 1.48b 39.69d 22.62b 2.01a 8.85b 6.28d 1.08b 45.25b 27.21a 

Microwave-
NaOH (1%) 

1.41e 7.82d 17.32b 1.89a 35.82e 12.32d 1.80b 6.65e 16.96b 0.60e 40.81c 8.74c 

Microwave-
NaOH (2%) 

1.36f 7.09f 34.77a 0.27f 34.77f 4.06f 1.62d 4.52f 41.43a 0.54f 35.22d 5.46d 

Microwave-
Ca(OH)2 

(1%) 
1.85c 8.11b 12.24d 0.69e 45.66a 14.94c 1.81b 7.27d 13.21c 0.72d 41.01c 15.00b 

Microwave-
Ca(OH)2 

(2%) 
1.52d 7.55e 15.89c 1.31c 42.56c 11.10e 1.68c 8.16c 16.73b 1.19a 41.24c 8.97c 

Means with the same letters designation (a, b, c, d, and e) in a column are not significantly different at P = 0.05. 

Table 2. Chemical composition (% dry basis) of untreated and microwave pretreated of 
wheat and barley straw at power 713 W.  

Treatment 
Wheat straw Barley straw 

Fracture load (N)
Tensile strength 

(MPa) 
Fracture load (N)

Tensile strength 
(MPa) 

Untreated 19.10±5.61 0.81±0.24 16.25±5.30 0.68±0.22 

Microwave- distilled 
water 

35.00±11.93 1.48±0.46 14.25±5.31 0.61±0.21 

Microwave- NaOH 
(1%) 

85.46±22.94 3.99±0.82 57.13±12.12 2.42±0.47 

Microwave- NaOH 
(2%) 

88.00±15.86 3.69±0.66 90.75±22.42 3.59±0.98 

Microwave- Ca(OH)2 
(1%) 

67.05±19.82 3.03±0.79 42.38±10.30 1.83±0.49 

Microwave- Ca(OH)2 
(2%) 

78.25±25.07 3.31±1.03 67.25±19.94 2.88±0.91 

Table 3. Effect of microwave-chemical pre-treatments on fracture load and tensile strength 
of wheat and barley straw pellets at power 713 W. 
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3.2.3 Chemical pre-treatment 

