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1. Introduction  

Diabetes mellitus is a heterogeneous metabolic disorder characterized by hyperglycemia 
resulting from defective insulin secretion (type 1), resistance to insulin action (type 2), or 
both. It is often associated with complications, such as cardiovascular disease, kidney 
failure, retinopathy, as well as peripheral and autonomic neuropathies. Retinopathy is the 
most common microvascular complication of diabetes, and it remains a major cause of 
visual impairment worldwide. Vascular lesions in the early stages of diabetic retinopathy 
are characterized by the presence of capillary microaneurysms, pericyte deficient capillaries, 
and obliterated and degenerated capillaries. Proliferative diabetic retinopathy is the more 
advanced form of the disease, when circulation problems cause the retina to become oxygen 
deprived. As a result, new fragile blood vessels can begin to grow in the retina and into the 
vitreous. Therefore, diabetic retinopathy has long been recognized as a vascular disease. 
However, it is becoming increasingly clear that neuronal cells of the retina are also affected 
by diabetes. Electroretinogram (ERG) is the neurophysiological test used in order to 
measure electric changes that happen in the retina after a light stimulus. Changes in the 
ERG may be due to an impairment of any of the retinal cell types: photoreceptors (a-wave 
ERG), and amacrine, bipolar, and, mainly, Müller cells (b-wave ERG). Moreover, oscillatory 
potentials are likely to be due to inner retinal neurotransmission. Though it may seem that 
diverse studies have presented contradictory results, it is important to point that most of the 
studies in diabetic experimental animals point to a very early alteration in the b-wave 
amplitude and reductions in oscillatory potentials. The nervous potential originated in the 
retina after a light stimulus is transmitted to the visual cortex via the optic nerve. Retinal 
ganglion cells (RGCs), which form this optic nerve, are the best studied of the retinal 
neurons with respect to the effect of diabetes. The aim of this work is to summarize recent 
clinical and laboratory findings about several experimental therapies that have been used to 
minimize neural changes in retina of different animal models of diabetes. 

2. Diabetic retinopathy: a microvascular or a neuronal disease? 

The prevalence of diabetes mellitus (DM) worldwide is increasing rapidly in association 
with the increase of obesity. Complications are a major fear of patients with diabetes. 
Retinopathy is the most feared complication of diabetes, compromising quality of life in 
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most sufferers. Almost all patients with type 1 diabetes will develop retinopathy over a 15- 
to 20-year period, and approximately 20-30% will advance to the blinding stage of the 
disease. More than 60% of patients with type 2 diabetes will have retinopathy. However, 
current therapeutic options for the treatment of diabetic retinopathy (DR) such as 
photocoagulation and vitrectomy are limited by their considerable side effects and far from 
satisfactory.  
Retinal changes in diabetes are thought to be initiated by sustained hyperglycemia leading 
to biochemical abnormalities, that include alterations of various vasoactive and growth 
factors (Brownlee, 2001), nonenzymatic glycation (Bierhaus et al., 1998), increase in the 
polyol pathway and redox imbalance (Engerman et al., 1993; Ido et al., 1997), oxidative 
stress (Arnal et al., 2009; Johnsen-Soriano et al, 2008; Miranda et al., 2006), and activation of 
protein kinase C (PKC) (Koya & King, 1998). 
In addition, DR has long been recognized as a vascular disease, but it is becoming 
increasingly clear that neuronal cells of the retina are also affected by diabetes.  
Diabetic retinopathy is classified into an early, nonproliferative stage, and a latter, 
proliferative stage. Histologically, vascular lesions in the early stages of diabetic retinopathy 
in man and animals are characterized by the presence of capillary microaneurysms, pericyte 
deficient capillaries, and obliterated and degenerated capillaries. 
Non-proliferative diabetic retinopathy (NPDR) is the early stage of the disease in which 
symptoms will be mild or non-existent. NPDR is characterized by the presence of: (i) 
microaneurysms, (ii) intraretinal hemorrhages, (iii) exudates, (iv) intraretinal vascular 
abnormalities (IRMA), (v) vascular changes of veins, (vi) alterations in the foveal avascular 
zone (FAZ), (vii) macular edema. 
Approximately 50% of patients with very severe NPDR progress to PDR within 1 year. 
Proliferative diabetic retinopathy (PDR) is the more advanced form of the disease. At this 
stage, circulation problems cause the retina to become oxygen deprived. As a result new 
fragile blood vessels can begin to grow in the retina and into the vitreous. New vessels may 
proliferate on the optic nerve head and along the course of the major vascular arcades. The 
new vessels mostly grow along the posterior hyaloid and sudden vitreous contraction may 
result in rupture of these fragile vessels. When the vitreous detachment occurs, the new 
vessels are pulled anteriorly along with the underlying retina, resulting in tractional retinal 
detachment. On the other hand, vitreous might detach completely without any pull on the 
retina and the new vessels disappear. Diabetic macular edema is now the principal cause of 
vision loss in diabetes and involves leakage from a disrupted blood-retinal barrier. The 
intraretinal fluid comes from leaking microaneurysms or diffuses from capillary 
incompetent areas. In the clinical course of PDR, rubeosis may appear as a result of the 
progression of neovascularization in the front of the iris and the angle of the chamera, and 
finally result in neovascular glaucoma. 
The final metabolic pathway causing diabetic retinopathy is not known. Numerous 
researchers have suggested that pathogenesis of diabetic retinopathy includes microvascular 
damage induced by glucose. Currently, there has been a great interest in vasoproliferative 
factors, which induce neovascularization. It has been shown that retinal ischemia stimulates 
a pathological neovascularization mediated by angiogenic factors, such as vascular 
endothelial growth factor (VEGF), which results in PDR. VEGFs are released by retinal 
pigment epithelium, pericytes and endothelial cells of the retina. 
Evidence has begun to point to the fact that even before vascular complications begin to 
manifest, neuronal cell death and dysfunction have already begun.  

