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1. Introduction 

Hidden Markov Models (HMMs) are a set of statistical models used to characterize the 
statistical properties of a signal. An HMM is a doubly stochastic process with an underlying 
stochastic process that is not observable, but can be observed through another set of 
stochastic processes that produce a sequence of observed symbols. An HMM has a finite set 
of states, each of which is associated with a multidimensional probability distribution; 
transitions between these states are governed by a set of probabilities. Hidden Markov 
Models are especially known for their application in 1D pattern recognition such as speech 
recognition, musical score analysis, and sequencing problems in bioinformatics. More 
recently they have been applied to more complex 2D problems and this review focuses on 
their use in the field of automatic face recognition, tracking the evolution of the use of HMMs 
from the early-1990’s to the present day.  
Our goal is to enable the interested reader to quickly review and understand the state-of-art 
for HMM models applied to face recognition problems and to adopt and apply these 
techniques in their own work. 

2. Historical overview and Introduction to HMM  

The underlying mathematical theory of Hidden Markov Models (HMMs) was originally 
described in a series of papers during the 1960’s and early 1970’s [Baum & Petrie, 1966; 
Baum et al., 1970; Baum, 1972]. This technique was subsequently applied in practical pattern 
recognition applications, more specifically in speech recognition problems [Jelinek et al., 
1975]. However, widespread understanding and practical application of HMMs only began 
a decade later, in the mid-1980s. At this time several tutorials were written [Levinson et al., 
1983; Juang, 1984; Rabiner & Juang, 1986; Rabiner, 1989]. The most comprehensive of these 
was the last, [Rabiner, 1989], and provided sufficient detail for researchers to apply HMMs 
to solve a broad range of practical problems in speech processing and recognition. The 
broad adoption of HMMs in automatic speech recognition represented a significant 
milestone in continuous speech recognition problems [Juang & Rabiner, 2005].  
The mathematical sophistication of HMMs combined with their successful application to a 
wide range of speech processing problems has prompted researchers in pattern recognition 
to consider their use in other areas, such as character recognition, keyword spotting, lip-
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reading, gesture and action recognition, bioinformatics and genomics. In this chapter we 
present a review of the most important variants of HMMs found in the automatic face 
recognition literature. We begin by presenting the initial 1D HMM structures adapted for use 
in face recognition problems in section 3. Then a number of papers on hybrid approaches 
used to improve the performance of HMMs for face recognition are discussed in section 4.  
In section 5 the various 2D variants of HMM are described and evaluated in terms of the 
recognition rates achieved from each. Finally section 6 includes some recent refinements in 
the application of HMM techniques to face recognition problems. 

3. HMM in face recognition - initial 1D HMM structures 

As mentioned in the previous section, HMMs have been used extensively in speech 
processing, where signal data is naturally one-dimensional. Nevertheless, HMM techniques 
remain mathematically complex even in the one-dimensional form. The extension of HMM 
to two-dimensional model structures is exponentially more complex [Park & Lee, 1998]. This 
consideration has led to a much later adoption of HMM in applications involving two-
dimensional pattern processing in general and face recognition in particular. 

3.1 Initial research on ergodic and top-to-bottom 1D HMM  
In 1993, a new approach to the problem of automatic face recognition based on 1D HMMs 

was proposed by [Samaria & Fallside, 1993]. In this paper faces are treated as two-

dimensional objects and the HMM model automatically extracts statistical facial features. 

For the automatic extraction of features, a 1D observation sequence is obtained from each 

face image by sampling it using a sliding window. Each element of the observation sequence 

is a vector of pixel intensities (or greyscale levels).   

Two simple 1D HMMs were trained by these authors in order to test the applicability of 

HMMs in face recognition problems.  A test database was used comprising images of 20 

individuals with a minimum of 10 images per person. Images were acquired under 

homogeneous lighting against a constant background, and with very small changes in head 

pose and facial expressions. For a first set of tests an ergodic HMM was used. The images were 

sampled using a rectangular window, size 64 × 64, moving left-to-right horizontally with a 

25% overlap (16 pixels), then vertically with 16 pixels overlap and starting again horizontally 

right-to-left. Using the observation sequence thus extracted, an 8-state ergodic HMM was built 

to approximately match the 8 distinct regions that seem to appear in the face image (eyes, 

mouth, forehead, hair, background, shoulders and two extra states for boundary regions). 

Figure 1 taken from [Samaria & Fallside, 1993] shows the training data used for one subject 

and the mean vectors for the 8 states found by HMM for that particular subject. 

 

 

Fig. 1. Training data and states for ergodic HMM [Samaria & Fallside, 1993] 
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In the second set of tests, a left-to-right (top-to-bottom) HMM was used. Each image was 
sampled using a horizontal stripe 16 pixels high and as wide as the image, moving top-to-
bottom with 12 lines overlap. The resulting observation sequence was used to train a 5-state 
left-to-right HMM where only transitions between adjacent states are allowed. The training 
images and the mean vectors for the 5 states found by HMM are presented in Figure 2. 
 

 

Fig. 2. Examples of training data and states for top-to-bottom HMM from [Samaria & 
Fallside, 1993] 

In both of these models the statistical determination of model features, yields some states of 
the HMM which can be directly identified with physical facial features. Training and testing 
were performed using the HTK toolkit1. According to these authors, successful recognition 
results were obtained when test images were extracted from the same video sequence as the 
training images, proving that the proposed approach can cope with variations in facial 
features due to small orientation changes, provided the lighting and background are 
constant. Unfortunately these authors did not provide any explicit recognition rates so it is 
not possible to compare their methods with later research.  It is reasonable, however, to 
surmise that their experimental results were marginal and are improved upon by the later 
refinements of [Samaria & Harter, 1994]. 

3.2 Refinement of the top-to-bottom 1D HMM 
In a later paper [Samaria & Harter, 1994] refined the work begun in [Samaria & Fallside, 
1993] on a top-to-bottom HMM. These new experiments demonstrate how face recognition 
rates using a top-to-bottom HMM vary with different model parameters. They also indicate 
the most sensible choice of parameters for this class of HMM. Up until this point, the 
parameterization of the model had been based on subjective intuition.   
For such a 1D top-to-bottom HMM there are three main parameters that affect the 

performance of the model: the height of the horizontal strip used to extract the observation 

sequence, L (in pixels), the overlap used, M  (in pixels) and the number of states N of the 

HMM. The height of the strip, L, determines the size of the features and the length of the 

observation sequence, thus influencing the number of states. The overlap, M, determines 

how likely feature alignment is and also the length of the observation sequence. A model 

with no overlap would imply rigid partitioning of the faces with the risk of cutting across 

potentially discriminating features. The number of states, N, determines the number of 

features used to characterize the face, and also the computational complexity of the system. 

These experiments were performed using the Olivetti Research Lab (ORL) database, 
containing frontal facial images with limited side movements and head tilt. The database 
was comprised of 40 subjects with 10 pictures per subject. The experiments used 5 images 

                                                 
1 http://htk.eng.cam.ac.uk/ 
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per person for training and the remaining 5 images for testing. The results were reported as 
error rates, calculated as the proportion of incorrectly classified images.  Three sets of tests 
were done, varying the values of each of the three parameters as follows: 2 ≤ N ≤ 10, 1 ≤ L ≤ 
10 and 0 ≤ M ≤ L−1. For M varied, the number of states was fixed at N = 5 and window 
height L was varied between 2 and 10. According to the tests, the error rates drop as the 
overlap increases, approximately from 28% to 15%. However a greater overlap implies a 

bigger computational effort. When L was varied, N was fixed to 5 and the overlaps 
considered were 0, 1 and L-1. In this case if there is little or no overlap, the smaller the strip 
height the lower the error rate is, with values between 13% for L = 1 up to 28% for L = 10. 

