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1. Introduction 

Particulate matter (PM) refers to solid particles and liquid droplets found in air. Many 
manmade and natural sources produce PM directly, or produce pollutants that react in the 
atmosphere to form PM. The resultant solid and liquid particles come in a wide range of 
sizes, and particles that are 10 micrometers or less in diameter (PM10) can be inhaled into 
and accumulate in the respiratory system and are believed to pose health risks 
(Environmental Protection Agency, 2010). Particulate matter is one of the six primary air 
pollutants the Environmental Protection Agency (EPA) regulates, due to exposure to high 
outdoor PM10 concentrations causes increased disease and death (Environmental Protection 
Agency, 2010). Therefore, PM10 concentrations, amongst many other air pollutants, are 
sampled and measured in various places in California, United States.  
The general trend of PM air pollutant concentrations in the air in California are on the 
decrease, but it continues to be monitored and observed. The California standards for 
annual PM10 concentrations is that the annual arithmetic mean is 20 µg/m3, and the national 
standard is 50 µg/m3 before 2006 (California Environmental Protection Agency Air 
Resources Board, 2010, Environmental Protection Agency, 2010). The State of California sets 
very high standards for their air quality, and air pollutants are carefully monitored. 
However, in reality, it is too costly in terms of time, finance, and manpower to keep all the 213 
sites to be monitoring and recording. In Fig. 1, a complete map of all 213 sample locations for 
PM10 are shown. However, one must note that these sample sites are never all used at any 
given year, PM10 samples are taken at different locations each year. At best, a maximum of 102 
PM10 samples are collected during some years, and at worst, 61 PM10 samples are collected at 
that year. Therefore comparisons of PM10 between years are difficult, due to missing data at 
sample sites. It is difficult to construct kriging maps in terms of actual observations annually 
since the air pollutants were measured in different locations each year although the site design 
originally planned was quite delicate statistically.  
Each year, approximately 40% of the 213 sites were actually observed. We call a site that 
does not have a recorded PM10 value as "missing value", and since there are no patterns so 
that serious problems would twist the kriging map constructions. In Fig. 2, this is clearly 
demonstrated. In 1989, there are 61 PM10 samples collected (29% of 213 locations), and in 
2000, there are 94 PM10 samples collected (44%).  
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Fig. 1. Complete 213 Observational Sites in the California State 

 

 

Fig. 2. PM10 Samples Collected in California in 1989 (61 sites) and 2000 (94 sites) 

The data scarcity brings in a series of (five) fundamental issues into the spatial-temporal 
modelling and prediction practices for California PM10 data, namely: 
1. The necessity to recognize the impreciseness in analyzing the spatial-temporal pattern 

in terms of California PM10 records, which inevitably acts the solidness of a geo-
statistical analysis; 
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2. Which theoretical foundations are appropriate for modelling impreciseness uncertainty;  
3. How to fill up the "missing value" sites so that the "complete" records are available, 

which is either an original annual average from the original observations (40%) 
recorded on the site or a or predicted value by "neighbourhood sites" (60%), i.e., to 
facilitate spatial-temporal imprecise PM10 value by interpolations and extrapolations; 

4. How to estimate the parameters of uncertain processes (temporal patterns), particularly 

the rate of change parameter ,  1,2, ,213i iα = " ;  
5. Create annual kiging maps (19 maps) under spatially isotropy and stationarity 

assumptions so that the changes between annual maps can be analyzed by kriging map 
difference between 2007 and 1989 and kriging map of location rate of change. 

These issues will be addressed in the remaining sections sequentially. 