www.intechopen.com



 
Electroretinogram Alterations in Diabetes? 

 

159 

Retinal ganglion cells (RGCs) are the best studied of the retinal neurons with respect to the 
effect of diabetes. Loss of ganglion cells has been detected in diabetic rats, mice and humans 
(Asnaghi et al., 2003; Barber et al., 1998; Martin et al., 2004 ). Barber et al. (1998) studied 
retinal sections from streptozotocin diabetic rats after 7.5 months of diabetes and identified 
22% and 14% reductions in the thickness of the inner plexiform and inner nuclear layers, 
respectively,  and a 10% reduction in the number of surviving ganglion cells. An increase in 
the frequency of retinal apoptosis was also obesrved in whole-mounted rat retinas after 1, 3, 
6, and 12 months of diabetes and TUNEL-positive cells were not associated with blood 
vessels. Some researchers suggest that this "retinal neuropathy" require severe 
hyperglycemia and high activity of aldose reductase (Asnaghi et al., 2003). 
Consistent with a possible role of apoptosis in the death of retinal neurons, numerous 
initiator and effector caspases have been found to become activated in retinas of both 
patients and diabetic animals. Upregulation of Bax, caspase-9 and -3 expression in the 
ganglion cell layer has been associated with neuronal degeneration in human diabetic 
retinopathy (Oshitari et al., 2008), suggesting that RGCs undergo apoptosis in diabetic 
patients leading to a reduction in the thickness of the nerve fibre layer (Kern et al., 2008). In 
streptozotocin (STZ) diabetic rats an increase in TUNEL-positive and caspase 3-positive cells 
have been observed in the ganglion cell layer (Arnal et al., 2009), and this was accompanied 
by a reduction in the thickness of all the layers of the retina. The mitochondria- and caspase-
dependent cell-death pathway may be, in part, associated with neuronal degeneration in 
diabetic retinas. 
Kern (Kern et al., 2010) induced diabetes in three different strains of rats with 
streptozotocin: Sprague Dawley, Lewis, and Wistar rats. After 8 months a significant loss of 
cells in the GCL occurred only in diabetic Lewis rats, whereas Wistar and Sprague Dawley 
rats showed little change, though all type of rats showed alterations in the 
electroretinogram.  
Although RGC are the best studied, other neuronal cells can be damaged by diabetes, like 
horizontal cells, amacrine cells and photoreceptors (Park et al., 2003; Kusner et al., 2004; 
Seki, et al., 2004). In this sense, apoptosis has been observed in a few photoreceptor cells 4 
weeks after the induction of diabetes in rats, and the number of apoptotic photoreceptors 
increased thereafter (Park et al., 2003). Others (Zhang et al., 2008) observed an increase in the 
number of TUNEL-positive cells espetially in the outer nuclear layer (ONL) 1 week after 
diabetes onset and reached a peak at 4 to 6 weeks, at the same time retinal ONL thickness 
was reduced significantly. With regard to photoreceptor function in diabetes, decreased 
amplitudes of the photoreceptor response 12 weeks after diabetes induction in rats and 
significantly faster dark adaptation than controls have been observed (Lieth et al, 2008); this 
faster relative recovery found in diabetes after bleach, in the presence of normal pigment 
dynamics, may reflect a decrease in outer segment lengths. Animal studies also show glial 
activation (Lieth et al., 2008), impaired glial cell metabolism (Li et al., 2002), and microglial 
cell activation (Layton et al., 2005). 