However, for sufficiently large overlap the strip height has marginal effect on the 
recognition performance, the error rate remaining almost constant around 14%. In the third 
set of tests N was varied, with L = 1 and 0 overlap and L = 8 and maximum overlap (M=L-
1). The performance is fairly uniform for values of N between 4 and 10, with an increase in 
error for values smaller than three. 
The conclusions of this paper are: (i) a large overlap in the sampling phase (the extraction of 

observation sequences) yields better recognition rates; the error rate varies from up to 30% 

for minimum overlap down to 15% for maximum overlap; (ii) for large overlaps the height 

of the sampling strip has limited effect. The error rate remains almost constant at 15% for 

maximum overlap, regardless of the value of L, and (iii) best results are obtained with a 

HMM with 4 or more states. Error rate drops from around 25% for 1-2 states to 15% from 4 

states onward. We remark that these early models were relatively unsophisticated and were 

limited to fully frontal faces with images taken under controlled background and 

illuminations conditions.  

3.3 1D HMM with 2D-DCT features for face recognition  
In [Nefian & Hayes, May 1998], Samaria’s version of 1D HMM, is upgraded using 2D-

DCT feature vectors instead of pixel intensities. The face image is divided into 5 

significant regions, viz: hair, forehead, eyes, nose, and mouth. These regions appear in a 

natural order, each region being assigned to a state in a top-to-bottom 1D continuous 

HMM. The state structure of the face model and the non-zero transition probabilities are 

shown in Figure 3. 

 

 

Fig. 3. Sequential HMM for face recognition 

The feature vectors were extracted using the same technique as in [Samaria & Harter, 1994]. 
Each face image of height H and width W is divided into overlapping strips of height L and 
width W, the amount of overlap between consecutive strips being P, see Figure 4. The 
number of strips extracted from each face image determines the number of observation 
vectors. 
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The 2D-DCT transform is applied on each face strip and the observation vectors are 
determined, comprising the first 39 2D-DCT coefficients. The system is tested on ORL2 
database containing 400 images of 40 individuals, 10 images per individual, image size 92 × 
112, with small variations in facial expressions, pose, hair style and eye wear. Half of the 
database is used for training and the other half is used for testing. The recognition rate 
achieved for L=10 and P=9 is 84%. Results are compared with recognition rates obtained 
using other face recognition methods on the same database: recognition rate for the 
eigenfaces method is 73%, and for the 1D HMM used by Samaria is also 84%, but the 
processing time for DCT based HMM is an order of magnitude faster - 2.5 seconds in 
contrast to 25 seconds required by the pixel intensity method of [Samaria & Harter, 1994]. 
 

 

Fig. 4. Face image parameterization and blocks extraction [Nefian & Hayes, May 1998]. 

3.4 1D HMM with KLT features for face detection and recognition 
In a second paper [Nefian & Hayes, October 1998] introduce an alternative 1D HMM 

approach, which performs the face detection function in addition to that of face recognition. 

This employs the same topology and structure as in the previous work of these authors, 

described above, but uses different image features. In contrast with the previous paper, the 

observation vectors used here are the coefficients of Karhunen-Loeve Transform. The KLT 

compression properties as well as its decorrelation properties make it an attractive 

technique for the extraction of the observation vectors. Block extraction from the image is 

achieved in the same way as in the previous paper. The eigenvectors corresponding to the 

largest eigenvalues of the covariance matrix of the extracted vectors form the KLT basis set. 

If µ is the mean of the vectors used to compute the covariance matrix, a set of vectors is 

obtained by subtracting this mean from each of the vectors corresponding to a block in the 

image.  The resulting set of vectors is then projected onto the eigenvectors of the covariance 

matrix and the resulting coefficients form the observation vectors. 

The system is used both for face detection and recognition by the authors. For face detection, 

the system is first trained with a set of frontal faces of different people taken under different 

illumination conditions, in order to build a face model. Then, given a test image, face 

detection begins by scanning the image with horizontally and vertically overlapping 

rectangular windows, extracting the observation vectors and computing the probability of 

                                                 
2 http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html 

www.intechopen.com



 
Reviews, Refinements and New Ideas in Face Recognition 

 

8 

data inside each window given the face model, using Viterbi algorithm. The windows that 

have face model likelihood higher than a threshold are selected as possible face locations. 

The face detection system was tested on MIT database with 48 images of 16 people with 

background and with different illuminations and head orientations.  Manually segmented 

faces from 9 images were used for training and the remaining images for testing, with a face 

detection rate of 90%. 

For face recognition this system was applied to the ORL database containing 400 images of 
40 individuals, 10 images per individual, at a resolution of 92 × 112 pixels, with small 
variations in facial expressions, pose, hairstyle and eye wear. The system was trained with 
half of the database and tested with the other half. The accuracy of the system presented in 
this paper is increased slightly over earlier work to 86% while the recognition time decreases 
due to use of the KLT features. 

3.5 Refinements to 1D HMM with 2D-DCT features 
Following on the work of [Samaria, 1994] and [Nefian, 1999], Kohir & Desai wrote a series of 
three papers using the 1D HMM for face recognition problems. In a first paper, [Kohir & 
Desai, 1998], these authors present a face recognition system based on 1D HMM coupled 
with 2D-DCT coefficients using a different approach for feature extraction than that 
employed by [Nefian & Hayes, May 1998 & October 1998]. The extracted features are 
obtained by sliding square windows in a raster scan fashion over the face image, from left to 
right and with a predefined overlap. At every position of the window over the image (called 
sub-image) 2D DCT are computed, and only the first few DCT coefficients are retained by 
scanning the sub-image in a zigzag fashion. The zigzag scanned DCT coefficients form an 
observation vector. The sliding procedure and the zigzag scanning are illustrated in Figure 5 
[Kohir & Desai, 1998]. 
 

 

Fig. 5. (a) Raster scan of face image with sliding window. (b) Construction of 1D observation 
vector from zigzag scanning of the sliding window [Kohir & Desai, 1998]. 

The performance of this system is tested using the ORL database. Half of the images were 
used in the training phase and the other half for testing (5 faces for training and the 
remaining 5 for testing), sampling windows of 8 × 8 and 16 × 16, were used with 50% and 
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75% overlaps, and 10, 15 and 21 DCT coefficients were extracted. The number of states in the 
HMM was fixed at 5 as per the earlier work of [Nefian & Hayes, May 1998]. The recognition 
rates vary from 74.5% for a 16 × 16 window, with a 50% overlap and 21 DCT coefficients to 
99.5% for 16 × 16 window, 75% overlap and 10 DCT coefficients.  
In a second paper [Kohir & Desai, 1999] these authors further refined their research 
contribution. To evaluate the recognition performances of the system, 2 new experiments 
are performed: 

 In a first experiment the proposed method is tested with different numbers of training 
and testing faces per subject. The tests were performed on the ORL database, and the 
number of training faces was increased from 1 to 6, while the remaining faces were 
used in the testing phase.  A sampling window of 16 × 16 with 75% overlap was used 
with 10 DCT coefficients as these had provided optimal recognition rates in their earlier 
work. The recognition rates achieved are from 78.33% for a single training image and 9 
testing images up to 99.5% which is the rate obtained when 5 or 6 training images and 5 
or 4 testing images are used. It is worth noting that the ORL database comprises frontal 
face images in uniform lighting conditions and that recognition rates close to 100% are 
often achieved when using such datasets.  