Different chemicals such as acids, alkalis, oxidizing agents and ozone have been used for 
chemical pre-treatment of lignocellulosic materials. Depending on the type of chemical used, 
pre-treatment could have different effects on structural components. Alkaline pre-treatment, 
ozonolysis, peroxide and wet oxidation pre-treatments were reportedly more effective in 
lignin removal, whereas dilute acid pre-treatment was more efficient in hemicellulose 
solubilization (Galbe and Zacchi, 2002; Sánchez and Cardona, 2008; Tomas-Pejo et al., 2008). 
Acid Hydrolysis: Inorganic acids such as H2SO4 and HCl have been used for pre-treatment of 
lignocellulosic materials and have been used on a wide range of feedstocks ranging from 
hardwoods to grasses and agricultural residues. Acid hydrolysis can be classified as 
concentrated or dilute-acid hydrolysis based on the dose of acid used in the process. In the 
first case, the biomass is treated with high concentration of acids at ambient temperatures, 
which results in high conversion of lignocellulosic materials. Although concentrated acids 
are powerful agents for cellulose hydrolysis, they are toxic, corrosive, hazardous, and thus 
require reactors that are resistant to corrosion, making the pre-treatment process very 
expensive. In addition, the concentrated acid must be recovered after hydrolysis to make the 
process economically feasible (Galbe and Zacchi, 2002; Sun and Cheng, 2002).  
Dilute-acid hydrolysis has been successfully developed for pre-treatment of lignocellulosic 
materials. Sulfuric acid at concentrations usually below 4% (wt) has been of the most interest 
in such studies as it is inexpensive and effective. Dilute H2SO4 pre-treatment can achieve 
high reaction rates and significantly improve cellulose hydrolysis (Esteghlalian et al., 1997). 
High temperature is favorable to attain acceptable rates of cellulose conversion. Despite low 
acid concentration and short reaction time, the use of high temperatures in dilute-acid 
hydrolysis accelerates the rate of hemicellulose sugar decomposition and increases 
equipment corrosion (Galbe and Zacchi, 2002; Taherzadeh and Karimi, 2007).  
Alkali hydrolysis: Dilute alkali such as sodium, potassium, calcium, and ammonium 
hydroxides have been used for pre-treatment of lignocellulosic materials in alkali 
hydrolysis. The effectiveness of these agents depends on the lignin content of the materials. 
Temperature and pressure are lower in alkali pre-treatment compared with other pre-
treatment methods (Mosier et al., 2005). Alkali pre-treatment can be conducted at ambient 
conditions, but process time is longer (hours or days instead of minutes or seconds). 
Compared with acid process, alkaline process causes less sugar degradation, and many of 
the caustic salts can be recovered and/or regenerated.  
Sodium hydroxide has been studied more than other agents (Soto et al., 1994; Fox et al., 
1989; MacDonald et al., 1983). Treatment of lignocellulosic materials using dilute NaOH 
results in swelling, leading to an increase in internal surface area, a decrease in the degree of 
polymerization, a decrease in crystallinity, separation of structural linkages between lignin 
and carbohydrates, and disruption of the lignin structure. However, calcium hydroxide 
(lime) is the least expensive hydroxide and has been shown to be an effective pre-treatment 
agent. The process of lime pre-treatment involves slurrying the lime with water, spraying it 
onto the biomass material, and storing the material in a pile for a period of hours to weeks. 
The particle size of the biomass is typically 10 mm or less. Elevated temperatures reduce 
contact time. 
Oxidizing agents: In this pre-treatment, an oxidizing compound such as hydrogen peroxide 
(H2O2) or peracetic acid (CH3CO3H) is used to treat lignocellulosic materials and sometimes 
is applied in combination of an alkaline solution (e.g. NaOH) to improve effectiveness. This 
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pre-treatment is usually carried out under mild temperature. This pre-treatment is more 
effective to increase crop residue digestibility compared with NaOH pre-treatment alone. 
Gould (1984) delignified agricultural residues using 1% H2O2 at 25°C for 18–24 h. Under this 
condition, more than half of the lignin and most of hemicellulose were solubilized. The pre-
treatment of cane bagasse with H2O2 greatly enhanced its susceptibility to further 
hydrolysis. About 50% of the lignin and most of the hemicellulose were solubilized by 2% 
H2O2 at 30°C within 8 h, and a 95% efficiency of glucose production from cellulose was 
achieved in the subsequent saccharification by cellulase at 45°C for 24 h (Azzam, 1989). 
Ozonolysis: In this process, ozone is used to change the structure of lignocellulosic materials 
and has been used for different materials such as wheat straw (Ben-Ghedalia and Miron, 
1981), bagasse, green hay, peanut, pine ( Neely, 1984), cotton straw (Ben-Ghedalia and 
Shefet, 1983) and poplar sawdust (Vidal and Molinier, 1988). Ozonolysis is carried out at 
room temperature and normal pressure. It can effectively remove the lignin without 
producing any toxic residues. In this process, hemicellulose is slightly affected, but no 
change in cellulose has been reported. The main restriction of this process is the large 
amount of ozone utilization that makes the process expensive (Sun and Cheng, 2002). Binder 
et al. (1980) reported 60% removal of the lignin from wheat straw using ozone pre-
treatment. Enzymatic hydrolysis yield increased from 0% to 57% as the percentage of lignin 
decreased from 29% to 8% after ozonolysis pre-treatment of poplar sawdust (Vidal and 
Molinier, 1988). Garcia-Cubero et al. (2009) studied the ozonolysis pre-treatment of wheat 
straw in a fixed bed reactor at room conditions and concluded that enzymatic hydrolysis 
yield of up to 88.6% compared to 29% in non-ozonated sample. 