3. Electroretinogram (ERG) and diabetic retinopathy. 

The onset of vision loss is insidious in diabetes. While clinical diagnosis of diabetic 
retinopathy requires detection of vascular pathology, diabetes also induces changes in 
retinal function; indeed, functional changes occur in the retina prior to clinical symptoms of 
the disease.  
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Electrophysiological studies of humans with diabetes could be used to assess alterations 
such as dysfunction of ganglion cells and loss of colour and contrast sensitivity (Roy et al., 
1986; Ghirlanda et al., 1991), moreover alterations in oscillatory potentials have been shown 
to predict the onset of proliferative retinopathy better than vascular lesions seen on fundus 
photographs (Bresnick & Palta, 1987). Recently Luu (Luu et al., 2010) performed full-field 
electroretinograms in subjects with nonproliferative diabetic retinopathy, diabetic subjects 
without retinopathy, and normal control subjects and found that all the oscillatory potential 
(OP) components (OP1-OP4) were significantly reduced in amplitude and increased in 
implicit time in the no-DR and NPDR groups. OP4 amplitude correlated significantly with 
the retinal arteriolar caliber suggesting a correlation between retinal neuronal dysfunction 
and microvasculature changes. Interestingly, one study has assessed the effect of short-term 
strict glycemic control on OP amplitude (Frost-Larsen et al, 1983) and reported that OP 
amplitudes, which were initially abnormal in a group of aretinopathic subjects with IDDM, 
were normalized after 11 days of strict glycemic control. 
Other studies have concluded that neuroretinal function is affected before the onset of 
vascular lesions in humans. The amplitude of the b-wave of the scotopic full-field (flash) 
ERG, reflecting largely the activity of the bipolar cells are abnormal in diabetes in the 
absence of visible fundus signs of retinopathy (Coupland, 1987; Hardy et al., 1995). 
Although functional changes can occur in the absence of retinopathy, this does not mean 
that function is not related to retinopathy, it is more a sign of the retinopathy severity and 
the magnitude of the functional loss. 
The origin of the electroretinogram anomalies is not known, though it can be related to 
apoptosis of retinal ganglionar cells (RGCs) and the morphological alterations in the 
surviving RGCs. 
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Fig. 1. Example of an electroretinogram in a control and streptozotocin-induced diabetic rat 
(12 weeks after the induction of diabetes). 

ERG studies performed in diabetic rats have detected reduced ERG responses as early as 2 
weeks after diabetes induction (Li, 2002). Experience in our lab suggest that the most 
consistent result is a decrease in b-wave amplitude after 1 month of streptozotocin-induced 
diabetes in Sprague Dawley rats and after only one week in alloxan-induced diabetic mice. 
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Kern et al., (2010) studied streptozotocin-induced diabetes in Lewis, Wistar and Sprague 
Dawley rats and observed that all strains tended to show diabetes-induced impairment of 
dark-adapted b-wave amplitude, but only Sprague Dawley and Lewis strains had a 
significant reduction in latency. The electroretinogram b-wave is generally believed to 
reflect mainly light-induced activity of ON-center bipolar cells and Muller cells. It has also 
been suggested that the b-wave of the electroretinogram is a particularly sensitive index of 
retinal ischemia and that, although the amount of reduction in b-wave amplitude during 
ischemia corresponds to the severity of the insult, the degree of recovery of the b-wave 
during reperfusion depends on the duration of ischemia. In this sense the b-wave of the 
ERG represents a functional measure for potential therapeutic efficacy of drugs interacting 
with these pathophysiological processes. 
It is thought that the ERG a-wave originates from photoreceptors (rods and cones), and 
alterations have been observed in a-wave amplitude and/or latency in diabetic animals. 
Although it may seem that diverse studies have presented contradictory results, it is 
important to point that most of the studies in experimental animals show a very early 
alteration in the b-wave amplitude and reductions in oscillatory potentials and the 
differences observed in the different studies can be due to either the different models used 
or the different conditions of the ERG. Most interesting results of diabetes alterations in ERG 
from diabetic rats are summarized in Table 1 

