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Modeling Wind Speed for  
Power System Applications 

Noha Abdel-Karim, Marija Ilic and Mitch J. Small 
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USA 

1. Introduction 

The intermittent nature of wind power presents special challenges for utility system 
operators when performing system economic dispatch, unit commitment, and deciding on 
system energy reserve capacity. Also, participation of wind power in future electricity 
markets requires more systematic modeling of wind power. It is expected that the installed 
energy capacities from wind sources in the United States will increase by up to 20% by the 
year 2020. New York Independent System Operator (NYISO), General Electric (GE),  and 
Automatic Weather Stations Inc., (AWS) conducted a project for the future of wind energy 
integration in the United States. They stated that NY State has 101 potential wind energy 
sites and it should be able to integrate wind generation up to at least 10% of system peak 
load without further expansion (GE report 2005). In order to integrate wind power 
systematically, it is necessary to solve the technical challenges as well as policy regulation 
designs. Some of these polices have been updated to allow increased intermittent renewable 
energy by settling imbalances in generation rulemakings and portfolio standards, where the 
most commonly used one at this time is the production tax credit portfolios.  
Due to intermittent nature of wind power, forecasting methods become a powerful tool and 
of great importance to many power system applications that include uncertainties in 
generation outputs. The recent work has discussed several methods to develop wind power 
forecasting algorithms to anticipate the degrees of uncertainty and variability of wind 
generation. (C. Lindsay & Judith, 2008) use an auto-regressive moving average model to 
estimate the next ten-minute ahead production level for a hypothetical wind farm and 
investigate the possibility of pairing wind output with responsive demand to reduce the 
variability in the net wind output. In (Kittipong M. et al., 2007), the authors develop an 
Artificial Neural Network (ANN) model to forecast wind generation power with 10-min 
resolution. Current and previous wind speed and wind power generation are used as input 
parameters to the network where the output from the ANN is the wind generation power. 
(M. S. Miranda & R. W. Dunn, 2006) predicted one-hour-ahead of wind speed using both an 
auto-regressive model and Bayesian approach. (D. Hawkins & M. Rothleder, 2006), discuss 
operational concerns with increased amount of wind energy in the Day-ahead- and Hour-
ahead-Market for CAISO in California. They emphasize the importance of forecasting 
accuracy for unit commitment and ancillary services and the implications of load following 
or supplemental energy dispatch to rebalance the system every five minutes. In (Alberto F. 
at el., 2005), the authors propose a probabilistic method to estimate the forecasting error for 
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a Spanish Electricity System. They propose cost assessment with wind energy prediction 
error. The assessment is developed to estimate the cost associated with any energy deviation 
they cause. (Dale L. Osborn, 2006) discusses the impact of wind on the LMP market for 
Midwest MISO at different wind penetrations level. His LMP calculations decrease with the 
increase of wind energy penetration for the Midwest area. The authors of (Cameron W. 
Potter at el., 2005) describe very short-term wind prediction for power generation, utilizing a 
case study from Tasmania, Australia. They introduce an Adaptive Neural Fuzzy Inference 
System (ANFIS) for short-term forecasting of a wind time series in vector form that contains 
both wind speed and wind direction. 
We next describe our modeling approach to derive a family wind models ranging from 

short through and long term models. Using the same data, we illustrate achievable accuracy 

of this model. This chapter presents three major parts in sections 2, 3 and 4. First, section 2 

presents a short term wind speed linear prediction model in state space representation using 

linear predictive coding (LPC), FIR and IRR filters. 10-minute, one-hour, 12-hour, and 24-

hour wind speed predictions are evaluated in least square error sense and the prediction 

coefficients are then used in the state space stochastic formula representing past and future 

predicted values. One year wind speed data in 10 minute resolution are first fitted by two 

Weibull distribution parameters and then transformation to normal distribution is done for 

prediction calculation purposes.  

Second, section 3 of the chapter models wind speed patterns by decomposing it in different 
time scales / frequency bands using the Fourier Transform. The decomposition ranges from 
hourly (high frequency) up to yearly (low frequency), and are important in many power 
grid applications. Short, medium and long-term wind speed trends require data analysis 
that deals with changing frequencies of each pattern. By applying Fourier analysis to wind 
speed signal, we aim to decompose it into three components of different frequencies, 1) Low 
Frequency range: for economic development such as long term policies adaptation and 
generation investment (time horizon: many years), 2) Medium Frequency range: for 
seasonal weather variations and annual generation maintenance (time horizon: weeks but 
not beyond a year), 3) High frequency range: for Intra-day and Intra-week variations for 
regular generation dispatches and generation forced outage (time horizon: hours but within 
a week). Each decomposed signal is presented in a lognormal distribution model and a 
Discrete Markov process and the aggregated complete wind speed signal is also applied.  
Third, section 4 presents the prediction results using past histories of wind data, which 