3.3 Biological pre-treatment 
Most pre-treatments require expensive instruments or equipment that require high energy 
requirements, depending on the process. In particular, physical and thermo-chemical 
processes require ample amount of energy to change the lignocellulosic structure of 
biomass. Biological pre-treatment using various types of rot fungi is a process that does not 
require high energy for lignin removal from a lignocellulosic biomass, despite extensive 
lignin degradation. Biological pre-treatments are safe, environmentally friendly and less 
energy intensive compared to other pre-treatment methods. However, the rate of hydrolysis 
reaction is very slow and needs a great improvement to be commercially applicable.  
Biological pre-treatment comprises of using microorganisms such as brown-, white-, and 
soft-rot fungi for selective degradation of lignin and hemicellulose among which white-rot 
fungi seems to be the most effective microorganism (Fan et al., 1987). Brown rots mainly 
attack cellulose, while white and soft rots attack both cellulose and lignin. Lignin 
degradation occurs through the action of lignin-degrading enzymes such as peroxidases and 
laccase (Okano et al., 2005). These enzymes are regulated by carbon and nitrogen sources. 
The suitable fungi for biological pre-treatment should have higher affinity for lignin and 
degrade it faster than carbohydrate components.  
Hatakka et al. (1983) studied the pre-treatment of wheat straw by 19 white-rot fungi and 
found that 35% of the straw was converted to reducing sugars by Pleurotus ostreatus in 5 
weeks. Similar conversion was obtained in the pre-treatment by Phanerochaete sordid 
(Ballesteros et al., 2006) and Pycnoporus cinnabarinus (Okano et al., 2005) in 4 weeks. Akin et 
al. (1995) also reported the delignification of bermudagrass by white-rot fungi. The 
biodegradation of bermudagrass stems was improved by 29-32%, after 6 weeks, using 
Ceriporiopsis subvermispora and by 63-77% using Cyathus stercoreus.  
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4. Particle size reduction and physical properties 

The application of pre-processing operations such as particle size reduction/ grinding is 
critical in order to increase the surface area of lignocellulosic biomass prior to densification 
(Mani et al. 2004). Particle size reduction increases the total surface area, pore size of the 
material and the number of contact points for inter-particle bonding in the compaction 
process (Drzymala, 1993). Size reduction is an important energy intensive unit operation 
essential for bioenergy conversion process and densification to reduce transportation costs 
(Bitra et al., 2009; Soucek et al., 2003). Energy consumption of grinding biomass depends on 
initial particle size, moisture content, material properties, feed rate of the material and 
machine variables (Lopo, 2002). A comprehensive summary of literature review on size 
reduction of lignocellulosic biomass is provided in Table 4. 
 

Type of 
Choppers/ 
Grinders 

Biomass 
Parameters Measured and 

Correlations 
Observations Reference 

Hammer Mill Non-Treated and 
Steam Exploded 
Barley, Canola, 
Oat and Wheat 
Straw 

 Hammer mill screen size (from 
1.6 to 30.0 mm) on Specific 
Energy 

 Effect of geometric mean 
particle size on bulk density 

 Effect of geometric mean 
particle size on particle density

 Analysis on ground particle 
size distribution 

 Negative exponential and power 
correlation between geometric mean 
particle size with both bulk and 
particle density 

 Specific energy requirement is 
material dependent 

 Negative power correlation between 
hammer mill screen size and specific 
energy 

 Shapiro-Wilk Test for normality was 
performed 

Adapa et al., 
2011a 

Tub Grinder Rectangular 
Wheat Straw 
Bales, Round 
Rice Straw and 
Corn Stover Bales

 Effect of screen sizes (from 12.7 
to 50.8 mm) on Specific Energy

 Effect of screen sizes on 
grinding rate 

 Analysis on ground particle 
size distribution 

 Positive correlation between screen 
size and grinding rate 

 Positive correlation between tub 
rotational speed and grinding rate 

 Specific Energy is material dependent 
 Negative power/ exponential 

correlation between screen size and 
specific energy

Arthur et al., 
1982 

Hammer Mill Coastal 
Bermudagrass 

 Effect of moisture content on 
Specific Energy 

 Effect of feed rate on Specific 
Energy 

 Positive correlation between moisture 
content and specific energy 

 Positive correlation between feed rate 
and specific energy 

Balk, 1964 

Hammer Mill Wheat Straw and 
Corn Stover 

 Effect of operating speeds 
(from 2000 to 3600 rpm) on 
Specific Energy 

 Effect of hammer angles (90o 
and 30o hammers) on Specific 
Energy 

 Analysis on ground particle 
size distribution 

 Positive correlation between operating 
speed and specific energy 

 Geometric mean particle diameter 
decreased with an increase in hammer 
mill speed 