4. Clinical and laboratory findings about experimental therapies 

The duration of diabetes and severity of hyperglycaemia are the major risk factors in 
diabetic retinopathy. Strict metabolic control and tight blood pressure control can 
significantly reduce the risk of developing retinopathy and its progression, but are difficult 
to achieve in clinical practice. Laser photocoagulation and vitrectomy are effective in 
preventing severe visual loss from sight-threatening diabetic retinopathy and its 
complications, but both modalities have potential side-effects.  The use of pharmacological 
agents as monotherapy has allowed patients to recover vision faster than with previous 
treatment modalities, but these effects are frequently, but not always, short-lived. As 
sustained beneficial effects have been shown only in the treatment schedules which require 
frequent intravitreal injections, with the subsequent side-effects derived such as increase in 
intraocular pressure, develop of secondary glaucoma, retinal detachment, cataract formation 
and endophthalmitis. Due to the limitations of current treatment, new pharmacological 
therapies are being developed. The latter target underlying biochemical mechanisms that 
cause DR through involvement of protein kinase C (PKC) activation, oxidative stress, the 
angiogenesis pathway, and the glycation and sorbitol pathway. These treatments aim to 
prevent diabetes-induced damage to the retinal microvasculature. 
Relatively new research on neurodegeneration is expanding our views of the pathogenesis 
of DR because  it is becoming increasingly clear that neuronal cells of the retina are also 
affected by diabetes, resulting in dysfunction and even degeneration of some neuronal cells.  
Several experimental therapies have been used to minimize neural changes in retina of 
different animal models of diabetes (Table 2). Most of them have focused on the inhibition of 
RGC apoptosis though we do not know yet metabolic pathways causing this apoptotic 
response. Other agents like anti-inflammatory drugs, aldose reductase inhibitors, growth 
factors, erythropoietin, have also been tested with positive results.  
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Model Duration Observation Reference 

Male Sprague-Dawley 
STZ rats 

3 months Decreased a- and b-wave amplitudes Ma et al.,  
2009 

Sprague-Dawley STZ 
rats 

1, 3 months Reduced b-wave amplitudes and OPs  with 
the progress of diabetes 

Zhang et al., 
2009  

Alloxan Swiss mice 3 weeks Reduced b-wave amplitude Johnsen-
Soriano et 
al., 2008 

Sprague-Dawley STZ 
rats 

4, 8 and 11 
weeks 

Unaffected a- and b-wave. Reduced OPs by 
8 weeks. 

Kohzaki et 
al., 2008  

Male Wistar STZ rats 3, 6, 9 and 12 
weeks 

Reduction in the amplitude and increase in 
the peak time of all waves 

Layton et 
al., 2007 

Female Long Evans STZ 
rats 

12 weeks No differences in the amplitude of the a- or 
b-wave, differences in the pattern of OPs 

Ramsey et 
al, 2006 

Spontaneously  Diabetic 
Torii rat 

44 week Prolongation of the peak latencies  Sasase et 
al., 2006 

Sprague-Dawley STZ 
rats 

12 weeks Decreased amplitudes of the photoreceptor 
response 

Phipps et 
al., 2006  

Alloxan Swiss mice 1 week Latency and implicit times were not 
affected 

Miranda et 
al., 2006  

Alloxan Swiss mice 1 week Decreased b-wave amplitude  Miranda et 
al., 2004 

Long-Evans male STZ 
rats 

12 weeks Small but significant delay in a-wave, no 
change in b-wave timing, sensitivity of b-
wave reduced and  a-wave not changed 