2. The necessity of modelling impreciseness in California PM10  
spatial-temporal analysis 

Impreciseness is a fundamental and intrinsic feature in the PM10 spatial-temporal modelling, 

due to the observational data shortage and incompleteness. Spatially, there are 213 sites 

involved, and temporally, PM10 observations were collected from 1989 to 2007, over a 19-

year period. During the 19-year period, there are only two sites (Site 2125 and Site 2804) 

having complete 19 year records. There are 16 sites having only 1 record (8%) and 70 sites 

having 10 or above records. To have a statistically significant time-series analysis, 50 data 

points are minimal requirement for each site, so classical time-series analysis (probabilistic 

analysis) cannot be performed. In order to have a quick overall evaluation of PM10 records 

on each site, we borrow the statistical quality control idea here (Electric, 1956, Montgomery, 

2001). But we do not carry on traditional 6-sigma rule, rather, classify the PM10 records into 

four groups: 1- ( ]5,20 , 2- ( ]20,35 , 3- ( ]35,50 , 4- ( ]50,160 . These four-group limits in Table 1 

reflect the national standard, (50 µg/m3) and California state standard (20 µg/m3) 

respectively. For example, 1 - ( ]5,20 is for a location whose PM10 fall in 5 to 20 (µg/m3). 
 

County name 1- ( ]5,20  2- ( ]20,35  3- ( ]35,50  4- ( ]50,160  No. of Sites 

Los Angeles   3 7 10 

Kern 1 2 1 5 9 

Riverside 3  3 3 9 

San Diego   5 3 8 

Imperial 3   4 7 

Lake  3   3 

Inyo 2 2 4  8 

Table 1. PM10 Hazard level evaluation over selected 7 counties 

One must be aware that the classification is not in absolute sense, rather, additional rules are 
adding (similar to quality control chart pattern analysis (Electric, 1956): 
(1) if a single point, then, classify the site hazard level according to which group it falls in; 
(2) if a sequence of records, some of them, particularly early points may fall in higher (or 
lower) hazard level, but if last three points fall in a lower (or higher) hazard level, the later 
level would be chosen for the site.  
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The additional rule 1 can attribute to expert's knowledge confirmation, while the additional 

rule 2 can be regarded as an expert's decision based on trend pattern.  

 

site 2045 site 2774 

 

 
site 2199 site 2263 

 
site 2997 site 2914 

 
site 2248 

 

Fig. 3. The 7 sites from the selected 7 counties with original PM10 data plots and the hazard 
level classifications 
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Fig. 3 shows the classifications of a seven sites from the selected 7 counties in Table 1, each 

county one site is picked up for illustration purpose. The red coloured plot means the 

hazard level 1 ( ]5,20 ; the green coloured plot means the hazard level 2 ( ]20,35 ; the purple 

coloured plot means the hazard level 3 ( ]35,50 ; and the black coloured plot means the 

hazard level 4 ( ]50,160 . 
It is evident that facing the impreciseness caused by incomplete data recording, one has to 
rely on expert's knowledge to compensate the inadequacy and accuracy in collected 
observational data. Impreciseness is referred to a term with a connotation specified by an 
uncertain measure or an uncertainty distribution for each of the actual or hypothetical 
members of an uncertainty population (i.e., collection of expert's knowledge). An uncertain 
process is a repeating process whose outcomes follow no describable deterministic pattern, 
but follow an uncertainty distribution, such that the uncertain measure of the occurrence of 
each outcome can be only approximated or calculated. 
The uncertainty modelling without a measure specification will not have an rigorous 
mathematical foundations and consequently the modelling exercise is baseless and 
blindness. In other words, measure specification is the prerequisite to spatial-temporal data 
collection and analysis. For example, without Kolmogrov's (1950) three axioms of 
probability measure, randomness is not defined and thus statistical data analysis and 
inference has no foundation at all. 
Definition 2.1: Impreciseness is an intrinsic property of a variable or an expert's knowledge 
being specified by an uncertain measure. 
It is therefore inevitably to seek appropriate form of uncertainty theory to meet the 
impreciseness challenges. In the theoretical basket, interval uncertainty theory (Moore, 
1966), fuzzy theory (Zadeh, 1965, 1978), grey theory (Deng, 1984), rough set theory (1982), 
upper and lower provisions (or expectations) (Walley, 1991), or Liu’s uncertainty theory 
(2007, 2010) may be chosen.  
While imprecise probability theory (Utikin and Gurov, 1998) may be a typical answer to 

address the observational data inaccuracy and inadequacy. However the imprecise 

probability based spatial modelling requires too heavy assumptions. Just as Utikin and 

Gurov (2000) commented, “the probabilistic uncertainty model makes sense if the following 

three premises are satisfied:  (i) an event is defined precisely; (ii) a large amount of statistical 

samples is available; (iii) probabilistic repetitiveness is embedded in the collected samples. 