 In a second experiment the system was tested while increasing the number of states in 
the HMM. Again the ORL database is used, with 5 images for training and 5 for testing. 
The recognition rates vary as follows:  92% for a 2-states HMM, increasing to 99.5% for 
a 5-states HMM and stabilizing around 97%-98% when using up to 17 states. The 
system was also tested with the SPANN database3 containing 249 persons, each with 7 
pictures, with variations in pose, 3 pictures were used for training and the remaining 4 
for testing, and the recognition rate achieved was 98.75%. 

 A third paper, [Kohir & Desai, 2000] describes the same 1D HMM with DCT features, 
with a variation in the training phase. In this paper, first a mean image is constructed 
from all the training images, and then each training image is subtracted from the mean 
image to obtain a mean subtracted image. The observation vectors are extracted from these 
mean subtracted images using the same window sliding method. The observation vector 
sequences are then clustered using the K-means technique, and thus an initial state 
segmentation is obtained. Subsequently, the conventional training steps are followed. In 
the recognition phase, each test image is first subtracted from the mean image obtained 
during the training phase and recognition is performed on the resulting mean subtracted 
image. 

The experiments for face recognition were performed on the same two databases, ORL and 

SPANN. For ORL database 5 pictures were used for training and the remaining 5 for testing, 

and the recognition rate obtained is 100%, compared to 88% when the eigenfaces method is 

used. For SPANN database 3 pictures were used for training and the remaining 4 for testing, 

the obtained recognition rate was 90%, compared again with the eigenfaces method where a 

77% recognition rate was achieved. For the ORL database different resolutions were also 

tested, the highest recognition rate, 100% being obtained for 96 × 112.  

Also, ‘new subject rejection’ for authentication applications was tested on the ORL database. 

The database was segmented into 2 sets:  20 subjects corresponding to an ‘authorized’ 

subject class - 5 pictures used in training phase and the rest in the testing phase. The 

                                                 
3 http://www.khayal.ee.iitb.ernet.in/usr/SPANN_DATA_BASE/2D_Signals/Face/faces 
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remaining 20 subjects are assigned to an ‘unauthorized’ class - all 10 pictures are used in the 

testing phase. For each ‘authorized’ subject a HMM model is built. Also a separate ‘common 

HMM’ model is built using all mean subtracted training images of all the ‘authorized’ subjects.  

For each test face, if the probability of the ‘common HMM’ is the highest, the input face 

image is rejected as ’unauthorized’, otherwise the input face image is treated as ’authorized’. 

The results are: 100% rejection of any new subjects and 17% rejection of known subjects 

(false negatives). 

3.6 Refinement of 1D HMM with sequential prunning 
As proved by [Samaria & Harter, 1994], the number of states used in a 1D HMM can have a 
strong influence on recognition rates. The problem of the optimal selection of the structure 
for an HMM is considered in [Bicego at al., 2003a].  The first part of this paper presents a 
method of improving the determination of the optimal number of states for an HMM. These 
authors then proceed to prove the equivalence between (i) a 1D HMM whose observation 
vectors are modelled with multiple Gaussians per state and (ii) a 1D HMM with one Gaussian 
per state but employing a larger number of states. According to the authors, there are several 
possible methods for solving the first problem, e.g. cross-validation, Bayesian inference 
criterion (BIC), minimum description length (MDL). These are based on training models 
with different structures and then choosing the one that optimizes a certain selection 
criterion. However, these methods involve a considerable computational burden plus they 
are sensitive to the local-greedy behaviour of the HMM training algorithm, i.e. the 
successful training of the model is influenced by the initial estimates selected. 
The approach proposed by [Bicego et al., 2003a] addresses both the computational burden of 
model selection, and the initialization phase. The key idea is the use of a decreasing learning 
strategy, starting each training session from a ‘nearly good’ situation derived from the 
previous training session by pruning the ‘least probable’ state. More specifically, the authors 
proposed starting the model training with a large number of states. They next run the 
estimation algorithm and, on convergence, evaluate the model selection criterion. The ’least 
probable’ state is then pruned, and the resulting configuration of the model with one less 
state is used as a starting point for the next sequence of iterations. In this way, each training 
session is started from a ’nearly good’ estimate. The key observation supporting this 
approach is that, when the number of states is extremely large, the dependency of the model 
behaviour on the initial estimates is much weaker. An additional benefit is that using ’nearly 
good’ initializations drastically reduces the number of iterations required by the learning 
algorithm at each step in this process. Thus the number of model states can be rapidly 
reduced at low computational cost.  
In order to assess the performance of their proposed method, these authors tested the 
pruning approach and the standard approach (consisting in training one HMM  for varying 
number of states) with BIC criterion and MMDL (mixture minimum description length) 
[Figueiredo et al., 1999] criterion. These two strategies are compared in terms of: (i) accuracy 
of the model size estimation, (ii) total computational cost involved in the training phase, and 
(iii) classification accuracy. In all the HMMs considered in this paper the emission 
probability density for each state is a single Gaussian. For the accuracy of the model size 
estimation, synthetically generated test sets of 3 known HMMs were used. The authors set 
the number of states allowed from 2 to 10. The selection accuracy ranged from 54% to 100% 
for standard BIC and MMDL, and from 98% to 100% for pruning BIC and MMDL, with up 
to 50% less iteration required for the latter. 
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Classification accuracy was tested on both synthetic and real data. For the synthetic data, the 

test sets used previously to estimate the accuracy of the model size estimation were used, 

obtaining 92% to 100% accuracy for standard BIC and MMDL compared to 98% to 100% 

accuracy for pruning BIC and MMDL, with 35% less iterations for pruning. For classification 

accuracy on real data, two experiments were conducted. The first involves a 2D shape 

recognition problem, and uses a data set with four classes each with 12 different shapes.  

The results obtained are 92.5% for standard BIC, 94.37% for standard MMDL, and 95.21% 

for pruning BIC and MMDL. The second experiment was conducted on the ORL database, 

using the method proposed by [Kohir & Desai 1998]. The results are 97.5% for standard BIC 

and MMDL and 97.63% for pruning BIC and MMDL. The classification accuracies are 

similar, but the pruning method reduces substantially the number of iterations required. 