Hancock et 
al., 2004  

Brown-Norway STZ rats 1 month Reduction in the amplitudes of a- and b-
waves 

Aizu et al., 
2002 

Male albino STZ rats 2 weeks Reduced a- and b-amplitude, b-wave more 
affected than a-wave 

Li et al., 
2002  

Male Wistar STZ rats 1, 2 months Abnormal increase in latency and reduction 
of amplitude of ERG and VEP waves 

Biró et al., 
1998 

Male Sprague-Dawley 
STZ rats 

6 to 20 weeks 
 

Reduced amplitudes of OP 1 and OP 2 Ishikawa et 
al., 1996 

Male Sprague-Dawley 
STZ rats 

1 month Prolongation of the peak latency of 
oscillatory potentials in the b-wave of the 
erg 

Hotta et al., 
1995  

Alloxan-induced 
diabetic rats 

1, 2 months After 1 month, 20% reduction in 
amplitudes, after 2 months this decrease 
was about 60% 

Doly et al., 
1992  

Rats with STZ fructose-
induced diabetes 

4, 8 and 12 
weeks 

Prolonged peak latencies and intervals and 
reduced amplitudes 

Funada et 
al., 1987  

STZ pigmented rat 2, 4, and 19 
weeks 

No effect on the b-wave  at  2- and 4-week; 
at 19 weeks reduced amplitude.  c-wave 
reduced in amplitude at 2-week 

Pautler et 
al., 1980 

(STZ: streptozotocin, OP: oscillatory potentials, GC: ganglion cells, VEP: visual evoked potential) 

Table 1. Changes in electroretinogram in different animal models of diabetes.  
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Drug Type of drug Model Effect Reference 

Aminoguani- 
dine 

Aldose reductase 
inhibitor 

Wistar albino 
STZ rats 

Prevented the  impairment in 
retrograde axonal transport and 
neuroaxonal changes 

Zhang et 
al., 2008 

Baicalein Antiinflammatory STZ rats Reduced ganglion cell loss Yang et al., 
2009 

Cannabidiol Nonpsychotropic 
cannabinoid 

Male 
Sprague-
Dawley STZ 
rats 

Reduced oxidative stress; 
decreased levels of TNF-, VEGF, 
and ICAM-1; and prevented 
retinal cell death. Inhibited p38 
MAP kinase 

El-Remessy 
et al., 2006 

des(1-3)IGF-1 Insulin-like growth 
factor (IGF)-1 analog

Male 
Sprague-
Dawley STZ 
rats 

Decreased IGF receptor and 
protein phospho-Akt (Thr 308) 
immunoreactivity in GCL 

Kummer et 
al, 2003 

DHA Omega-3 fatty acid Male Wistar 
STZ rats 

Decreased TUNEL and caspase-3 
positive cells in GCL 
 

Arnal et al., 
2009 

Erythropoieti
n 

Hormone Sprague-
Dawley STZ 
rats 

Improves abnormalities of ERG, 
GC with swollen mitochondria, 
increased retinal glutamate and 
EPO-R in the retinas 

Zhu et al., 
2008 

FeTTPS Peroxynitrite 
decomposition 
catalyst 

Male 
Sprague-
Dawley STZ 
rats 

Prevented tyrosine nitration, 
restored NGF survival signal, and 
prevented neuronal death 

Ali et al., 
2008 

Insulin-like 
growth factor 
(IGF-1) 

Growth factor Male 
Sprague-
Dawley STZ 
rats 

Reduced the number of TUNEL 
and p-Akt, Caspase-3 and BAD 
immunoreactive  

Seigel et 
al., 2006 

KIOM-79 Mixture of extracts 
obtained from 
Puerariae lobata, 
Magnolia officinalis, 
Glycyrrhiza uralensis 
and Euphorbia 
pekinensis 

db/db mice Prevented apoptotic cell death 
and AGEs accumulation 

Sohn et al., 
2009 

Latanoprost Prostaglandin 
F2alpha analogue 

Male 
Sprague-
Dawley STZ 
rats 

Rescued retinal neuro-glial cells 
from apoptosis inhibiting 
caspase-3, increased 
phosphorylated to total protein 
ratio of p44/p42 MAPK, but not 
of Akt 