support validity of Markov model. These independencies have been modeled as linear state 

space discrete Markov process. A uniform quantization process is carried to discretize the 

wind speed data using an optimum quantization step between different state levels for both 

wind speed distributions used. Also state and transition probability matrices are evaluated 

from the actual representation of wind speed data. Transition probabilities show smooth 

transitions between consecutive states manifested by the clustering of transition 

probabilities around the matrix diagonal.  

2. Wind speed prediction model 

2.1 Wind data distribution models 

This prediction model uses more than 50 thousands samples of one-year wind speed data in 

10-minute resolution. The data are used to determine the best fitted parameters of the 
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Weibull distribution model. Wind speed data are obtained from National weather station in 

NYISO zonal areas by approximate longitudes and latitudes station’s allocation (National 

weather station, Available online). The empirical cumulative distribution function (CDF) for 

the wind speed random variable (RV) X has been evaluated using n samples based on the 

statistical Weibull formula as (Noha Abdel-Karim at el., 2009):   

 
( )ˆ ( )
1

X

Rank x
F x

n



  (1) 

 

  
Slope 

  
Standard Error 

(intercept) 

Standard 
error 

(slope) 

R-
square 

0.0356 1.77 31.4 10 48 10 99.4% 

Table I. Linear regression   defines Weibull distribution parameters 

Where a random variable X (R.V) represents wind speed, and “n” is the total sample size. 

Knowing ahead that the wind speed RV is best characterized by the Weibull distribution 

model: 
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Where in equation (2) or (3), we mention two alternate, yet equivalent forms of Weibull PDF 

and CDF related by  1
a

  . Linear regression is performed between ln( )X x , where x 

is the data plotted on the horizontal axis, versus the following CDF metric on the vertical 

axis: 

  ˆln ln(1 ( ))XY F x    (4) 

It is known that the PDF parameters are related to the linear regression slope m and Y-
intercept C, as follows:  

  exp( ) exp

slope m

C a C


 
 

   
  (5) 

The regression results are shown in table I and both empirical and Weibull cumulative 

distributions are plotted in figure 1. 

Figure 1 presents a best Weibull distribution fit with the empirical CDF to wind speed data. 

The next step is the transformation to normal distribution with mean zero and variance one. 
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This transformation is used in both the fitting and prediction processes. The histograms of 

wind speed signals in both Weibull and Normal distributions are shown in Figures 2 and 3, 

respectively. By looking to Figure 3, the shape of the actual signal is shifted down with the 

exact pattern due to the normalization process, (Noha Abdel-Karim at el., 2009). 
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Fig. 1. Empirical and Weibull Cumulative Distribution Functions. 
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Fig. 2. Actual & normalized frequency occurrence of wind speed data. 
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Fig. 3. Actual and normalized wind speed data. 

2.2 Normalization of wind speed data 

The initial step in the prediction process is data normalization. This step is done by 

transforming the actual wind speed data X into Normal wind speed data, Xn (i.e., Xn is a 

normalized Gaussian RV with zero mean and unit variance). This transformation is 

performed using the Normal CDF inversion as follows: 

  1( ) 1
( )

( ) (0,1) n

n

x
X

n X X
X n

F x e
x F F x

F x G




    
  

   (6) 

Normal transformation is performed for the sole purpose of prediction, for both the fitting 

and prediction processes. Figures 2 and 3 show the histograms and time series, respectively, 

for both the actual (Weibull) wind speed X and Normal wind speed Xn. The shape of the 

Normal signal Xn is shifted down with negative values (Figure 3) compared to the actual 

signal X due to the normalization process.  

2.3 Linear prediction and filter design 

This section presents finite impulse response (FIR) and infinite impulse response (IRR) 

filters. Both filters are being used to determine the prediction coefficients needed to process 

the normalized wind speed signal xn, except that we drop the subscript “n” so as not to be 

confused with the discrete time index. In discrete time, the Z-transform of a signal has been 

used of a filter as follows:  

 ( ) ( )       ( )     i
i i

i i

g n g n i G z g z        (General signal/IIR filter) 

    
0

( ) ( 1)        ( )
N N

i
i i

i i

h n h n H z h z 


         (FIR filter) 
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Where δ(n) is the Kronecker delta function. The wind speed random process x(n) is 
characterized as wide sense stationary (WSS) Gaussian (Normal) process, and hence will 
remain Gaussian after any stage of linear filtering. However, the wind speed process is NOT 
white but can be closely modeled as Auto-Regressive (AR) process as will be shown next.  