3.7 A 1D HMM with 2D-DCT features and Haar wavelets 
In a following paper [Bicego et al., 2003b], a comparison between DCT coding and wavelet 
coding is undertaken. The aim is to evaluate the effectiveness of HMMs in modelling faces 
using these two different forms of image features. Each compresses the relevant image data, 
but employing different underlying techniques. Also, the suitability of HMM to deal with the 
JPEG 2000 image compression standard is considered by these authors. They adopt the 1D 
HMM approach introduced by [Kohir & Desai, 1998]. However, the optimum number of states 
for the model is selected using the sequential pruning strategy presented in [Bicego et al., 
2003a] and described in the preceding section. The same feature extraction used by [Kohir & 
Desai, 1998] is employed, and both 2D DCT and Haar wavelet coefficients are computed. 
These experiments have been conducted on the ORL database, consisting of 40 subjects with 

10 sample images of each.  The first 5 images are used for training the HMM while the 

remaining 5 are used in the testing phase. The number of states for each HMM is estimated 

using the pruning strategy. For feature extraction, a 16 × 16 pixel sliding window is used, 

with 50% and 75% overlaps being tested, and in each case the first 4, 8 and 12 DCT or Haar 

coefficients are retained. The recognition rate scores for 50% overlap are between 97.4% for 4 

coefficients to 100% for 12 coefficients, and for 75% overlap between 95.4% for 4 coefficients 

to 99.6% for 12 coefficients. Slightly better results were obtained for DCT coefficients 

throughout the experiments. It is worth noting that unlike [Samaria & Harter, 1994] and 

[Nefian & Hayes, 1998] in the case of [Kohir & Desai, 1998] the method of extracting 

observation vectors results in better performance for a 50% overlap than for 75% overlap.  

A second experiment was performed to prove the effectiveness of HMM in solving the face 
recognition problem regardless of the coefficients used, by replacing in the proposed system 
the wavelet coding with a trivial coding represented by the mean of the square window. The 
results obtained are 84.9% for 50% overlap and 77.8% for 75% overlap.  

4. Hybrid approaches based on 1D HMM 

From the discussions of the preceding section it can be seen that 1D HMM can perform 
successfully in face recognition applications.  However, the vast majority of early 
experiments were performed on the ORL database. The images in this dataset only exhibit 
very small variations in head pose, facial expressions, facial occlusions such as facial hair 
and glasses, and almost no variations in illumination. For practical applications a face 
recognition system must be able to handle significant variations in facial appearance in a 
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robust manner. Thus in  this next section more challenging face recognition applications are 
described and further HMM approaches are considered from the literature. Specifically, in 
this section we consider hybrid approaches based on HMMs used successfully in more 
challenging applications of face recognition.  
There are several core problems that a face recognition system has to solve, specifically those 
of variations in illumination, variations in facial expressions or partial occlusions of the face, 
and variations in head pose. Firstly an attempt at solving recognition problems caused by 
facial occlusions is considered [Martinez, 1999]. The solution adopted by this author was to 
explore the use of principle component analysis (PCA) features to characterize 6 different 
regions of the face and use 1D HMM to model the relationships between these regions. A 
second group of researchers [Wallhoff et al., 2001] have tackled the challenging task of 
recognizing side-profile faces in datasets where only frontal faces were used in the training 
stage. These authors have used a combination of artificial neural network (ANN) techniques 
combined with 1D HMM to solve this challenging problem. 

4.1 Using 1D HMM with PCA derived features 
A face recognition system is introduced [Martinez, 1999] for indexing images and videos 

from a database of faces. The system has to tackle three key problems, identifying frontal 

faces acquired, (i) under differing illumination conditions, (ii) with varying facial 

expressions and (iii) with different parts of the face occluded by sunglasses/scarves. 

Martinez’s idea was to divide the face into N different regions analyzing each using PCA 

techniques and model the relationships between these regions using 1D HMMs.  

The problem of different lighting conditions is solved in this paper by training the system 

with a broad range of illumination variations. To handle facial expressions and occlusions, 

the face is divided into 6 distinct local areas and local features are matched. This 

dependence on local rather than global features should minimize the effect of facial 

expressions and occlusions, which affect only a portion of the overall facial region. Each of 

these local areas obtained from all the images in the database is projected into a primary 

eigenspace. Each area is represented in vector form. Figure 6 [Martinez, 1999] shows the 

local feature extraction process. 

 

 

Fig. 6. Projection of the 6 different local areas into a global eigenspace Martinez, 1999]. 
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Note that face localization is performed manually in this research and thus cannot be precise 
enough to guarantee that the extracted local information will always be projected accurately 
into the eigenspace. Thus information from pixels within and around the selected local area 
is also extracted, using a rectangular window. By considering these six local areas as hidden 
states, a 1D HMM was built for each image in the database.  However, a more desirable case 
is to have a single HMM for each person in the database, as opposed to a HMM for each 
image.  To achieve this, all HMMs of the same person were merged together into a single 1D 
HMM, where the transition probability from one state to another is 1/number of HMMs per 
person. In the recognition phase, instead of using the forward-backward algorithm, the 
authors used the Viterbi algorithm [Rabiner, 1989] to compute the probability of an 
observation sequence given a model.  
Two sets of tests were performed, using pictures and video sequences. The image database4 
was created by Aleix Martinez and Robert Benavente. It contains over 4,000 colour facial 
images corresponding to 126 people - 70 men and 56 women. There are 12 images per 
person, the first 6 frontal view faces with different facial expressions and illumination 
conditions and the second 6 faces with occlusions (sun-glasses and scarf) and different 
illumination conditions. These pictures were taken under strictly controlled conditions. No 
restrictions on appearance including clothing, accessories such as glasses, make-up or 
hairstyle were imposed on participants. Each person participated in two sessions, separated 
by 14 days. The same pictures were taken in both sessions.  In addition, 30 video sequences 
were processed consisting of 25 images almost all of them containing a frontal face. Five 
different tests were run, using 50 people (25 males and 25 females) randomly selected from 
the database, converted to greyscale images and sampled at half their size, and also using 30 
corresponding video sequences. In a first test, all 12 images per person were used in 
training, and the system was tested with every image by replacing each one of the local 
features with random noise with mean 0. The recognition rate obtained was 96.83%. For a 
second test training was with the first six images and testing with the last six images, 
featuring occlusions. A recognition rate of 98.5% was achieved. In a third test the last six 
images were used for training and the first six for testing and the resulting recognition rate 
was 97.1%. A fourth test consisted of training with only two non-occluded images and 
testing with all the remaining images. A lower recognition rate of 72% was obtained. Finally, 
the system was trained with all 12 images for each person, and tested with the video 
sequences, achieving a 93.5% recognition rate. 

4.2 Artificial Neural Networks (ANN) in conjunction with 1D HMM 
[Wallhoff et al., 2001] approached the challenging task of recognizing profile views with 

previous knowledge from only frontal views, which may prove a challenging task even for 

humans. The authors use two approaches based on a combination of Artificial Neural 

Networks (ANN) and a modelling technique based on 1D HMMs: a first approach uses a 

synthesized profile view, while a second employs a joint parameter-estimation technique. 

This paper is of particular interest because of its focus on non-frontal faces. In fact these 

authors are one of the first to address the concept of training the recognition system with 

conventional frontal faces, but extending the recognition to include faces with only a side-

profile view. 