 Specific energy increased with a 
decrease in hammer angle 

Bitra et al., 
2009 

Knife and 
Hammer Mills 

Hardwood 
Chips, Wheat 
Straw and Corn 
Stover 

 Effect of screen size (from 1.6 
to 12.7 mm) on specific energy 

 Negative correlation between screen 
size and specific energy 

 Specific Energy is material dependent 

Cadoche and 
López, 1989 

Hammer Mill Red Winter 
Wheat Straw 

 Effect of screen size (from 1.59 
to 4.76 mm) on specific energy 

 Effect of feed rate (from 1.5 to 
2.5 kg/min) on specific energy 

 Negative correlation was observed 
between screen size and specific 
energy 

 Feed rate did not have significant 
effect on specific energy 

Fang et al., 
1997 
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Type of 
Choppers/ 
Grinders 

Biomass 
Parameters Measured and 

Correlations 
Observations Reference 

Hammer Mill Wheat Straw  Effect of screen size (3.2 and 1.6 
mm) on Specific Energy 

 Analysis on ground particle 
size distribution 

 Negative correlation between specific 
energy and screen size 

Himmel et 
al., 1985 

Tub Grinders Round Bales of 
Corn Stover and 
Perennial Grasses

 Effect of screen size (from 19.1 
to 127.0 mm) on Specific 
Energy 

 Effect of screen size on 
throughput 

 Effect of screen size on bulk 
and particle densities 

 Negative correlation between screen 
size and bulk density 

 Positive correlation between screen 
size and particle density 

 Negative correlation between screen 
size and specific energy 

 Positive correlation between screen 
size and throughput 

Kaliyan et al., 
2010 

Hammer Mill Barley Straw, 
Corn Stover and 
Switchgrass 

 Effect of Screen Sizes (3.2, 1.6 
and 0.8 mm) on Specific Energy

 Effect of Moisture Content (8% 
and 12% wb) on Specific 
Energy 

 Correlation between bulk and 
particle densities and 
geometric mean diameter 

 Analysis on ground particle 
size distribution 

 Negative linear correlation between 
specific energy and hammer mill 
screen size at 8% mc 

 Quadratic correlation between specific 
energy and hammer mill screen size at 
12% mc 

 Polynomial relations for bulk and 
particle densities with geometric mean 
particle diameters  

Mani et al., 
2004 

Hammer Mill Oat Straw, Rattle 
Grass and 
Miscanthus 

 Effect of Screen size (from 1.0 
to 10.0 mm) on specific energy 

 Effect of moisture content on 
specific energy 

 Negative power correlation between 
screen size and specific energy 

 Positive correlation between moisture 
content and specific energy; 
significantly higher specific energy is 
required at smaller screen sizes 

Soucek et al., 
2003 

Hammer Mill Corn Stover  Effect of hammer thickness (6.4 
and 3.2 mm) on Specific Energy 

 Effect of hammer thickness (6.4 
and 3.2 mm) on Grinding Rate 

 Effect of hammer tip speed (54 
to 86 m/s) on Specific Energy 

 Negative correlation between hammer 
thickness and Specific Energy 

 Negative correlation between hammer 
thickness and Grinding Rate 

 Positive correlation between hammer 
tip speed and Specific Energy 

Vigneault et 
al., 1992 

Knife Mill Switchgrass, 
Corn Stover, and 
Wheat Straw 

 Effect of rotational speed (from 
250 to 500 rpm) on specific 
energy 

 Analysis on ground particle 
size distribution 

 Positive correlation between rotational 
speed and specific energy 

 Screen size has significant effect on 
particle size distribution 

Womac et al., 
2007 

Table 4. A comprehensive summary of literature review on size reduction of lignocellulosic 
biomass. 