Nakanishi 
et al., 2006 

Lutein Carotenoid Male Wistar 
STZ rats 

Decreased TUNEL and caspase-3 
positive cells in GCL 

Arnal et al., 
2009 
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Drug Type of drug Model Effect Reference 

Memantine Glutamate NMDA 
receptor antagonist 

STZ Brown 
Norway rats 

Improved amplitudes of a- and b-
waves GC loss 

Kusari et 
al., 2007 

Minocycline Antiinflammatory Sprague-
Dawley STZ 
rats 

Repressed cytokine production, 
reduced release of cytotoxins 
from activated microglia, and 
reduced caspase-3 activity 

Krady et 
al., 2005 

Nepafenac 
(topical) 

Non-steroidal 
cycloxygenase 
inhibitor 

Male Lewis 
STZ rats 

No effect on diabetes-induced 
loss of cells in GCL. Inhibited 
development of OP delays 

Kern et al., 
2007 

Nerve growth 
factor 

Growth factor Male wistar 
STZ rats 

Prevented both early PCD in 
RGC and Muller cells 

Hammes et 
al., 1995 

Nipradilol Beta-adrenoceptor 
blocking agent 

Male 
Sprague-
Dawley STZ 
rats 

Antiapoptotic, removal of the NO 
moiety from nipradilol blocked 
these effects 

Tatsumi et 
al., 2008 

(+)-
pentazocine 

Sigma receptor 1 
ligand 

Spontaneous 
diabetic 
Ins2(Akita/+
) 

Preservation of retinal 
architecture, reduced 
nitrotyrosine and HNE 

Smith et 
al., 2008 

Rottlerin PKC delta inhibitor Otsuka Long-
Evans 
Tokushima 
fatty 
(OLETF) 

Inhibit protein kinase C-delta and 
neuronal apoptosis 

Kim et al., 
2008 

Salicylates 
(aspirin, 
sodium 
salicylate, 
sulfasalazine) 

anti-inflammatory, 
unlike aspirin, 
sodium salicylate and 
sulfasalazine can not 
inhibit COX at 
therapeutic doses. 

Male Lewis 
STZ rats 

Inhibited translocation of NF-KB 
to the nucleus, prevented RGC 
loss 

Zheng et 
al., 2007 

Sorbinil Aldose reductase 
inhibitors 

Male 
Sprague-
Dawley STZ 
rats 

Regulated retinal homeostasis 
and protected neurons against 
damage 

Asnaghi et 
al., 2003 

(TNF-: tumor necrosis factor-;  ICAM-1: intercellular adhesion molecule-1; GCL: ganglion 
cell layer; DHA: docosahexaenoic acid; ONL: outer nuclear layer; ERG: electroretinogram; 
NGF: nerve growth factor; AGE: advanced glycation endproduct; OP: oscillatory potentials; 
PCD: programmed cell death; RGC: retinal ganglion cell; HNE: hidroxynonenal). 

Table 2. Experimental therapies resulting in preservation of retinal neurons in diabetes.  