2.4 Linear Predictive Coding (LPC) and Finite Impulse Response Filter (FIR) 

For prediction purposes of normalized wind speed data, we use Linear Predictive Coding 
(LPC) based on the autocorrelation method to determine the coefficients of a forward linear 
predictor. Prediction coefficients are calculated by minimizing the prediction error in the 
least squares sense (P. P. Vaidyanathan, 2008). The method provides the LPC predictor and 
its prediction error as follows:  

 1

1

ˆ ( ) ( )

ˆ( ) ( ) ( ) ( ) ( )

N

LPC i
i

N

N LPC i
i

x n b x n i

e n x n x n x n b x n i





  

    




  (7) 

Where N is defined as the prediction order (using N past data samples) and the coefficients 

{b1, .., bN} are the fitting coefficients which minimize the mean square (MS) prediction error 

signal. Yule-Walker (or normal) equations based on autocorrelation matrix have been used 

to compute those prediction coefficients (P. P. Vaidyanathan, 2008). The LPC predictor has a 

direct equivalent implementation as an FIR filter if we observe that the error Z-transform is 

obtained as:  
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  (8) 

Where BN(z) is the FIR filter transfer function used to compute the output error signal. In 

other terms, it is also called the prediction polynomial (P. P. Vaidyanathan, 2008). Figure 4 

shows how to obtain the output error signal using two equivalent forms: a) LPC prediction 

and subtraction, and, b) direct FIR filter design, (Noha Abdel-Karim at el., 2009).  
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                                           (a)                                                                 (b) 

Fig. 4. Output prediction error signal using: a) LPC prediction and subtraction. b) Direct FIR 
filter design. 

To predict the normalized wind speed data, a forward LPC predictor ˆ ( )LPCx n  can certainly 

be used, but its accuracy is rather poor. However, the main advantage of LPC is that, as the 

prediction order N increases sufficiently, the prediction error eN(n) tends to be closely 

approximated as white noise (P. P. Vaidyanathan, 2008). This helps in modeling the Normal 
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wind speed as AR signal as will be shown next. Thus, forward LPC is considered an 

important initial pre-coding step, (Noha Abdel-Karim at el., 2009).  

2.5 Auto-Regressive (AR) model prediction and Infinite Impulse Response Filter (IIR) 
filtering 

The true wind speed can be obtained by multiplying the error signal EN(z) – if it is known – 

by the inverse of the FIR filter -1
NB ( )z , (Equation 8), which is now an all-pole IIR filter. If the 

error signal is equivalent to white noise for large prediction order N, then the z-

multiplication (i.e., convolution or filtering in discrete time) now yields a signal that is 

modeled as Gaussian Auto-Regressive (AR) process. Figure 5 shows the AR model block 

diagram, while the reproduced AR signal is obtained by rewriting equation (7) in terms of 

error as:  

 ,
1

( ) ( ) ( )
N

i N N
i

x n b x n i e n
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      (9) 
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Fig. 5. Auto-regression generation process using LPC estimation method 

Equation (9) seems to be an ideal reproduction of x(n) by inversion and it assumes the 

following:  

1. The error signal is exactly updated in real time at the prediction time “n”. This is a genie 

assisted condition, as ˆ( )x n is not available yet! 

2. All the true N past data samples are available or exactly estimated (measured) by the 
wind turbine speed meter and reported on time to the prediction algorithm.  

3. The prediction coefficients {b1, …, bN} are computed using the true past data samples 
and updated for each new prediction. 

In a practical prediction algorithm, these genie conditions do not hold. As for the prediction 

error, different computation models can be used such as:  

1. Prediction error is estimated as a random generation of white noise of zero mean & unit 
variance (P. P. Vaidyanathan, 2008).  

2. For initial or limited time intervals, the error can be exactly computed using true available 
data samples to investigate the tracking of the algorithm, but not for long term 
prediction.  

3. The prediction error can be estimated from exact measurements but up to a delay of one 
or more samples, i.e., measurement at time (n – L) applies at time “n”. For example, if 
the prediction update interval is 10 minutes and the measurement delay is 1 hour, then 
the sample count delay is L = 60/10 = 6 samples. The minimum estimation delay is  
L = 1.  