This implies that the probabilistic assumption may be unreasonable in a wide scope of 

cases.” Guo et al. (2007) and Guo (2010) did attempt to address the spatial uncertainty from 

the fuzzy logic and later Liu's (2007) credibility theory view of point. 

Nevertheless, Liu’s (2007, 2010) uncertainty theory is the only one built on an axiomatic 

uncertain measure foundation and fully justified with mathematical rigor. Therefore it is 

logical to engage Liu’s (2007, 2010, 2011) uncertainty theory for guiding us to understand the 

intrinsic character of imprecise uncertainty and facilitate an accurate mathematical 

definition of impreciseness in order to establish the foundations for uncertainty spatial 

modelling under imprecise uncertainty environments.  

3. Uncertain measure and uncertain calculus foundations 

Uncertainty theory was founded by Liu in 2007 and refined in 2010, 2011. Nowadays 
uncertainty theory has become a branch of mathematics.  
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A key concept in uncertainty theory is the uncertain measure, which is a set function 
defined on a sigma-algebra generated from a non-empty set. Formally, let Ξ  be a nonempty 

set (space), and ( )ΞA  the σ -algebra on Ξ . Each element, let us say, A ⊂ Ξ , ( )A∈ ΞA  is 

called an uncertain event. A number denoted as { }A� , { }0 1A≤ ≤� , is assigned to 

event ( )A∈ ΞA , which indicates the uncertain measuring grade with which event ( )A∈ ΞA  

occurs. The normal set function { }A� satisfies following axioms given by Liu (2011): 

Axiom 1: (Normality) { } 1Ξ =� . 

Axiom 2: (Self-Duality) {}⋅�  is self-dual, i.e., for any ( )A∈ ΞA , { } { } 1cA A+ =� � .  

Axiom 3: ( -σ Subadditivity) { }
11

i i
ii

A A
∞ ∞

==

⎧ ⎫⎪ ⎪ ≤⎨ ⎬
⎪ ⎪⎩ ⎭

∑� �∪  for any countable event sequence{ }iA . 

Axiom 4: (Product Measure) Let ( ), ,
kk kΞΞ �A be the thk uncertain space, 1,2, ,k n= " . Then 

product uncertain measure � on the product measurable space ( ), ΞΞ A is defined by 

 { }1 2
1
minn k

k n≤ ≤
= ∧ ∧ ∧ =� � � " � �   (1) 

where 

 1 2
1

n

n k
k=

Ξ = Ξ ×Ξ × ×Ξ = Ξ∏"  (2) 

and 

 
1 2

1
n k

n

k
Ξ Ξ Ξ Ξ Ξ

=

= × × × =∏"A A A A A  (3) 

That is, for each product uncertain event ΞΛ∈A  (i.e, 

1 21 2 nn Ξ Ξ Ξ ΞΛ = Λ ×Λ × ×Λ ∈ × × × =" "A A A A ), the uncertain measure of the event Λ is 

 { }

{ } { }

{ } { }
1 1

1 1

1 1

1 1

sup min     if sup min 0.5

1 sup min if sup min 0.5

0.5                              otherwise

n n

c c
n n

k k
k n k nA A A A

k k
k n k nA A A A

≤ ≤ ≤ ≤× × ⊂Λ × × ⊂Λ

≤ ≤ ≤ ≤× × ⊂Λ × × ⊂Λ

⎧ Λ Λ >
⎪
⎪Λ = − Λ Λ >⎨
⎪
⎪
⎩

" "

" "

� �

� � �  (4) 

Definition 3.1: (Liu, 2007, 2010, 2011) A set function ( ) [ ]: 0,1Ξ →� A  satisfies Axioms 1-3 is 

called an uncertain measure. The triple ( )( ), ,Ξ Ξ �A  is called an uncertainty space. 

