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1. Introduction 

The zebrafish, Danio rerio, a small minnow from the Indian subcontinent, was first 

purchased from pet stores in the 1970s and propagated in the laboratory for its attractive 

attributes such as year-round breeding, large clutch sizes and transparent embryos1. It grew 

in popularity as an experimental system, and in the 1980s and 1990s, a critical mass of 

researchers began to develop the tools necessary to perform large-scale genetic screens and 

genomic analyses. Since then, the zebrafish research community has grown to include 

thousands of researchers, trained largely in the fields of developmental genetics and, more 

recently, functional genomics. The primary goal of the work carried out by these researchers 

is to use zebrafish to define the genetic mechanisms underlying vertebrate development, in 

many cases with direct application to human health. Now, zebrafish has several features 

that make them an ideal vertebrate model, for example their small size, the ease of breeding, 

short generation intervals, the embryos are transparent and their early development is well-

characterized2–6. Moreover, zebrafish has recently been successfully incorporated into large-

scale genetic screens due to the optical clarity of the embryos and their accessibility to 

various experimental techniques throughout development. The attractiveness of the 

zebrafish as a model organism is enhanced by the biological availability of continuously 

improving genomic tools and methodologies for functional characterization of the genes. In 

addition, transparent zebrafish embryos are well suited to manipulations involving DNA or 

mRNA injection, cell labeling, and transplantation. Once the scheduled zebrafish genome 

project is complete, targeted genetic manipulations in zebrafish would be able to become 

even more desirable. Since adult zebrafish only grow up to 30-50 mm in length, they can be 

kept a lot of population in relatively small spaces. Moreover, zebrafish are easy to maintain 
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and breed under laboratory conditions, they have short generation times (about 3 months) 

and can reproduce for about 1.5 years. A number of embryos can be obtained at one time, 

because female fish easily lay 100–200 eggs in each spawning. After the eggs are fertilized 

among a pair of zebrafish, the embryos develop rapidly and the formation of somatic 

structures is achieved within 2-3 days of post-fertilization (Figure 1).  

 

 
Photo images: female adult zebrafish (A) and zebrafish embryos (B) at 6, 24, 48 and 72 hpf, respectively. 
Scale bar, 500 µm. 

Fig. 1. Zebrafish and its embryogenesis 

Forward genetics has been applied, successfully, using methods for large-scale mutagenesis 

and screening for altered phenotypes, resulting in the discovery of more than 2000 

mutations that perturb the normal development of zebrafish7–9. In addition to these 

advantages, their embryonic developmental processes are easily observed in live because of 

transparent embryos. Methods for standard (non-targeting) germline transgenesis of 

zebrafish are established10,11, with several modifications for increasing their efficiency also 

reported12–16. One advantage of zebrafish transgenics having compared with the mammalian 

counterpart technology is that reproduction involves external fertilization and embryo 

development, eliminating the need for surgical intervention. Nowadays, the zebrafish are 
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becoming a useful genetic model and starting to be employed in various researches such as 

infection desiease17, cancer research18, chemical genetic screening19, toxicology20, and 

proteome21. Some researchers noted on zebrafish as an in vivo protein expression system, 

which can be applied for useful protein production22, while they used for genetic model are 

spreading. 

2. Omics research in zebrafish 

Modern biomedical research greatly benefits from large-scale genome-sequencing projects 

ranging from studies of viruses, bacteria, and yeast to multicellular organisms. There are 

currently many organisms whose genomes are undergoing systematic sequencing by the 

next-generation sequencer. The zebrafish genome-sequencing project has been started in 

2001 at the Sanger Institute, and all the genome sequence will become available near the 

future. Zebrafish microarrays have been produced that contain either DNA fragments 

derived from expressed sequence tag (EST) and cDNA libraries23, or from oligonucleotide 

libraries based on all the genes or transcriptional units predicted from bioinformatic analysis 

of the entire zebrafish genome. At present, 14,000-22,000 zebrafish genes are included on 

commercially available arrays (Agilent, Affymetrix, Compugen/Sigma-Aldrich, 

MWGBiotech and Qiagen/Operon) offering a standardized toolset for zebrafish 

transcriptional profiling. Recently, microRNA expression profiles have been characterized24 

adding this new family of control factors for gene expression to the zebrafish toolbox 

repertoire. 