                                                 
4 http://www2.ece.ohio-state.edu/~aleix/ARdatabase.html 
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The experiments are performed on the MUGSHOT5 database containing the images of 1573 

cases, where most individuals are typically represented by only two photographs: one 

showing the frontal view of the person’s face and the other showing the person’s right hand 

profile. The database contains pairs of mostly male subjects at several ages and 

representatives of several ethnic groups, subjects with and without glasses or beards and a 

wide range of hairstyles. The lighting conditions and the background of the photographs 

also change. The pictures in the database are stored as 8-bit greyscale images. Prior to 

applying the main techniques of [Wallhoff et al., 2001] a pre-processing of each image is 

conducted. Photographs with unusually high distortions, perturbations or underexposure 

are discarded; all images are manually labelled so that all faces appear in the centre of the 

image and with a moderate amount of background, and resized to 64x × 64 pixels. Then two 

sets are defined: a first set consisting of 600 facial image pairs, frontal and right-hand profile, 

are used for training the neural network. A second set with 100 facial image pairs is used for 

testing. The features used for experiments are pixel intensities. In order to obtain the 

observation vectors, each image which was resized to 64 × 64 pixels is divided into 64 

columns.  So from each image 64 observation vectors are extracted.  The dimension of the 

vectors is the number of rows in the image, which is also 64, and these vectors consist of 

pixel intensities. In the training phase an appropriate neural network is used, estimated by 

applying the following intuitions: (i) a point in the frontal view will be found in 

approximately the same row as in the profile view, (ii) considering the right half of the face 

to be almost bilaterally symmetrical with the left half, only the first 40 columns of the image 

are used in the input layer to the ANN. Figure 7 taken from [Wallhoff et al., 2001] shows 

how a frontal view of the face is used to generate the profile view. In the testing phase, a 1D 

left to right first order HMM is used, allowing self transitions and transitions to the next 

state only. The models consist of 24 states, plus two non-emitting start and end states.  

In the first hybrid approach for face profile recognition there are two training stages. Firstly, 
a neural network is trained using the first set of 600 images, the frontal image of each 
individual representing the input and the profile view the output. In this way the neural 
network is trained to synthesize profiles from the frontal image. In figure 8 [Wallhoff et al., 
2001] an example of synthesized profile is shown.  In the second training stage, the 100 
frontal images are introduced in the neural network and their corresponding profiles are 
synthesized. Using these profiles, an average profile HMM model is obtained. Then for each 
testing profile, an HMM model is built using for initialization the average profile model. The 
Baum-Welch estimation procedure is used for training the HMM.  
In a second approach only one training stage is performed, the computation speed being 

vastly improved as a result. This proceeds as follows: the NN is trained using the frontal 

images as input; the target outputs are in this case the mean values of each Gaussian 

mixture used for describing the observations of the corresponding profile image. First, an 

average profile HMM model is obtained using the 600 training profile images. Using this 

average model, the mean values for each individual in the training set are computed and 

used as the target values for the NN to be trained.  In the recognition phase, for each 

frontal face the mean value for profile is returned by the NN. Using this mean and the 

average profile model, the corresponding HMM is built, then the probability of the test 

profile image given the HMM model is computed. The recognition rates achieved for the 

                                                 
5 http://www.nist.gov/srd/nistsd18.cfm 
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systems proposed in this paper are around 60% for the first approach and up to 49% for 

the second approach, compared to 70%-80% when humans perform the same recognition 

task.  The approach presented by the authors is very interesting in the context of a 

mugshot database, where only the two instances, one frontal and one profile of a face are 

present.  Also the results are quite impressive compared to the human recognition rates 

reported. However, both ANN and HMM are computationally complex, and using pixel 

intensities as features also contributes to making this approach very greedy in terms of 

computing resources. 

 

 

Fig. 7. Generation of a profile view from a frontal view [Wallhoff et al., 2001]. 

 

 

Fig. 8. Example of frontal view, generated and real profile [Wallhoff et al., 2001]. 

5. 2D HMM approaches 

In section 3 and section 4 we showed how 1D HMMs might be adapted for use in face 

recognition applications.  But face images are fundamentally 2D signals and it seems 

intuitive that they would be more effectively processed with a 2D recognition algorithm.  

Note however that a fully connected 2D extension of HMM exhibits a significant increase in 

computational complexity making it inefficient and unsuitable for practical face recognition 

applications [Levin & Pieraccini, 1992]. As a consequence of this complexity of the full 2D 

HMM approach a number of simpler structures were developed and are discussed in detail 

in the following sections. 
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5.1 A first application of pseudo 2D HMM to Facial Recognition 
In his PhD thesis, [Samaria, 1994] was the first researcher to use pseudo-2D HMMs in face 
recognition, with pixel intensities as features. In order to obtain a P2D HMM, a one-
dimensional HMM is generalized, to give the appearance of a two-dimensional structure, by 
allowing each state in a one-dimensional global HMM to be a HMM in its own right. In this 
way, the HMM consists of a top-level set of super states, each of which contains a set of 
embedded states. The super states may then be used to model the two-dimensional data in 
one direction, with the embedded HMMs modelling the data along the other direction. This 
model is appropriate for face images as it exploits the 2D physical structures of a face, 
namely that a face preserves the same structure of states from top to bottom – forehead, 
eyes, nose, mouth, chin, and also the same left-to-right structure of states inside each of 
these super states. An example of state structure for the face model and the non-zero 
transition probabilities of the P2D HMM are shown in figure 9. Each state in the overall top-
to-bottom HMM is assigned to a left-to-right HMM. 
 

 

Fig. 9. Structure of a P2D HMM. 

In order to simplify the implementation of P2D-HMM, the author used an equivalent 1D 
HMM to replace the P2D-HMM as shown in figure 10. In this case, the shaded states in the 
1D HMM represent end-of-line states with two possible transitions:  one to the same row of 
states - superstate self-transition - and one to the next row of states - superstate to superstate 
transition. For feature extraction a square window is used sliding from left-to-right and top-
to-bottom.  Each observation vector contains the intensity level values of the pixels 
contained by the window, arranged in a column-vector.  In order to accommodate the extra 
end-of-line state, a white frame is added at the end of each line of sampling. Each state is 
modelled by one Gaussian with mean and standard deviation set, initialized at the 
beginning of training, to mid-intensity values for normal states and to white with near zero 
standard deviation for the end-of-line states. The parameters of the model are then 
iteratively re-estimated using the Baum-Welch algorithm. 
 

 

Fig. 10. P2D HMM and its equivalent 1D HMM. 
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Samaria’s experiments were carried out on the ORL database. Different topologies and 
sampling parameters were used for the P2D-HMM: from 4 to 5 superstates and from 2 to 8 
embedded states within each superstate. In addition these experiments considered different 
sizes of sampling windows with different overlaps ranging from 2 × 2 pixels with 1 × 1 
overlap up to 24 × 22 (horizontal × vertical) pixels with 20 × 13 pixels overlap. The highest 
error rate of 18% was obtained for a 3-5-5-3 P2D-HMM, using a 10 × 8 scanning window 
with an 8 × 6 overlap, while the smallest error rate of 5.5% was obtained for 3-6-6-6-3 P2D-
HMM, with 10 × 8 (and 12 × 8) window and 8 × 6 (and 9 × 6 respectively) overlap.  In the 
same thesis Samaria also tested the standard unconstrained P2D HMM, which does not have 
an end-of-line state. In this case no attempt is made to enforce the fact that the last frame of a 
line of observations should be generated by the last state of the superstate. The recognition 
results for the unconstrained P2D HMM are similar to those obtained with constrained P2D-
HMM, the error rates ranging from 18% to 6%. We remark that Samaria also obtained a 2% 
error rate for a 3-7-7-5-3 P2D HMM with 12×8 sampling window and 4 × 6 overlap, but 
considering that for only slightly different overlaps (8 × 6 and 4 × 4) the error rates were 6% 
and 8.5% respectively, this particular result appears to be a statistical anomaly. It does serve 
to remind that these models are based on underlying statistical probabilities and that 
occasional aberrations can occur. 