4.1 Chopping 

Baled agricultural biomass from the field does not have good flowing characteristics and 
may not flow easily into grinders such as hammer mills and disc refiners. Therefore, 
biomass needs to be chopped with a chopper (rotary shear shredder)/ knife mill/ tub 
grinder to accommodate bulk flow and uniformity of feed rate. A chopper, knife cutter, or 
knife mill is often used for coarse size reduction (>50 mm) of stalk, straw, and grass feed 
stocks (Bitra et al., 2009). Knife mills reportedly worked successfully for shredding forages 
under various crop and machine conditions (Cadoche and López, 1989). 
Bitra et al. (2009) reported that the total specific energy (including energy to operate the 
knife mill) for agricultural biomass chopping increases with knife mill speed. The total 
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specific energy for knife mill and tub grinder has been observed to have negative correlation 
with screen size and mass feed rate (Arthur et al., 1982; Bitra et al., 2009; Himmel et al., 
1985). However, grinding rate (throughput) increases with an increase in screen size (Arthur 
et al., 1982). 
For tub grinders, an increase in screen size results in an increase in geometric mean length of 
particles and throughput, but a decrease in bulk density of the particles and specific energy 
consumption (Kaliyan et al., 2010). 

4.2 Hammer mill grinding 

Typically, hammer mills are used in forage processing industry as they are relatively 
inexpensive, easy to operate and produces wide range of particles (Lopo, 2002). Hammer 
mills have achieved merit because of their ability to finely grind a greater variety of 
materials than any other machines (Scholten et al., 1985). The performance of a hammer mill 
is measured in terms of energy consumption and geometric mean diameter and particle size 
distribution of the ground product (Adapa et al., 2011a; Mani et al., 2004).  
Screen Size: Hammer mill screen opening size was the most significant factor affecting mill 
performance (Fang et al., 1997) and also has significant effect on mean particle size (Pfost 
and Headley, 1971). The specific energy required to grind agricultural biomass significantly 
increases with a decrease in hammer mill screen size and shows a negative power 
correlation (Arthur et al., 1982; Soucek et al., 2003). Similarly, Adapa et al. (2011a) reported 
negative correlation between specific energy and particle size of biomass as affected by 
hammer mill screen sizes. However, two other studies reported a second-order polynomial 
relationship between the specific energy requirements for grinding biomass (Mani et al. 
2004; Sitkei, 1986). Usually, the mean geometric particle size for any particular biomass 
decreases with a decrease in hammer mill screen size (Adapa et al., 2011a). It has been 
reported that wider particle size distribution is suitable for compaction (pelleting/ 
briquetting) process (Adapa et al., 2011a; Mani et al., 2004). During compaction, smaller 
(fine) particles rearrange and fill in the void space of larger (coarse) particles producing 
denser and durable compacts (Tabil, 1996). 
Operating Speed (Peripheral Velocity): The speed has a significant effect on mean particle size 
(Pfost and Headley, 1971). The total specific energy of hammer mill grinding has direct 
correlation to an increase in hammer tip speed (Bitra et al., 2009; Vigneault et al., 1992). High 
speed hammer mills with smaller diameter rotors are good for fine or hard-to-grind 
material. However, at high tip speeds, the material moves around the mill parallel to the 
screen surface making the openings only partially effective. At slower speeds, the material 
impinges on the screen at a greater angle causing greater amounts of coarser feed to pass 
through (Balk, 1964). 
Hammer Angles and Thickness: The direct energy input for grinding also depends on hammer 
angles. In general, the specific energy for grinding decreases with an increase in hammer 
degrees (Bitra et al., 2009). In addition, the specific energy for grinding increases with an 
increase in hammer thickness (Vigneault et al., 1992). 
Material Moisture Content and Feed Rate: A positive correlation has been reported between 
moisture content and specific energy consumption for grinding of agricultural biomass 
(Balk, 1964; Mani et al., 2004; Soucek et al., 2003). Feeding rate also has significant effect on 
specific energy consumption during hammer mill grinding and has positive correlation 
(O’Dogherty, 1982). 
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Bulk and Particle Densities, and Geometric Mean Particle Size: Usually, the bulk and particle 
density of agricultural straw significantly increases with a decrease in hammer mill screen 
size (Adapa et al., 2011a). The geometric mean particle size of pre-treated straw is usually 
smaller than that of the non-treated straw. This could be due to the fact that application of 
pre-treatment disrupts/ disintegrates the lignocellulosic structure of the biomass 
(Sokhansanj et al., 2005) leading to lower shear strength (easier to grind the straw). 