We will focus on oxidative stress. It has been repeatedly suggested that oxidative stress is 
involved in the pathogenesis of late diabetes complications (Baynes & Thorpe, 1993), though 
it is not definitely demonstrated if this is the cause or the consequence of these 
complications. It is clear that the elevated glucose levels present in diabetes and the 
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existence of oxidative stress are inseparable. Hyperglycemia reduces antioxidant levels and 
concomitantly increases the production of free radicals. These effects contribute to tissue 
damage in diabetes mellitus, leading to alterations in the redox potential of the cell with 
subsequent activation of redox-sensitive genes (Bonnefont-Rousselot, 2002). The retina is the 
neurosensorial tissue of the eye and is extremely rich in polyunsaturated lipid membranes. 
This feature makes it specially sensitive to oxygen- and/or nitrogen activated species and 
lipid peroxidation. 
Oxidative stress is linked to early apoptosis in diabetic retinopathy both at the 
microvasculature and neuronal cells of the retina but oxidative stress appears to be highly 
interrelated with other biochemical imbalances that lead to structural and functional 
changes. 
Among the proposed pathogenic mechanisms, the polyol pathway model has received the 
most scrutiny. Aldose reductase (AR) is the first enzyme in the polyol pathway, converting 
excess glucose to sorbitol, which is then metabolized to fructose by sorbitol dehydrogenase. 
According to several studies, AR is correlated with the early events in the pathogenesis of 
diabetic retinopathy, leading to a cascade of retinal lesions including blood retinal barrier 
breakdown, loss of pericytes, neuroretinal apoptosis, glial reactivation, and 
neovascularization. Increased AR activity has been shown to contribute to increased 
oxidative stress by promoting nonenzymatic glycation and the activation of PKC (Stitt and 
Curtis, 2005). It has been demonstrated that AR inhibition counteracts diabetes induced 
oxidative and nitrosative stress and prevents vascular endothelial growth factor (VEGF) 
overexpression, basal membrane thickening, pericyte loss, and microaneurysms in retinal 
capillaries (Obrosova et al., 2003). Increased expression of VEGF and apoptosis and 
proliferation of blood vessels have been shown to be less prominent in diabetes rats than in 
diabetic AR-deficient animals (Obrosva et al., 2005).  
A recent clinical study has substantiated the concept of “hyperglycemic memory” in the 
pathogenesis of diabetic retinopathy. The Diabetes Control and Complications Trial-
Epidemiology of Diabetes Interventions and Complications Research, has revealed that the 
reduction in the risk of progressive retinopathy resulting from intensive therapy in patients 
with type 1 diabetes persisted for at least several years after the DCCT trial, despite 
increasing hyperglycemia. The process of formation and accumulation of advanced 
glycation end products (AGEs) and their mode of action are most compatible with the 
“hyperglycemic memory” theory. Advanced glycation end products are formed by 
nonenzymatic reactions between reducing sugars and free amino groups of proteins or 
lipids. AGEs have been detected within retinal vasculature and neurosensory tissue of 
diabetic eyes. Multiple consequences of AGE accumulation in the retina have been 
demonstrated, including upregulation of VEGF, upregulation of NF-B, and increased 
leukocyte adhesion in retinal microvascular endothelial cells (Moore et al., 2003). In a 5-year 
study in diabetic dogs, administration of aminoguanidine (an inhibitor of AGE formation) 
prevented retinopathy (Kern et al., 2001). AGEs exert cell-mediated effects via RAGE, a 
multiligand signal-transduction receptor of the immunoglobulin superfamily (Schmidt et 
al., 1992). Consequences of ligand-RAGE interaction include increased expression of 
vascular cell adhesion molecule (VCAM)-1, vascular enhanced permeability, enhanced 
thrombogenicity, induction of oxidant stress and abnormal expression of eNOS (Schmidt et 
al., 1995). Recently, it has been shown that after RAGE activation NADPH oxidase is 
activated by phospholipase C-mediated activation of Ca(2+)-dependent PKC and that this 
may lead to an increase in ROS that could be associated with the initial stages of macular 
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edema and diabetic retinopathy (Warboys et al., 2005). Studies in models of retinopathy 
show that increases in oxidative stress and signs of vascular inflammation are correlated 
with increases in arginase activity and arginase expression, and that decreasing arginase 
expression or inhibiting its activity blocks these effects, and that the induction of arginase 
during retinopathy is blocked by inhibiting NADPH oxidase activity (Caldwell et al., 2010). 
Finally it has been also demonstrated that AGEs can induce glial reaction and neuronal 
degeneration in retinal explants (Lecleire-Collet  et al., 2005). 
Different antioxidants (ebselen, lutein and DHA) have been used in our lab in different 
animal models of diabetes, and all of them have shown good results in improving the 
decrease of b-wave amplitude ERG observed in these animals. 
Alterations associated with oxidative stress offer many potential therapeutic targets making 
this an area of great interest for the development of safe and effective treatments for diabetic 
retinopathy. Animal models of diabetic retinopathy have shown beneficial effects of 
antioxidants on the development of retinopathy, but clinical trials (though very limited in 
number) have provided somewhat ambiguous results. Although antioxidants are being 
used for other chronic diseases, controlled clinical trials are warranted to investigate 
potential benefitial effects of antioxidants in the development of retinopathy in diabetic 
patients. 
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