5.2 Refining pseudo 2D HMM with DCT features 
In [Nefian & Hayes, 1999] the authors adapted the P2D-HMM developed by [Kuo & Agazzi, 

1994] for optical character recognition analysis, showing how it represented a valid 

approach for facial recognition and detection. These authors renamed this technique as 

embedded HMM. In order to obtain the observation vectors, a set of overlapping blocks are 

extracted from the image from left to right and top to bottom as shown in figure 11, the 

observation vector finally consisting of the 6 lower-frequency 2D-DCT coefficients extracted 

form each image block. Each state in the embedded HMMs is modelled using a single 

Gaussian. 

 

 

Fig. 11. Face image parameterization and blocks extraction. 

For face recognition the ORL database was used. The system was trained with half of the 

database and tested with the other half. The recognition performance of the method 

presented in this paper is 98%, improving by more than 10% compared with the best results 

obtained in using 1D HMM in earlier work [Nefian & Hayes, May 1998, October 1998].  
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This research also considered the problem of face detection. In the testing phase for 
detection, 288 images of the MIT database were used, representing 16 subjects with different 
illuminations and head orientations. A set of 40 images representing frontal views of 40 
different individuals from the ORL database is used to train one face model. The testing is 
performed using a doubly embedded Viterbi algorithm described by [Kuo & Agazzi, 1994].  
The detection rate of the system described in this paper is 86%. While this version of HMM 
appears to be relatively efficient in face detection, it is however computationally very 
complex and slow, particularly when compared with state of art algorithms [Viola & Jones, 
2001].  

5.3 Improved initialization of pseudo 2D HMM  
Also employing a P2D HMM, [Eickler et al., 2000] describe an advanced face recognition 
system based on the use of standard P2D HMM employing 2D DCT features is presented. 
The performance of the system is enhanced using improved initialization techniques and 
mirror images. It is very important to use a good initial model therefore the authors used all 
faces in the database to build a ‘common initial model’. Then for each person in the database 
a P2D HMM model is refined using this ‘common model’. Feature extraction is based on 
DCT. The image is scanned with a sliding window of size 8 × 8 from left-to-right and top-to-
bottom with an overlap of 6 pixels (75%). The first 15 DCT coefficients are extracted.  The 
use of DCT coefficients allows the system to work directly on images compressed with JPEG 
standard without a need to decompress these images. The size of the sampling window was 
chosen as 8 × 8 because the DCT portion of JPEG image compression is based on this 
window size. 
Tests are performed on the ORL database, described previously, with the first 5 images per 

person used for training and the remaining 5 for testing. Three sets of experiments are 

performed in this paper. First Experiment Set: the system is tested on different quadratic P2D 

HMM model topologies (4×4 states to 8×8 states) with 1 to 3 Gaussian mixtures to model the 

probability density functions. The recognition rates achieved range from 81.5% for 4×4 

states with 1 Gaussian to 100% for 8 × 8 states with 2 and 3 Gaussians. Second Experiment Set: 

the effect of overlap on recognition rates is tested. An overlap of 75% is used for all training 

while for testing overlaps between 75% and 0% were used, with a 7×7 HMM and from 1 to 3 

Gaussian mixtures. The overall result of this experiment is that recognition rates decrease 

slightly when the overlap is reduced, however, very good recognition rates of 94.5%-99.5% 

were still obtained even for 0% overlap, compared with 98.5%-100% for 75% overlap. Thus 

wide variations in overlap have relatively minor effects on overlap for a sophisticated 7x7 

HMM model. 

Third Experiment Set: comprises an evaluation of the effect of compression artefacts on the 
recognition rate. Recognition was performed on JPEG compressed images across a range of 
quality settings ranging from 100 for the best quality to 1 for the highest compression ratio 
as shown in figure 12 [Eickler et al., 2000]. The results are as follows: for compression ratios 
of up to 7.5 to 1, the recognition rates remain constant around 99.5%±0.5%. For compression 
ratios over 12.5 to 1, the recognition rates drop below 90%, down to approximately 5% for 
19.5 to 1 compression ratio. 
There are some additional conclusions we can draw from the work of [Eickler et al., 2000]. 
Firstly, building an initial HMM model using all faces in the database is an improvement 
over the intuitive initialization used by [Samaria, 1994] or [Nefian & Hayes, 1999], however 
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this may lead to the dependency of the initial model on the composition of the database. 
Secondly, these authors obtain excellent results when using JPEG compressed images in the 
testing phase (overlap 0%), speeding up the recognition process significantly. Note however, 
in the training stage they use uncompressed images scanned with a 75% overlap and as they 
have used a very complex HMM model with 49 states the training stage of their approach is 
resource and time intensive offsetting the benefits of faster recognition speeds.   
 

 

Fig. 12. Recognition rates versus compression rates [Eickler et al., 2000]. 

5.4 Discrete vs continuous modelling of observation vectors for P2D HMM 
In another paper on the subject of face recognition using HMM, [Wallhoff et al., 2001] 
consider if there is a major difference in recognition performance between HMMs where the 
observation vectors are modelled as continuous or discrete processes. In the continuous 
case, the observation probability is expressed as a density probability function 
approximated by a weighted sum of Gaussian mixtures.  In the case of a discrete output 
probability, a discrete set of observation probabilities is available for each state, and input 
vector. This discrete set is stored as a set of codebook entries.  The codebook is typically 
obtained by k-means clustering of all available training data feature vectors.  
The authors used for their experiments 321 subjects selected from the FERET database6. For 

testing the system, two galleries of images were used: fa gallery, containing a regular frontal 

image for each subject, and fb gallery, containing an alternative frontal image, taken seconds 

after the corresponding fa image. First the images are pre-processed, using a semi-

automated feature extraction that starts with the manual labelling of the eye and mouth 

centre-coordinates. The next step is the automatic rotation of the original images so that a 

line through the eyes is horizontal. After this the face is divided vertically and processing 

continues on a half-face image. The images are re-sized to the smallest image among the 

resulting images being 64 × 96 pixels.  

For feature extraction, the image is scanned using a rectangular window, with an overlap of 
75%.  After the DCT coefficients for each block are calculated, a triangular shaped mask is 
applied and the first 10 coefficients are retained, representing the observation vector. Two 

                                                 
6 http://www.frvt.org/feret/default.htm 
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sets of experiments were performed, for continuous and discrete outputs. For the case of 
continuous output, the experiments used 8 × 8 and 16 × 16 scanning windows, and 4 × 4 to 7 
× 7 state structures for the P2D HMM. Initially only one Gaussian per state was used. The 
best recognition rate in this case was 95.95%, for 8 × 8 block size and 7 × 7 states for HMM. 
When the number of Gaussians was increased form 1 to 3, the recognition rate dropped, 
maybe due to the fact that only one image per person was used in the training phase. In the 
case of discrete output values, identical scanning windows and HMM were used, and two 
codebook sizes of 300 and 1000 values were used to generate the observation vectors. The 
highest recognition rate obtained was 98.13%, for 8 × 8 pixels block size, 7 × 7 states HMM, 
and a codebook size of 1000. In both cases, continuous and discrete, better results were 
obtained for the smaller size of scanning window.  