Definition 3.2: (Liu, 2007, 2010, 2011) An uncertainty variable is a measurable function 

ξ from an uncertainty space ( )( ), ,Ξ Ξ �A to the set of real numbers, i.e., for any Borel set  

B of real numbers, the set ( ) ( ){ } ( ): Bτ ξ τ∈Ξ ⊂ ∈ ∈ Ξ\B A , i.e., the pre-image of B is an 

event. 
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Remark 3.3: Parallel to revelation of the connotation of randomness in geostatistics,  

impreciseness occupies an fundamental position in geospatial-temporal uncertainty 

statistical analysis. In California PM10 spatial-temporal study,  nearly 60% sites do not have 

"complete" temporal sequences so that in order to fill the "missing" observations, we have to 

engage expert's knowledge to pursue "complete sequences" (i.e., to have 19 PM10 values at 

each individual site), which is inevitably imprecise and incomplete. Impreciseness is 

referred to a term here with an intrinsic property governed by an uncertainty measure or an 

uncertainty distribution for each of the actual or hypothetical members of an uncertainty 

population (i.e., collection of expert's knowledge). An uncertainty process is a repeating 

process whose outcomes follow no describable deterministic pattern, but follow an 

uncertainty distribution, such that the uncertain measure of the occurrence of each outcome 

can be only approximated or calculated. 

Remark 3.4: Impreciseness exists in engineering, business and research practices due to 

measurement imperfections, or due to more fundamental reasons, such as insufficient 

available information, ... , or due to a linguistic nature, because it is an unarguable fact that 

impreciseness exists intrinsically in expert’s knowledge on the real world. 

Definition 3.5: Letξ be a uncertainty quantity of impreciseness on an uncertainty measure 

space ( )( ), ,Ξ Ξ �A . The uncertainty distribution of ξ  is 

 ( ) ( ){ }|x xξ τ ξ τΨ = ∈Ξ ≤�  (5) 

An imprecise variable ξ  is an uncertainty variable and thus is a measurable mapping, i.e., 

: ,  ξ → ⊆\ \D D . An observation of an imprecise variable is a real number, (or more 

broadly, a symbol, or an interval, or a real-valued vector, a statement, etc), which is a 

representative of the population or equivalently of an uncertainty distribution ( )ξΨ ⋅  under a 

given scheme comprising set and σ -algebra. The single value of a variable with 

impreciseness should not be understood as an isolated real number rather a representative 

or a realization from the uncertain population. 

Definition 3.6: (Lipschitz condition) Let ( )f x be a real-valued function, :f → \R . If for 

any , nx y∈\ , there exists a positive constant 0M > , such that 

 ( ) ( )f x f y M x y− < −   (6)  

Definition 3.7: (Lipschitz continuity) Let : m mf → \R  

1. for mB∀ ⊂ \ , B to open set, f is Lipschitz continuous on B if 0M∃ >  such  

 ( ) ( ) ,  ,f x f y M x y x y B− < − ∀ ∈  (7) 

where ⋅ is some metric (for example, Euclidean distance in m\ ), such  

 ( ) ( )( ) ( ), , ,  ,d f x f y Md x y x y B< ∀ ∈  (8) 

2. for each mz∈\ , f is Lipschitz continuous locally on the open ball B of center z radius 

0M >  such  
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 ( ) ( ){ }| ,m
MB z y d y z M= ∈ <\   (9) 

3. if f is Lipschitz continuous on the whole space m\ , then the function is called globally 

Lipschitz continuous. 
Remark 3.8: For continuity requirements, Lipschitz continuous function is stronger than that 
of the continuous function in Newton calculus but it is weaker than the differentiable 
function in Newton differentiability sense. In other words, Lipschitz-continuity does not 
warrant the first -order differentiability everywhere but it does mean nowhere 
differentiability. Lipschitz-continuity does not guarantee the existence of the first-order 
derivative everywhere, however, if exists somewhere, the value of the derivative is bounded 
since  

 
( ) ( )f x f y

M
x y

−
<

−
  (10) 

by recalling the definition of the Newton derivative  

 
( ) ( ) ( )lim '

y x

f x f y
f x

x y→

−
=

−
  (11) 

Similar to the concept of stochastic process in probability theory, an uncertain process 

{ }, 0t tξ ≥ is a family of uncertainty variables indexed by t and taking values in the state 

space ⊆ \S . 

Definition 3.9:  (Liu 2010, 2011) Let { }, 0tC t ≥ be an uncertain process.  