4.3 Physical and frictional properties of biomass 

Bulk Density: The goal of densification is to increase the bulk density of agricultural straw to 
facilitate economic storage, transportation and handling of the material. In addition, 
densification results in an increase in the net calorific content per unit volume. The bulk 
density of agricultural biomass depends on the type of biomass, moisture content, grind 
size, and pre-treatment (Mani et al., 2006). Lower bulk densities, and concerns with uneven 
and low flowability of straw grinds are critical issues to sustainable production of pellets 
using pellet mills (Adapa et al., 2010c; Larsson et al., 2008). 
Typically, the bulk density of ground straw increases with a decrease in hammer mill screen 
size. Also, pre-treatments usually results in a decrease in bulk density since the organized 
lignocellulosic structure of biomass is disturbed/ disintegrated. In addition, the bulk density 
and geometric mean particle size of material is correlated by either power or exponential 
relations (Adapa et al., 2010b; Mani et al., 2004). Table 5 shows a summary of average bulk 
density of various agricultural biomasses ground using a hammer mill. 
Particle Density: Particle size of the grinds will have direct effect on the final pellet density. 
Theoretically, the density of pellet can be as high as the particle density of the ground 
biomass. Similar to bulk density, particle density also depends on the type of biomass, 
moisture content, grind size, and pre-treatment (Adapa et al., 2010b). The particle density is 
observed to have negative correlation with hammer mill screen size. Application of pre-
treatment increases the particle density since disturbance/ disintegration of lignocellulosic 
structure results in finer components (Adapa et al., 2010b). Table 5 shows a summary of 
average particle density of various agricultural biomasses ground using a hammer mill. 
Geometric Mean Particle Size and Distribution: It has been reported that wider particle size 
distribution is suitable for compaction (pelleting/briquetting) process (Mani et al., 2004a). 
During compaction, smaller (fine) particles rearrange and fill in the void space of larger 
(coarse) particles producing denser and durable compacts (Tabil, 1996). Therefore, ideally 
the grinds should be normally distributed, should have near zero skewness and lower peak 
than expected for the normal and wider distribution of data (negative Kurtosis values). In 
addition, a decrease in the biomass grind size has been observed to have a positive effect on 
pellet mill throughput (Adapa et al., 2004). 
Frictional Properties: Prior to densification, biomass grinds need to be efficiently stored, handled 
and transported. Physical and frictional properties of biomass have significant effect on design 
of new and modification of existing bins, hoppers and feeders (Fasina et al., 2006). The 
frictional behavior of biomass grinds in all engineering applications is described by two 
independent parameters: the coefficient of internal friction, and the coefficient of wall friction. 
The former determines the stress distribution within particles undergoing strain, and the latter 
describes the magnitude of the stresses between the particle and the walls of its container 
(Seville et al., 1997). The classic law of friction states that frictional force is directly proportional 
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to the total force that acts normal to the shear surfaces (Chancellor, 1994; Chung and Verma, 
1989; Larsson, 2010). Frictional force depends on the nature of the materials in contact but is 
independent of the area of contact or sliding velocity (Mohsenin, 1970). Material properties 
such as moisture content and particle size affect the frictional properties and densification 
performance of an individual feedstock (Larsson 2010; Shaw and Tabil, 2006). In addition, the 
determination of coefficient of friction is essential for the design of production and handling 
equipment and in storage structures (Adapa et al., 2010a; Puchalski and Brusewitz, 1996). A 
comprehensive summary of literature review on coefficient of internal friction and cohesion of 
agricultural biomass is provided in Table 6. 
Predominantly, a linear correlation exists between normal and shear stress for agricultural 
straw grinds (Adapa et al., 2010a; Chevanan et al., 2008; Richter, 1954) at any specific hammer 
mill screen size. An increase in hammer mill screen size significantly decreases the shear stress 
for ground straw at any specific normal stress (Adapa et al., 2010a).  
The correlation for coefficient of internal friction and cohesion with average geometric mean 
particle sizes for agricultural straw grinds is provided in Adapa et al. (2010a). These 
correlations can be used to predict the coefficient of internal friction (slope of the linear plot) 
and the cohesion (intercept of the linear plot) for various geometric mean particle sizes. In 
general, the coefficient of internal friction for ground agricultural straw decreases with an 
increase in average geometric mean particle diameter. The coefficient of cohesion for straw 
grinds increases with an increase in average geometric mean particle size (Adapa et al., 
2010a). 
 