In our work we excluded the white noise generation alternative and considered the two 

other alternatives for wind speed forecasting. 
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2.6 The prediction algorithm for wind speed 
2.6.1 Linear prediction phases 

More than 50,000 data samples collected in a 10-minute intervals have been used in this 
short term prediction. A time reference n = NS has been used which sets the end of known 
data and start of prediction, where NS ≤ 50,000 and the remaining samples can be used for 
tracking the algorithm.  
A measurement reporting interval of L samples has been assumed and that there is no error 
in the measurement or the reporting process. At time epochs n = NS + m L , where m is 
integer, the L measurements x(n – L + 1), x(n – L + 2), …, x(n) are reported and will be 
available to use at the next epoch, (NS + m L + 1). Depending on L, we have the following 
extreme cases:  

L = 1:  → Point estimator case. 

L = ∞: → Time series case, i.e., no estimation at all. 

The following signals and associated time epochs have been defined for prediction purposes 
as follows:  

( )x n : True Normal signal known within 0 ≤ n ≤ NS or whenever measurement is available as 

above. 
ˆ( )x n : Predicted signal using IIR filter or AR     recursion.  

( )REFx n : Reference signal used to produce ˆ( )x n .  

( )REFx n  = ( )x n  within 0 ≤ n ≤ NS or whenever measurement is available 
ˆ( ) ( ) ( )Ne n x n x n  : True prediction error, only known if ( )x n  & ˆ( )x n  are known. 

ˆ ( )Ne n : Prediction error estimate, either white noise or delayed measurement. 

The prediction algorithm can be summarized as follows:  

a. Training phase within 0 ≤ n ≤ NS: Apply the LPC algorithm on the true samples x(0), … , 

x(NS ) to obtain the prediction coefficients {1, b1, …, bN}. Then we filter the same samples 

using the FIR coefficients {–b1, …, –bN} to compute the predictor ˆ( )x n  and true 

prediction error ˆ( ) ( ) ( )Ne n x n x n   within 0 ≤ n ≤ NS. Further, we pre-load the reference 

signal ( )REFx n  = ( )x n  within 0 ≤ n ≤ NS. 
Prediction phase for n ≥ NS + 1: We apply the AR model of equation (9) after computing the 

error estimate ˆ ( )Ne n . We use the same prediction coefficients obtained in the training phase 

if we plan short-term prediction, which is our case. Otherwise, we have to update the 
coefficients for long-term prediction. The steps for prediction at epoch “n” are given by: 
1. Compute the prediction error estimate using:  

  
ˆ ˆ( ) ( 1) ( 1) if ( 1) ( 1)

ˆ ˆ ˆ( 2) ( 1) , if ( 1) ( 1)

N REF REF

REF

e n x n x n x n x n

x n x n x n x n

      

      
  (10) 

We can set ˆ ( )Ne n  as randomly generated white noise or also import a snapshot from 

the past true prediction error series obtained in the training phase.  
2. By inspecting equation (9), we compute the predicted signal via the AR recursion: 

 
,

1

ˆ ˆ( ) ( ) ( )
N

AR i N REF N
i

x n b x n i e n


      (11) 
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3.  Update the reference signal entries as follows:   

    If n ≠ NS + m L → ˆ( ) ( )REF ARx n x n     

    If n = NS + m L → b  [xREF(n – L + 1),  

xREF(n – L + 2), …, xREF(n)] = [x(n – L + 1), x(n – L + 2), …, x(n)] 

4. Update the prediction coefficients if needed by running the LPC on the reference signal. 
It is best to make such update at n = NS + m L because xREF(n) would be just updated by 
measurements.  

5. Increment n and go back to step 1.  
Figure 6 shows the two phases of the prediction process 
 

                                                                                  

 

                                                                         n
0 NS NS+L NS+2L …

Training phase / LPC AR prediction

   Update 

measurements 

Known 

data

 

Fig. 6. The two phases of prediction process. 

2.6.2 Wind speed prediction results 

Wind speed data have been gathered from Dunkirk weather station in the west zone of New 

York State. Those data have been used for the stochastic prediction of wind speed (National 

Weather Station, Available online).  
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Fig. 7. Ten minutes and one hour prediction using 10 minute past value 

Figures 7 and 8 assist remarkable observation that the prediction model insensitive to the 

prediction order which is defined as the number of observed data (history) used in the 

www.intechopen.com



 
Wind Farm – Impact in Power System and Alternatives to Improve the Integration 

 

256 

prediction. The 10-minute wind speed prediction model shows persistence for all prediction 

orders used.   
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Fig. 8. Ten min and one hour prediction using 1 hour past values 

The effect of how the increase in the number of present and past wind speed sample data 

does not significantly reduce the root mean square error (RMSE), (Figure 9). This led us to 

an interesting valuation of data structuring and modeling. If only can one recent sample 

random variable captures stochastic statistics of wind signal to predict future values, then 

time and memory reductions in presenting such signal can be modeled as a discrete Markov 

process; the process that stated generally the independencies between past and present 

values to present signal statistics and structure using state and transition probabilities that 

will be discussed in detail later. 