1. 0 0C = and all the trajectories of realizations are Lipschitz-continous; 

2. { }, 0tC t ≥ has stationary and independent increments; 

3. every increment t s sC C+ − is a normal uncertainty variableb with expected value 0 and 

variance 2t , i.e., the uncertainty distribution of t s sC C+ − is 

 ( )
1

1 exp
3t s sC C

xz
z

t+

−

−
⎛ ⎞⎛ ⎞Ψ = + −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
  (12) 

Then { }, 0tC t ≥ is called a canonical process. 

Remark 3.10: Comparing to Brownian motion process { }, 0tB t ≥ in probability theory, which 

is continuous almost everywhere and nowhere is differentiable, while Liu's canonical 

process { }, 0tC t ≥ is Lipschitz-continuous and if{ }, 0tC t ≥ is differentiable somewhere, the 

derivative is bounded. Therefore{ }, 0tC t ≥ is smoother than { }, 0tB t ≥ . 

Definition 3.11: (Liu, 2010, 2011) Suppose { }, 0tC t ≥ is a canonical process, and f and g are 

some given functions, then 

 ( ) ( ), ,t t t td f t dt g t dCξ ξ ξ= +   (13) 

is called an uncertain differential equation. A solution to the uncertain differential equation 

is the uncertain process{ }, 0t tξ ≥ satisfying it for any 0.t >  
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Remark 3.12: Since tdC  and tdξ  are only meaningful under the umbrella of uncertain 

integral, i.e., the an uncertain differential equation is an alternative representation of  

 ( ) ( )0

0 0

, ,
t t

t s s sf s ds g s dCξ ξ ξ ξ= + +∫ ∫  (14) 

Definition 3.13: The geometric canonical process { }, 0tG t ≥ satisfies the uncertain 

differential equation 

 t t t tdG G dt G dCα σ= +  (15) 

has a solution  

 ( )expt tG t Cα σ= +  (16) 

where α can be called the drift coefficient and 0σ > can be called the diffusion coefficient of 

the geometric canonical process { }, 0tG t ≥ due to the roles played respectively. 

4. Spatial interpolation and extrapolation via inverse distance approach 

Statistically, spatial interpolation and extrapolation modeling is actually a kind of linear 
regression modeling exercises, say, kriging methodology. Considering the shortage of 
California PM10 data records, we will utilize a weighted linear combination approach, which 
was first proposed by Shepard (1968). The weights are the inverse distances between the 
missing value cell to the actual observed PM10 value cells. The weight construction is a 
deterministic method, which is neutral and does not link to any specific measure theory.  It 
is widely used in spatial predictions and map constructions in geostatistics, but is not 
probability oriented, rather, molecular mechanics stimulated. A unique aspect of 
geostatistics is the use of regionalized variables which are variables that fall between 
random variables and completely deterministic variables. The weight of an observed PM10 
value is inversely proportional to its distance from the estimated value. Let: 
 

ijC  The thj cell on the Site i , ( i represent the actual site number), 1,2, ,213i = " . 

Note index j points to the cell where no PM10 value is recorded, i.e., missing 

value cell. 

ix  Longitude of site i  

iy  Latitude of site i  

ijd  The distance between site i and site j (where missing value thj cell is located) 

( ) ( )2 2

ij j i j id x x y y= − + −  

ijw  
Weight, 

( )
( )

10

10

0 Cell ,  has no PM  obs.

1/ Cell ,  has PM  obs.
ij

ij

i j
w

d i j

⎧⎪= ⎨
⎪⎩

 

 
Then the inverse distance formula is, 
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213

1

ij
ij ij

ij
i

w
C z

w
=

=

∑
  (17) 

 

site 2045 site 2774 

 
site 2199 site 2263 

 
site 2997 site 2914 

 
site 2248 

 