5.5 Face retrieval on large databases  
After using the combination of 2D DCT and P2D HMM for face recognition on small 

databases, a new HMM-based measure to rank images within a larger database is next 

presented, [Eickeler, 2002]. The relation of the method presented to confidence measures is 

pointed out and five different approximations of the confidence measure for the task of 

database retrieval are evaluated. These experiments were carried out on the C-VIS database, 

containing the extracted faces of three days of television broadcast resulting in 25000 

unlabeled face images. Normal HMM-based face recognition for database retrieval entails 

building a model for each person in the database. However, in the case of a very large and 

unlabeled database, that would imply building a model j  for each image jO in the 

database, which is not only computationally expensive, but results in poor modelling, 

considering that a robust model for one person requires multiple training images of that 

person. In this case, calculating the probability of a query image for each built model 

( | )query jP O   is simply not practical. 

A more feasible method for database retrieval is to train a query HMM query using the query 

images queryO of the person searched for query , but noting that the probability derived by the 

Forward-Backward algorithm, ( | )j queryP O   cannot be used as ranking measure for the images 

in the database because inaccuracies in the modelling of the face images have a big influence 
on the probability.  In order to fix this problem, the ranking of the images uses the query 

model query as a representation of the person being searched for and a set of cohort models 

cohort representing people not being searched for. An easy way to form the cohort is by using 

former queries or by taking some images form the database. So instead of calculating 

( | )query jP O  , the probability of an image jO  given the person being searched is used:  

 
( | )

( | ) ( | )
( | )

j Query

j query query j

j cohort

P O
P O P O

P O


  


 (1) 

In this research five different confidence measures were used for database retrieval based on 
this formula.  For the confidence measure using normalization, the denominator is replaced:  

 ( | ) ( | )
k cohort

j cohort j kP O P O





    (2) 

www.intechopen.com



 
A Review of Hidden Markov Models in Face Recognition 

 

21 

Another confidence measure uses one filler (common) model instead of a cohort of HMMs for 
a group of people. The filler model can be trained on all people of the cohort group. If the 
denominator is set to a fixed probability, it can be dropped from the formula, in which case 

the confidence measure will be ( | )j queryP O  . The fourth confidence measure is based on the 

sum of ranking differences between the ranking of the cohort models on the query image 
and the ranking of the cohort models on each of the database images. Finally, the 
Levenshtein Distance (the Levenshtein distance between two strings is given by the 
minimum number of operations needed to transform one string into the other) is considered 
as an alternative measure for the comparison of the rankings of the cohort models for the 
query image and the database images. 
For the experimental part 14 people with 8 to 16 face images each were used as query 
images, and also as cohort set. A NN-based face detector was used to detect the inner facial 
rectangles in the video broadcast and the rectangle of each image is scaled to 66 × 86 pixels. 
In order to remove the background an ellipsoid mask is applied. A P2D HMM with 5 × 5 
states is used. The results of the query are evaluated using precision and recall: precision is 
the proportion of relevant images among the retrieved images while recall is the proportion 
of relevant images in the database that are part of the retrieval result. In a first experiment a 
database retrieval for each person of the query set using the normalization is performed and 
only the precision is calculated considering the database is unlabeled hence an exact number 
for each person in unknown. For 12 out of 14 people the precision is constant at 100% for 
around 40 retrieved images (the number of images per person varies between 20 and 300). In 
a second experiment all five measures were tested for one person. The results are almost 
perfect for normalization, a little worse but much faster for the filler model. The ‘sum of 
ranking differences’ and Levenshtein Distance measures return relatively good results but 
are inferior to normalization, while the use of a fixed probability  gives significantly worse 
results than all other measures. 

5.7 A low-complexity simplification of the Full-2D-HMM 
An alternative approach to 2D HMM was proposed by [Othman & Aboulnasr, 2000]. These 

authors propose a low-complexity 2D HMM (LC2D HMM) system for face recognition. The 

aim of this research is to build a full 2D HMM but with reduced complexity. The challenge 

is to take advantage of a full 2D HMM structure, but without the full complexity implied by 

an unconstrained 2D model. Their model is implemented in the 2D DCT compressed 

domain with 8×8 pixel non-overlapping blocks to maintain compatibility with standard 

JPEG images. The authors claim a computational complexity reduction from N4 for a fully 

connected 2D HMM to 2N2 for the LC2D HMM, where N is the number of states.  Although 

the accuracy of the system is not better than other approaches, these authors claim that the 

computational complexity involved is somewhat less than that required for a 1D HMM and 

significantly less than that of P2D HMM. 
The LC2D HMM is based on 2 key assumptions: (i) the active state at the observation block 
Bk,l is dependant only on immediate vertical and horizontal neighbours, Bk−1,l and Bk,l−1;7; (ii) 
the active states at the 2 observation  blocks in anti-diagonal neighbourhood locations, Bk−1,l 

and Bk,l−1 are statistically independent given the current state. This assumption allows 

                                                 
7 From a mathematical perspective this assumption is equivalent to a second-order Markov Model, 
requiring a 3D transition matrix. 
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separating the 3D state transition matrix into two distinct 2D transition matrices, for 
horizontal and vertical transitions. This decreases the complexity of the model quite 
significantly. This low-complexity model topology and image scanning are illustrated in 
figure 13. 
 

 

Fig. 13. (a) Image scanning  b) Model topology [Othman & Aboulnasr, 2000] 

The authors state that the two assumptions are acceptable for non-overlapped feature 
blocks, but have less validity for very small sized feature blocks or as the allowable overlap 
increases. The tests were performed on the ORL database. The model for each person was 
trained with 9 images, and the remaining image was used in the testing phase. Image 
scanning is performed in a two dimensional manner, with block size set to 8×8. Only the 
first 9 DCT coefficients per block were used. Different block overlap values were used to 
investigate the system performance and the validity of the design assumptions. The 
recognition rates are around 70% for 0 or 1 pixel overlap, decreasing dramatically down to 
only 10% for a 6-pixel overlap. This is explained because the assumptions of statistical 
independence, which are the underlying basis of this model, lose their validity as the 
overlap increases.  

5.8 Refinements of the low-complexity approach 
In a subsequent publication by the same authors, [Othman & Aboulnasr, 2001], a hybrid 
HMM for face recognition is introduced. The proposed system comprises of a LC2D HMM, 
as described in their earlier work used in combination with a 1D HMM. The LC2D HMM 
carries out a complete search in the compressed JPEG domain, and a 1D HMM is then 
applied that searches only in the candidate list provided by the first module.  
In the experiments presented in this paper, a 6×2 states model was used for the LC2D 

HMM, and 4 and 5 state top-to-bottom models were used for the 1D HMM. For the 1D 

HMM, DCT feature extraction is performed on a horizontal 10 × 92 scanning window. For 

the 2D HMM, a 8×8 block size is used for scanning the image, and the first 9 DCT 

coefficients are retained from each block. No overlap is allowed for the sliding windows. 