An important challenge facing life sciences is to quantitatively describe the bewildering 

complexity of living organisms25, both to appreciate the elegance of nature and to make 

medically relevant predictions. Indeed, the scope of this complexity is vast. Even the 

function of a single mammalian cell typically involves coordinated activities among over 

20,000 genes, 100,000 proteins26, and thousands of small-molecule lipids, carbohydrates and 

metabolites, each of which may be expressed at differing levels over time. These 

components interact in physical complexes and functional modules that operate at many 

levels of organization25. On the other hand, the classic method for reverse engineering a 

system is to poke a component with a stick and then to characterize the effect of the 

perturbation26. An alternative is to poke many components simultaneously and at random, 

repeating the experiment over many random sets of components27. Conveniently, the 

genetic variation that occurs naturally within a population is a source of multifactorial 

perturbation28,29. The use of natural genetic variation to probe the causal network that links 

genotype and phenotype has grown recently as large data sets have been generated for 

many experimental model species, crops and humans30-32. 

Activity-based profiling (ABP) of proteomes is a powerful strategy for identifying the 
functional participants in complex biological processes33. The recent development of ABP, in 
which a chemical probe can be used to label and isolate an enzyme from a complex mixture, 
provides associated with a particular biological activity, thereby taking a step toward their 
functional identification34,35. Moreover, although transcriptional profiling assesses changes 
in the amount of RNA transcripts in response to a perturbation in environment of an 
organism, organ, or cell36, the abundance of the encoded protein cannot be predicted from 
the abundance of the transcript. Chromatographic, electrophoretic, and mass spectroscopic 
methods have also been developed to separate and quantify the amount of individual 
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proteins in proteomes37. However, the absolute amount of a protein is also, at best, an 
indirect indicator of its function. The biological potency and activity of a protein cannot be 
predicted from its abundance; posttranslational modification (phosphorylation, acetylation, 
or glycosylation) often is the switch for turning the biological activity of a protein on or off. 
Therefore, protein microarray provides a new strategy for assessing the in vitro interactions 
of selected members if a proteome with selected ligands38. Yet this approach is limited by 
the availability of relevant proteins and ligands. The zebrafish is also suitable for chemical 
genomics, in part as a result of the permeability of its embryos to small molecules and 
consequent avoidance of external confounding maternal effects39. The use of zebrafish in 
high-throughput (HTP) screens of small molecules may allow time-series analyses that 
could be particularly useful for studying variable gene expression in early development and 
for toxicogenomic studies. On the other hand, genetic suppressor screens may identify 
second-site mutations that modify the effect of an existing genetic mutation40. In this case, 
zebrafish larvae are most commonly used for whole-organism screens. Adult zebrafish are 
popular, too, but their mobility and larger size make them less convenient to use. Embryos 
develop quickly: within three days of fertilization a zebrafish has a vascular system, a 
beating heart, the fish equivalent of a pancreas and kidneys. Even better, the larvae, as well 
as some mutant adult strains, are transparent, facilitating imaging41.  
Metabolomics is an emerging tool that can be used to gain insights into cellular and 

physiological responses. In principle, the metabolome, particularly the unbiased 

metabolome, would be more diverse and dynamic in terms of chemical and physical 

properties of metabolites than the transcriptome and proteome. Therefore, the analysis of 

the metabolome would be suitable for describing the dynamic changes that occur during 

embryogenesis. However, there have been no reports on the practical application of 

metabolomics for determining the mechanisms underlying specific biological processes in 

higher organisms. Therefore, early embryogenesis was a suitable period for determining 

whether metabolomics can be used to understand complex biological processes. We first 

identified and profiled 63 types of metabolites from 24 developmental stages, i.e., from 1-cell 

stage to 48 h postfertilization (hpf), of zebrafish embryos by using gas 

chromatography/mass spectrometry (GC/MS) method42. Analysis of the GC/MS data with 

partial least square (PLS) regression clearly indicated a good correlation between 

metabolomes and developmental stages. Next, we developed a model for predicting 

embryonic stages on the basis of the metabolome. Thus, zebrafish model is a practical tool to 

analyze the biological processes in early development. 