Fig. 4. The 7 sites from the selected 7 counties with completed 19 year observations of PM10 
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We wrote a VBA Macro to facilitate the interpolations and the extrapolations to "fill" up the 
2048 missing value cells in terms of the 1639 cells with PM10 values. With the interpolations 
and the extrapolations, every site has 19 PM10 values now. As to whether the inverse 
distance approach can facilitate highly accurate predictions for each cell without a observed 
PM10 value, we performed a re-interpolation and re- extrapolation scheme (by deleting a 
true PM10 record, then fill it by the remaining records one by one) to evaluate the mean 
square value for error evaluation, the calculated mean of sum of error squares is 59.885, 
which is statistically significant (asymptotically).  
We plotted sites 2045, 2744, 2199, 2263, 2297, 2914, and 2248 (appeared in Fig. 3) respectively 
in Fig. 4. By comparing Fig. 3 and 4, it is obvious that only Site 2744 the hazard level 
changed (moving up to next higher hazard level), while the hazard level of other six sites 
are unchanged. This may give an justification of the inverse distance approach. Keep in 
mind, the aim of this article is investigate whether the PM10 level is changed over 1989 to 
2007 19-year period. The change is not necessarily be accurate but reasonably calculated 
because of the impreciseness features of PM10 complete records. 

5. Uncertain analysis of site temporal pattern 

Once the interpolations and the extrapolations in terms of the inverse distance approach is 
completed, a "complete" data set is available, containing 4047 data records of 213 sites over 
19 years. The next task is for a given site, how to model the uncertain temporal pattern. It is 
obvious that the "complete" data set contains impreciseness uncertainty due to the 
interpolations and the extrapolations. We are unsure that the impreciseness uncertainty is of 
random uncertainty, so that we still use uncertain measure theory to pursue the temporal 
uncertainty modelling.    

Recall that the Definition 3.13 in Section 3 facilitates a uncertain geometric canonical 

process, { }, 0tG t ≥ . Notice that 0 0G = may not fit the data reality so that we propose a 

modified uncertain geometric canonical process, { }* , 0tG t ≥ with 0 0G > : 

 ( )*
0 0 expt t tG G G G t Cα σ= = +   (18) 

Note that  

 
*

0ln lnt tG G t Cα σ= + +
  (19) 

Let *lnt ty G= , 0 0lnGα = , then we have  

 0t ty t Cα α σ= + + , 1,2, ,18t = "   (20) 

Recall the relevant definitions in Section 3, we have 

 [ ] 0tCΕ = , and [ ] 2
tV C t=   (21) 

But note that for s t∀ < , 

 

[ ] ( )( )
( )

( )

2

2

t s s t s s

s s t s

s t s

C C C C C C

C C C C

s C C C

⎡ ⎤Ε = Ε + −⎣ ⎦
⎡ ⎤ ⎡ ⎤= Ε + Ε −⎣ ⎦⎣ ⎦

⎡ ⎤= + Ε −⎣ ⎦

 (22) 
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Notice that the increment t sC C− is independent of sC , i.e., t sC − is independent of sC . 
Therefore, 

 

[ ] ( )

( ) ( ){ }

( )

1 2 , 1 2

1 2 1 2

1 1
2 2
1 2

1 2

,

min ,

min 1 exp , 1 exp
3 3

t s s

t s s

t s s C C

C C

C C z z d z z

z z d z z

z z
z z d

t s s

π π

−

−

∞ ∞

−
−∞ −∞

∞ ∞

−∞ −∞
− −∞ ∞

−∞ −∞

Ε = Φ

= Ψ ϒ

⎧ ⎫⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎪ ⎪⎜ ⎟= + − + −⎜ ⎟⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟−⎪ ⎪⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠⎩ ⎭

∫ ∫

∫ ∫

∫ ∫

  (23) 

since if 1ξ and 2ξ are independent uncertain variables with uncertainty distributions 

1ξΨ and 
2ξϒ  respectively, then the joint uncertainty distribution of ( )1 2,ξ ξ  is 

( ) ( ) ( ){ }
1 2 1 2, 1 2 1 2, min ,z z z zξ ξ ξ ξΦ = Ψ ϒ . Hence we obtain the expression of ,s tσ : 

 [ ]
( )

1 1
2 2

2 1 2
, 1 2 min 1 exp , 1 exp

3 3
s t s t

z z
C C s z z d

t s s

π πσ
− −∞ ∞

−∞ −∞

⎧ ⎫⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎪ ⎪⎜ ⎟= Ε = + + − + −⎜ ⎟⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟−⎪ ⎪⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠⎩ ⎭
∫ ∫   (24) 

Then the thi "variance-covariance" matrix for uncertain vector ( )1 2 19, , , 'i i iy y y"
 

 ( )2
,

19 19

i
i j kσ σ

×
Γ =   (25) 

where i is the site index, , 1,2, ,19j k = "  are the entry pair in iΓ matrix. Hence we have a 

regression model (Draper and Smith, 1981, Guo et al., 2010, Guo, 2010). 