Tests are performed on the ORL database. In a first series of tests the effects of training data 

size on the model robustness were studied. The accuracy of the system ranges from 48%-

58% when trained with only 2 images per person, to almost 95%-100% if trained with 9 

images per person. A second series of experiments provides a detailed analysis of the trade-

off between recognition accuracy and computational complexity and determines an optimal 

operating point for this hybrid approach. This appears to be the first research in this field to 
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consider such trade-offs in a detailed study and this methodology should provide a useful 

approach for other researchers in the future.  

In a third paper, [Othman & Aboulnasr, 2003], these authors propose a 2D HMM face 
recognition system that limits the independence assumptions described in their original 
work to conditional independence among adjacent observation blocks. In this new model, 
the active states of the two anti-diagonal observation blocks are statistically independent 
given the current state and knowledge of the past observations. This translates into a more 
flexible model, allowing state transitions in the transverse direction as shown in figure 14, 
taken from, [Othman & Aboulnasr, 2003].  
 

                  
(a)                                                                (b) 

Fig. 14. Modified LC2D HMM [Othman & Aboulnasr, 2003]. (a) Vertical transitions to state 
S3,3 for 5×5 state model (b) Horizontal transitions to state S3,3 also for 5×5 state model. 

This modified LC2D HMM face recognition system is examined for different values of the 

structural parameters, namely number of states per model and number of Gaussian 

mixtures per state. These tests are again conducted on the ORL database. The images are 

scanned using 8×8 blocks and the first 9 2D DCT coefficients comprise the observation 

vector. The HMMs were trained using 9 images per person, and tested using the 10th image.  

The test is repeated 5 times with different test images and the results are averaged over a 

total of 200 test images for 40 persons. Test images are not members of the training data set 

at any time. The results vary from a very low 4% recognition rate for a 7 × 3 HMM with 64 

Gaussian mixtures per state, up to 100% for a 7 × 3 HMM with 4 Gaussian mixtures per 

state. Best results are obtained for 4 and 8 Gaussians per state. The reason for the poor 

performance for a higher number of Gaussian mixtures is that the model becomes too 

discriminating and cannot recognize data with any flexibility, outside the original training 

set.  Finally, the reader’s attention is drawn to detailed comments by [Yu & Wu, 2007] on the 

key assumption of conditional independence in the relationship between adjacent blocks. In 

this communication, [Yu & Wu, 2007] it is shown that this key assumption is entirely 

unnecessary. 

6. More recent research on HMM in face recognition 

While there have been more recent research which applies HMM techniques to face 
recognition, most of this work has not refined the underlying methods, but has instead 
combined known HMM techniques with other face analysis techniques. Some work is worth 
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mentioning, such as that of [Le & Li, 2004] who combined a one-dimensional discrete 
hidden Markov model (1D-DHMM) with new way of extracting observations and using 
observation sequences. All subjects in the system share only one HMM that is used as a 
means to weigh a pair of observations. The Haar wavelet transform is applied to face images 
to reduce the dimensionality of the observation vectors. Experiments on the AR face 
database8 and the CMU PIE face database9 show that the proposed method outperforms 
PCA, LDA, LFA based approaches tested on the same databases. 
Also worth mentioning is the work of [Yujian, 2006]. In this paper, several new analytic 

formulae for solving the three basic problems of 2-D HMM are provided. Although the 

complexity of computing these is exponential in the size of data, it is almost the same as that 

of a 1D HMM for cases where the numbers of rows or columns are a small constant. While 

this author did not apply these results specifically to facial recognition problem they appear 

to offer some promise in simplifying the application of a full 2D HMM to the face 

recognition problem. 

Another notable contribution is the work of [Chien & Liao, 2008] which explores a new 

discriminative training criterion to assure model compactness combined with ability for 

accurate to discrimination between subjects. Hypothesis testing is employed to maximize 

the confidence level during model training leading to a maximum-confidence model (MC-

HMM) for face recognition. From experiments on the FERET10 database and GTFD11, the 

proposed method obtains robust segmentation in the presence of different facial 

expressions, orientations, and so forth. In comparison with the maximum likelihood and 

minimum classification error HMMs, the proposed MC-HMM achieves higher recognition 

accuracies with lower feature dimensions. Notably this work uses more challenging 

databases than the ORL database. 

Finally we conclude this chapter referring to our own recent work in face recognition 
using EHMM, presented in [Iancu, 2010; Corcoran & Iancu 2011]. This work can be 
divided in three parts according to our objectives. The tests were performed on a 
combined database (BioID, Achermann, UMIST) and on the FERET database. The first 
objective was to build a recognition system applicable on handheld devices with very low 
computational power.  For this we tested the EHMM-based face recognizer for different 
sizes of the model, different number of Gaussians, picture size, features, and number of 
pictures per person used for training. The results obtained for very small picture size (32 × 
32), with 1 Gaussian per state and on a simplified EHMM are only 58% recognition for 
only 1 image per person used for training, when we use 5 pictures per person for training 
the recognition rates go up to 82% [Corcoran & Iancu 2011]. A second objective was to 
limit the effect of illumination variations on recognition rates. For this three illumination 
normalization techniques were used and various combinations of these were tested: 
histogram equalization (HE), contrast limited adaptive histogram equalization (CLAHE) 
and DCT in logarithm domain (logDCT). The best recognition rates were obtained for a 
combination of CLAHE and HE (95.71%) and the worst for logDCT (77.86%) on the 
combined database [Corcoran & Iancu 2011]. 

                                                 
8 http://www2.ece.ohio-state.edu/~aleix/ARdatabase.html 
9 http://www.ri.cmu.edu/research_project_detail.html?project_id=418&menu_id=261 
10 http://www.frvt.org/feret/default.htm 
11 http://www.anefian.com/research/face_reco.htm 
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A third objective was to build a system robust to head pose variations. For this we tested 
the face recognition system using frontal, semi-profile and profile views of the subjects. 
The first set of tests was performed on the combined database. Here the maximum head 
pose angle is around 30°. We compared recognition rates obtained when building one 
EHMM model per person versus one EHMM model per picture. The second set of tests 
was performed on FERET database which has a much bigger variety of head poses. In this 
case we used one frontal, 2 semi-profiles and 2 profiles for each subject in the training 
stage and all pictures of each subject in the testing stage. We compared the recognition 
rates when building 1 model per person versus 2 models per person versus 3 models per 
person. We obtained better recognition rates for one model per person for the first set of 
tests where the database has little head pose variation but better recognition rates for 2 
models per person for the second set of tests where the database has a very high head 
pose variation [Iancu, 2010]. 

7. Review and concluding remarks 

The focus of this chapter is on the use of HMM techniques for face recognition. For this 
review we have presented a concise yet comprehensive description and review of the most 
interesting and widely used techniques to apply HMM models in face recognition 
applications. Although additional papers treating specific aspects of this field can be found 
in the literature, these are invariably based on one or another of the key techniques 
presented and reviewed here. 
Our goal has been to quickly enable the interested reader to review and understand the 
state-of-art for HMM models applied to face recognition problems. It is clear that different 
techniques balance certain trade-offs between computational complexity, speed and 
accuracy of recognition and overall practicality and ease-of-use. Our hope is that this 
article will make it easier for new researchers to understand and adopt HMM for face 
analysis and recognition applications and continue to improve and refine the underlying 
techniques.  
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