3. Studies on activity-based profiling with disease-associated proteins using 
zebrafish 

Proteomic technology can be very useful in development of production processes for 

therapeutic proteins by use of genetically engineered animal cells43,44 or human stem cells45. 

However, the analysis of proteomes is significantly more challenging that of genomes. In 

particular, there is greater diversity in proteins at the amino acid composition level; the 

proteome is dynamic, both spatially and temporally; and a wide range of variation of 

protein concentrations exists within cells46. Moreover, proteomic analysis is substrate 

limited, because methods for protein amplification are not available. Therefore, two main 

areas of this field are ‘profiling’ and ‘functional’ proteomics. Profiling proteomics 
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encompasses the description of the whole proteome of an organism (by analogy with the 

genome) and includes organelle mapping and differential measurement of expression levels 

between cells or conditions. Functional proteomics characterizes protein activity, 

interactions and the presence of posttranslational modifications.  

We are focusing on posttranslational modifications in our laboratory and have recently 
reported protein O-mannosyltransferases (POMTs) in zebrafish47. POMTs (POMT1 and 
POMT2) catalyze the first step in O-mannosyl glycan synthesis48, and defects in human 
POMT1 (hPOMT1) or hPOMT2 result in Walker–Warburg syndrome (WWS), an autosomal 
recessive disorder associated with severe congenital muscular dystrophy, abnormal 
neuronal migration and eye anomalies49,50. Although zebrafish are superior for vertebrates 
or human in vivo model, the mice are the most commonly employed vertebrate’s model. 
However, with their advantages of easy manipulation under laboratory conditions, 
availability of genome information, and the easy establishment of transgenic fish, the 
zebrafish is gradually spreading into a wide variety of studies as a handier model animal 
than mouse. In this study, injection of antisense morpholino oligonucleotides of zebrafish 
POMT1 (zPOMT1) and zPOMT2 resulted in several severe phenotypes including bended 
body, edematous pericaridium and abnormal eye pigmentation. Immunohistochemistry 
using anti-glycosylated α-dystroglycan antibody (IIH6) and morphological analysis 
revealed that the phenotypes of zPOMT2 knockdown were more severe than those of 
zPOMT1 knockdown, even though the IIH6 reactivity was lost in both zPOMT1 and 
zPOMT2 morphants. On the other hand, only when both zPOMT1 and zPOMT2 were 
expressed in human embryonic kidney 293T cells, high levels of protein O-
mannosyltransferase activity were detected, indicating that both zPOMT1 and zPOMT2 
were required for full enzymatic activity. Moreover, either heterologous combination, 
zPOMT1 and hPOMT2 or hPOMT1 and zPOMT2, resulted in enzymatic activity in cultured 
cells. These results indicate that the protein O-mannosyltransferase machinery in zebrafish 
and humans is conserved and suggest that zebrafish may be useful for functional studies of 
protein O-mannosylation. More recently, Dr. Kunkel’s group has reported that two known 
zebrafish dystrophin mutants, sapje and sapje-like (sapc/100), represent excellent small-
animal models of human muscular dystrophy51. Using these dystrophin-null zebrafish, they 
have screened the Prestwick chemical library for small molecules that modulate the muscle 
phenotype in these fish. With a quick and easy birefringence assay, they have identified 
seven small molecules that influence muscle pathology in dystrophin-null zebrafish without 
restoration of dystrophin expression. Finally, three of seven candidate chemicals restored 
normal birefringence and increased survival of dystrophin-null fish. 

4. Recent genetic engineering in zebrafish 

The transgenic fish technology is employed in diverse areas of biological researches 

including analysis of regulatory elements, gene over-expression, tracing of cellular lineages, 

mutagenesis and protein analysis. The method of gene transfer into vertebrate embryos is 

commonly performed by microinjection into embryo at the one cell stage. However, in the 

most of the mammalian’s cases, it is generally difficult to obtain the embryos at quite early 

stage, and more difficult to maintain externally those isolated embryos. In the case of 

zebrafish, a huge number of embryos at one cell stage are easily available at one time 

because eggs are external-fertilized and spawned hundreds of eggs weekly. In general, 
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microinjection into zebrafish embryos is relatively easier than that of other fish because of 

their soft chorion. Therefore, it is easy to imagine that a large numbers of injections will be 

needed for developing protein expression in zebrafish. To improve performance of injection 

by hand, we are developing auto-injection machine for zebrafish eggs (Figure 2). This 

injection system can currently operate 100 pL per embryo level injection, and the injectioin 

speed is 20 eggs per minute. 