For the thi site, the regression model is 

 0 ,it i i i i ty t Cα α σ= + +   (26) 

Then in terms of the weighted least square criterion we can define an objective function as 

 ( ) ( )' 1
0( , )i i i i i i iJ Y X Y Xα α β β−= − Γ −   (27) 

where  

 

1

2 0

19

1 1

1 2
    

1 19

i

i i
i

i

i

y

y
Y X

y

α
β

α

⎡ ⎤ ⎡ ⎤
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We further notice that 
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Then it is reasonable to estimate iα  by 

 
19

2

1
ˆ

18
i ij

j

rα
=

= ∑   (30) 

Furthermore, we notice that  

 ( )
19 2

2

1
ˆˆ

18
i ij i

j

rσ α
=

= −∑   (31) 

Also, we can evaluate  
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2 1 2
, 1 2 min 1 exp , 1 exp

3 3

i
j k

z z
j z z d

k j j

π πσ
− −∞ ∞

−∞ −∞

⎧ ⎫⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎪ ⎪⎜ ⎟= + + − + −⎜ ⎟⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟−⎪ ⎪⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠⎩ ⎭
∫ ∫   (32) 

in terms of numerical integration, Then an estimate for iΓ matrix is obtained: 

 ( )2
,

19 19

ˆ ˆ i
i i j kσ σ

×
Γ =   (33) 

Finally, we use the approximated objective function 

 ( ) ( )' 1
0

ˆ ˆ( , )i i i i i i i iJ Y X Y Xα α β β−= − Γ −   (34) 

to obtain a pair of estimates ( )0 ,i iα α� � . Repeat this estimation process until all the 213 

weighted least square estimate ( )0 ,i iα α� � are obtained. 

Recall the definition of coefficient iα  so that the sign and the absolute value of iα  indicates 

the geometric change over the 19 years. Since the estimation procedure of iα  involves all the 

spatial-temporal information, it is reasonable to have them plotted in a kriging map to 

reveal the overall changes over 19-year period. 

6. Kriging maps and time-change maps based on completed PM10 data 

Kriging map presentation is vital for a geostatistian's visualization, and maps reveal hidden 
information or the whole picture. A sample statistic is typically condensing the wide-spread 
information into a numerical point. While, a kringing map is actually a map statistic (or a 
statistical map) which contains infinitely many information aggregated from limited 
"sample" information (i.e., observations). Kriging itself is not specifically probability 
oriented, it is another weighted linear combination prediction, but requires more 
mathematical assumptions. In fuzzy geostatistics, the fuzzy kriging scheme has also been 
developed (Bardossy et al., 1990). 
Ordinary kriging (abbreviated as OK) is a linear predictor, see  Cressie (1991) and Mase 
(2011). The formula is 

 ( ) ( )0
1

N

j j
j

Z s Z sλ
=

=∑   (35) 
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where js  are spatial locations with observation ( )jZ s available and the coefficients jλ  

satisfy the OK linear equation system 

 

( ) ( )( ) ( ) ( )( )0
1

1

,  1,2, ,

1

N

j j i i
j

N

j
j

s s s s i Nλ γ ε ε ψ γ ε ε

λ

=

=

⎧
− − = − =⎪

⎪
⎨
⎪ =⎪
⎩

∑

∑

"

  (36) 

The OK system is generated under the assumptions of an additive spatial model 

 ( ) ( ) ( )Z s s sμ ε= +   (37) 

where µ(s) is the basic (expected) spatial trend and ( )sε  is a Gaussian error ( )( )20,N sσ , 

i.e.,  Gaussian variable with mean and variance 

 ( ) ( ) ( )20,  s V s sε ε σΕ⎡ ⎤ = ⎡ ⎤ =⎣ ⎦ ⎣ ⎦   (38) 

respectively. Accordingly, the variogram 2γ  of the random error function ( )ε ⋅  is just 

defined by 

 ( ) ( ) ( )( )22 h s h hγ ε ε⎡ ⎤= Ε + −⎢ ⎥⎣ ⎦
  (39) 

where h  is the separate vector between two spatial point s h+  and s under the isotropy 

assumption.  
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Fig. 5. Kriging Prediction Maps for PM10 in California 1989-2007. 