Biomass 
Hammer 

Mill Screen 
Size (mm) 

Moisture 
Content (%, 

wb) 

Geometric 
Mean Particle 

Diameter (mm)

Bulk 
Density 
(kg/m3) 

Particle 
Density 
(kg/m3)

Reference 

Barley 

6.4 8.9 0.88 96 1046 

Adapa et al., 2011a 3.2 5.3 0.46 149 1089 

1.6 7.8 0.46 155 1149 

Canola 

6.4 12.6 0.89 144 1019 

Adapa et al., 2011a 3.2 9.2 0.52 190 1192 

1.6 8.3 0.37 203 1309 

Corn Stover 

3.2 6.22 0.41 131 1170 

Mani et al., 2004 1.6 6.22 0.26 156 1330 

0.8 6.22 0.19 158 1340 

Oat 

6.4 10.9 0.94 111 873 

Adapa et al., 2011a 3.2 9.4 0.57 156 1093 

1.6 7.7 0.40 196 1240 

Wheat 

6.4 9.5 0.99 107 1078 

Adapa et al., 2011a 3.2 9.5 0.72 141 1225 

1.6 8.6 0.45 154 1269 

Table 5. Average bulk and particle densities of various agricultural biomasses ground using 
a hammer mill 
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Biomass Experimental Conditions Observations Reference 

Corn Stover  Normal stress from 10 to 200 kPa 
 Hammer mill screen sizes of 6.35 and 3.18 

mm 
 Moisture contents of 7, 11 and 15% (wb) 
 Galvanized steel 

 Coefficient of wall friction increased 
from 0.18 to 0.26 with an increase in 
moisture from 7 to 15% 

 No clear trend observed for the 
adhesion coefficient 

Mani et al., 2004 

Peat hull, 
Switchgrass and 
Poultry Litter 

 Consolidating stress from 1.5 to 12.0 kPa 
 Screen sizes from 0.79 to 3.20 mm 
 Ring shear test 

 No effect of screen size on internal 
friction and cohesive properties 

Fasina et al., 2006 

Peat Moss, Wheat 
Straw, Oat Hulls 
and Flax Shives 

 Normal stress from 10 to 400 kPa 
 Geometric mean particles sizes of 0.74 (peat 

moss), 0.65 (wheat straw), 0.47 (oat hulls) 
and 0.64 (flax shives) mm 

 Moisture content 9-10% (wb) 
 Mild steel surface 

 Coefficient of wall friction were 0.68 
(peat moss), 0.45 (wheat straw), 0.39 
(oat hulls), and 0.41 (flax shives) 

 Adhesion coefficients were 0.2635 kPa 
(peat moss), 10.687 kPa (wheat straw), 
4.719 kPa (oat hulls), and 16.203 kPa 
(flax shives) 

Shaw and Tabil, 
2006 

Alfalfa, Barley 
Straw, Wheat Straw 
and Whole Green 
Barley 

 Normal stress from 200 to 735 kPa 
 Moisture content for alfalfa, barley straw 

from 12.0 to 45.7%, and for wheat straw at 
10.0% and whole green barley at 51.0% (wb) 