 
 

 

Fig. 2. Fully automated injection system for zebrafish 

Techniques for reverse genetic approaches in zebrafish are limited to mRNA knockdown 

strategies using modified antisense oligomers (morpholinos) 52 and TILLING for point 

mutations by detection of heterozygosity in a locus of interest, and subsequent sequencing, 

among a library of chemically mutagenized gametes. On the other hand, conventional gene 

targeting, a powerful technique for gene disruption in mouse embryonic stem cells53, often 

requires positive-negative selection with cytotoxic drugs54, which is inapplicable in the 

context of a vertebrate embryo. In 2008, the use of zinc-finger nucleases (ZFNs) for somatic 

and germline disruption of genes in zebrafish, in which targeted mutagenesis was 

previously intractable, have been repoted55,56. ZFNs induce a targeted double-strand break 

in the genome that is repaired to generate small insertions and deletions. Therefore, only co-

injection of mRNAs encoding these ZFNs into one-cell-stage zebrafish embryos led to 

mutagenic lesions at the target site that were transmitted through the germ line with high 

frequency. In near future, the use of engineered ZFNs to introduce heritable mutations into 

a genome obviates the need for embryonic stem cell lines and should be applicable to most 

animal species for which early stage embryos are easily accessible. 

5. Development of protein expression vectors in zebrafish 

The plasmid DNA has been used for expression of exogenous gene in wide variety of 

animals. For the zebrafish, the pXeX vector might be first used for protein expression in 

zebrafish, which is originally used for protein expression in Xenopus embryo57, containing 

the transcription regulatory regions of the Xenopus laevis elongation factor-1 alpha gene (EF-

1 alpha) and SV40 polyadenilation signaling. Amsterdam et al. cloned green fluorescent 
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protein (GFP) into pXeX vector (pXeX-GFP) and expressed GFP in zebrafish embryos by 

plasmid injection into fertilized eggs58. Moreover, they constructed pXIG vector which is 

originally constructed for expression in zebrafish embryos, based on the backbone of pXeX 

vector. They inserted rabbit beta-globin IVS2 into the promoter region of pXeX vector, and 

then followed by GFP’s open reading frame. Using the pXIG vector, they expressed GFP in 

the whole body of transgenic zebrafish and observed more frequent generation of transgenic 

fish than that of pXeX-GFP injectant.  

 
 

 
 
 

The pZex-EGFP vector (A) or pZex-DsRed-pXI-EGFP tandem vector (C) was injected into zebrafish 
embryos and pZex-EGFP expression in hatching gland at 48 hpf (arrow head in B) or pZex-DsRed-pXI-
EGFP expression in zebrafish Embryos at 48 hpf (D) was observed. Note that expression of GFP in panel 
D is ubiquitous, while the expression of DsRed was limited in hatching gland cells.  Scale bars, 500 µm. 

Fig. 3. Protein expression vectors and their expression in zebrafish embryos  
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We constructed the pZex vector derived from the pXI vector in our laboratory (Figure 3A). 

This vector included the promoter region of zebrafish he1 (hatching enzyme 1) gene and 

GFP is expressed in hatching gland cells during only early developmental stages up to 72 

hrs post-fertilization (hpf) (Figure 3B). Furthermore, since tissue-specific and stage-specific 

protein expression by pZex can be possible in zebrafish embryos, even some apoptosis-

related protein is able to express. Although one of the critical problems for protein 

expression in zebrafish embryos is expression efficiency, most target proteins were easily 

expressed by pZex in more than 30% of injected embryos. Furthermore, we constructed a 

pXI-EGFP-pZex-DsRed vector tandemly connected with both pXI-EGFP and pZex-DsRed, 

(Figure 3C). EGFP and DsRed can be successfully expressed in each promoter-dependent 

manner (Figure 3D). These constructs can be applied for the identification of embryos 

expressing target proteins. Thus, we can choose efficiently the embryos expressing the target 

protein only observed by monitoring fluorescence.  