The 213 observation sites now have 19-year PM10 values, a "complete" data set is now 

available, containing 4047 data records of 213 sites over 19 years, and then the 19 ordinary 

kriging pred4iction maps are generated for comparisons. In Fig. 5, all 19 years of PM10 

concentration in California State are shown. It is very interesting to examine the change in 

PM10 concentrations through the 19 years, based upon the modelled complete 213 site data. 

In particular, 1998 shows to have an extremely low PM10 concentration. Although air quality 

is varied over the years, but in general, the PM10 concentration is decreasing, showing an 

improvement of air quality trend. 
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Fig. 6. Changes in PM10 values and the rate of change of PM10 in California between 1989 
and 2007. 

As one can clearly see from Fig. 6, that PM10 concentration has clearly decreased over the 19 
years, and air quality has improved remarkably over the years. The blue and green colours 
show negative changes, and red shows positive changes or near positive changes. Counties 
such as San Diego, Inyo, Santa Barbara, Imperial, still show an increase in PM10 
concentration in the air, and indicate bad air quality. While Kern, Modoc, Siskiyou counties 
show the most improvement in air quality. The left map in Fig. 6 is PM10 record difference 
between 2007 and 1989 at each location, in total 231 values, and then a difference map is 
constructed. It is obvious that the difference map only utilizes 1989 and 2007 two-year PM10 
records, 1990, 1991, ..., 2006 seventeen years' information do not participate the change map 

construction. The right map in Fig. 6 show completed ,  1,2, ,213i iα =� " , the rate of change 

over 1989 to 2007 19-year period.   

Note that the calculations of ,  1,2, ,213i iα =� " involve all nineteen years by temporal 

regression, the dependent variable y are estimated form the actual PM10 observations cross 

over all the available locations. Therefore, the rate of change parameter iα at each individual 

location contains all spatial-temporal information. It is reasonable to say the rate of change 

parameter iα� is an aggregate statistic for revealing the 19-year changes over 213 locations. 

iα�  kriging map is thus different from 2007-1989 kriging maps. The positive sign of iα�  

indicates the increasing trend in PM10 concentration, while the negative sign f iα�  indicates 

the decreasing trend in PM10 concentration. The absolute value of iα� reveals the magnitude 

of change of PM10 concentration. It is worth to report, among 213 locations, 193 locations 

have negative iα� , while the negative iα� locations are 20 (9% approximately).
 

7. Discussion 

Air quality and health is always a central issue to public concern on the quality of life. In this 
chapter, we examined PM10 levels over 19 years, from 1989 to 2007, in the California State. 
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Facing the difficult task of a lack of "complete" PM10 observational data, we utilised the 
inverse distance weight methodology to "fill" in the locations with missing values. By doing 
so, the impreciseness uncertainty is introduced, which is not necessarily explained by 
probability measure foundation. We noted the character of a regionalized variable in 
geostatistics and therefore engage Liu's (2010, 2011) uncertainty theory to address the 
impreciseness uncertainty. In this case, we developed a series of uncertain measure theory 
founded spatial-temporal methodology, including the inverse distance scheme, the kriging 
scheme, and the geometric canonical process based weighted regression analysis in order to 
extract the change information from the incomplete 1989-2007 PM10 records. The use of the 
rate of change parameter alpha is a new idea and it is an aggregate change index utilized all 
spatial-temporal data information available. It is far better than classical change treatments. 
However, due to the limitations of our ability, we are unable to demonstrate the detailed 
uncertain measure based spatial analysis model. In the future research, we plan to develop a 
more solid uncertain spatial prediction methodology. 
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