 Chop size from 10 to 90 mm 
 Polished steel surface 

 Coefficient if friction on steel surface 
for alfalfa and barley straw increased 
with moisture content and was from 
0.15 to 0.26, and 0.14 and 0.27, 
respectively 

 Coefficient of friction for wheat straw 
and whole green barley were 0.13 and 
0.21, respectively 

 No effect of chop size on coefficient of 
internal friction on barley straw 

Afzalinia and 
Roberge, 2007 

Switchgrass, Wheat 
straw, and Corn 
Stover 

 Normal stresses from 1.23 to 4.92 kPa 
 Chop size of 7.81 and 13.50 mm for 

switchgrass, 7.09 and 10.39 mm for wheat 
straw, 7.80 and 14.89 mm for corn stover 

 No effect of chop size on friction 
coefficients 

 Coefficient of internal friction varied 
from 0.765 to 1.586 

Chevanan et al., 
2008 

Reed Canary Grass  Normal stresses of 0.52-7.52 kPa (low) and 
23-275 MPa (high) 

 Moisture contents from 6.7 to 17.1% (wb) for 
low normal stress, and 8.9 to 27.2% for high 
normal stress 

 Screen sizes of 4.0 mm 
 Ring shear test 
  

 High friction value of 0.6 was obtained 
at normal stress of 50 MPa and lower 

 At low normal stresses, the coefficient 
of kinematic wall friction (ratio of shear 
stress and normal stress) was positively 
correlated with moisture content and 
negatively correlated to normal stress 

 At high normal stresses, the coefficient 
of kinematic wall friction was 
negatively correlated to both moisture 
content and normal stress 

Larsson, 2010 

Non-Treated and 
Steam Exploded 
Barley, Canola, Oat 
and Wheat Straw 

 Normal stress from 9.8 to 39.2 kPa 
 Moisture content of 10% (wb) 
 Screen size from 1.6 to 6.4 mm 

 No effect of screen size on shear stress 
values 

 Steam exploded straw had higher 
coefficient of internal friction than non-
treated straw grinds 

 Coefficient of friction for non-treated 
barley, canola, oat and wheat straw 
were in the range of 0.505 to 0.584, 
0.661 to 0.665, 0.498 to 0.590, and 0.532 
to 0.591, respectively. 

 Coefficient of friction for steam 
exploded barley, canola, oat and wheat 
straw were in the range of 0.562 to 
0.738, 0.708 to 0.841, 0.660 to 0.860, and 
0.616 to 1.036, respectively 

Adapa et al., 2010a 

Table 6. A comprehensive summary of literature review on coefficient of internal friction 
and cohesion of agricultural biomass 
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5. Summary 

The current chapter has explored the effects of pre-treatment (chemical, physico-chemical, 
and biological) and pre-processing (size reduction) techniques on densification of 
agricultural straw resulting in high quality (density and durability) pellets. It has been 
determined that an increase in bulk density of biomass also increases the net calorific 
content per unit volume of pellets, and facilitates easy and economical storage, transport 
and handling of the biomass. Pre-treatment and pre-processing methods disintegrate the 
basic lignocellulosic structure of biomass, and change the relative composition of lignin, 
cellulose and hemicelluloses in the material. In addition, physical and frictional properties of 
agricultural straw are altered. The application of pre-treatments breaks the long-chain 
hydrogen bond in cellulose, making hemicelluloses amorphous, and loosening the lignin 
out of the lignocellulosic matrix, resulting in better quality (physically) pellets. During this 
process, the high molecular amorphous polysaccharides are reduced to low molecular 
components to become more cohesive in the presence of moisture during densification 
process. Particle size reduction increases the total surface area, pore size of the material and 
the number of contact points for inter-particle bonding in the compaction process. 
It has been shown that the Fourier Transform Infrared Spectroscopy (FTIR) can be used to 
rapidly characterize and quantify cellulose-hemicellulose-lignin composition prior to and 
after application of various pre-processing and pre-treatment methods. Regression 
equations were developed to predict the lignocellulosic content of agricultural biomass 
using pure cellulose, hemicelluloses and lignin as reference samples. 
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