6. Zebrafish as a model for combinatorial bioengineering 

In recent years, the importance of the target proteins with therapeutic potential and drug 

discovery is getting more and more increasing. For example, several monoclonal antibodies 

have already applied to human cancer therapy because of their minimum side effects and 

specificity to the target disease. For the purpose of developing the novel molecular target 

drugs, the spatiotemporal protein-protein interactions in normal or abnormal tissue has 

been attempted to analyze extensively. In addition, the effective production of such a 

functional mammalian protein in large scale and at low cost will be also demanded as 

spreading the use of these proteins in human therapy or researches like protein structure 

analysis for novel drug discovery. 

Although expression and preparation of target proteins in large scale has been tried in 

bacterial cells, bacterial recombinant proteins often lost their native properties. It is due to 

the differences of protein synthesis system between eukaryotic cells and prokaryotic cells. 

That is, protein synthesis on endoplasmic reticulum (ER) follows by various 

posttranslational modifications such as glycosylation, phosphorylation, and N-terminus 

conjugation of several lipids in eukaryotic cells. Accordingly, such posttranslational 

modifications never occur in prokaryotic cells. On the other hand, the posttranslational 

modifications are often critical for the correct folding or functions of mammalian proteins. 

For this reason, the mammalian proteins for pharmaceutical agent or protein structure 

analysis has been produced by eukaryotic cells or extracted from mammalian tissues. 

However, these methods are not efficient and often less expensive. Therefore, several 

alternative ways to produce mammalian proteins more efficient than using cell cultures has 

been studied and one successful example are to secrete the protein in the milk of transgenic 

mammals, like a pig59,60. However, maintenance of such a large mammal needs large spaces 

and high cost. In addition, it is originally unable to produce and keep various kinds of 

transgenic mammals.  

The zebrafish are easy to maintain large population in a small space, lay thousands of eggs 

weekly, and can generate and reproduce transgenic fishes easily. Therefore, we introduced 

and described the advantage of zebrafish researches. In order to apply this tool to 

combinatorial bioengineering in the post-genomic era, we attempt to use the ability and 
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Fig. 4. Scheme of combinatorial bioengineering using zebrafish embryogenesis 

potentiality of zebrafish “embryoarray” as protein sources (Figure 4). In fact, there are many 

and various kinds of libraries for not only genes but also natural or artificial compounds. 

For instance, if complete cDNAs encoding a total of human genes were able to transfer into 

the zebrafish, human protein library would be obtained and could be stably expressed in all 

generations of transgenic zebrafish with their native properties. Thus, we believe that 

transgenic zebrafish have brought us remarkable advances in many areas of biological 

researches. Therefore, we would like to emphasize the additional advantages that the target 

proteins expressed in zebrafish would have a proper conformation, activity and 

posttranslational modifications. The effective production of such functional mammalian 

proteins will become gradually important as increasing attention to developing 

pharmaceutical proteins. 

7. Zebrafish and its potential application on drug discovery 

The low-cost and high clutch-size zebrafish is, at the embryonal and larval stages, optically 

transparent, permitting visualization of pathogens and lesions in real time61, as well as offering 

exciting possibilities for high-throughput imaging62. Zebrafish are also amenable to forward 

genetic screening, or reverse genetics techniques such as injection of morpholinos (inhibitory 

of mRNA translation)63,64. More recently, it is clear that much can be learned about 

Tuberculosis (TB) from the study of Mycobacterium marinum infections in zebrafish, and the use 

of this pathogen offers practical advantages when compared to M. tuberculosis, such as lower 

biosafety restrictions and faster growth rate65. That notwithstanding, it was of interest to study 
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the human pathogen, M. tuberculosis, directly in zebrafish via robotic injection system. 

Importantly, they use reference compounds to validate their system in the testing of molecules 

that prevent tuberculosis progression, making it highly suited for investigating novel anti-

tuberculosis compounds in vivo. Thus, by introducing advanced biotechnologies into 

zebrafish, we are confident that our approach will contribute to the novel knowledge of drug 

discovery and could be helpful for the development of new medicines. 
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