3. Wind speed signal decomposition  

In electricity markets, decisions of utility companies on power selling/buying, production 

levels, power plants scheduling and investment are made with risks and uncertainties due 

to volatility and unpredictability of renewable energy patterns. For that, coming up with 

reasonable modeling of wind speed in different patterns with different time scales, ranging 

from hours up to few years, are of most importance in many power grid applications. In 

doing so, different wind signal trends require different data analyses that capture different 

frequencies. Those frequencies are defined as: 

1. Low frequency range: for economic development such as long term policies adaptation 
and generation investment, (time horizon: many years) 

2. Medium frequency range: To detect seasonal weather variations, and therefore help in 
assigning mid-term generation capacities which influence electricity market prices and 
power grid generation planning for few weeks with no effect beyond a year. 

3. High frequency range: for Intra-day and Intra-week variations for regular generation 
dispatches and forced generation outage, for fast variations of few hours but not 
beyond a week.  
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Fig. 9. Wind speed prediction using various past wind speed data in 10 minute resolution: 
1st raw:  10 minute prediction using: (a) 10 min, (b) one hour, (c) 12 hours, and (d) 24 hours 
past data. 
2nd raw:  1 hour prediction using: (e) 10 min. , (f) one hour, (g) 12 hours , and (h) 24 hours 
past data. 
3rd raw:  12 hours prediction using: (i) 10 min. , (j) one hour, (k) 12 hours , and (l) 24 hours 
past data. 
4th raw:  24 hours prediction using: (m) 10 min. , (n) one hour, (o) 12 hours , and (p) 24 hours 
past data. 

In this section, short, medium and long-terms wind speed trends have been decomposed by 
applying Discrete Fourier transform (Yang HE, 2010). 
A Discrete Fourier Transform (DFT) X[k], is computed for the natural logarithm of wind 
speed signal, x[n]. The DFT is then decomposed in frequency domain into low, medium and 
high frequency components, each of different frequency index range as: 

www.intechopen.com



 
Wind Farm – Impact in Power System and Alternatives to Improve the Integration 

 

258 

     [ ] [ ] [ ] [ ]L M HX k X k X k X k     (12) 

Where XL[k], XM[k] and XH[k] are the low, medium and high frequency components, 

respectively. The DFT applies only to finite discrete signal (i.e., sequence of length “N”). 

 

10][  Nnfornx  

Where n is a discrete time index. The DFT, X[k], is also a discrete sequence of length “N” 

and k is a discrete frequency index. The main frequency coefficients for each component are 

given by:  
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It is noted that the DFT X[k] exhibits complex conjugate symmetry around k = N/2; hence all 

the decomposition components in (13) have conjugate symmetric coefficients within 

/ 2 1N k N   . The thresholds ky , kw and kd are the yearly, weekly and daily discrete 

frequency indices and are related to their analog frequency values by:  
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  (14) 

Where fs = 1 sample/hr is the sampling frequency and N is the sample size covering 16 

years from 1994 till 2009 in hourly resolution (National Weather Station, Available online).  

Then we take the Inverse DFT (IDFT) of each component in (13), we obtain the aggregated 

IDFT of (12) in time domain:  

     [ ] [ ] [ ] [ ]t L M Hx n x n x n x n      (15) 

 

Each IDFT signal component in (15) is modeled as a Gaussian time series. By taking the 

exponent of each signal in (15), we obtain the log-normal time domain signals that represent 

the low, medium and high frequency components of the original wind speed signal. Each 

pattern can be used to characterize the behavior of wind speed for different purposes. 

Figure 10 shows the aggregation of the three log-normal wind speed components in the time 

domain. Each decomposed wind speed signal is of important use in different applications in 

power systems, e.g., wind power predictions, scheduling and investment decisions.  
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Fig. 10. Construction of wind speed signal using low, medium and high frequency 
components 

I. xH(t) 

II. xM(t) 

III. xL(t) 
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4. Discrete Markov process  

The interesting results obtained in section 2 (Figure 9) show Independencies from past 
observed data except for the nearest one. Model representation using Markov process is 
then valid, which is defined as the likelihood of next wind speed value in state k is 
conditioned on the most recent value of wind speed in state m. Equation (15) defines this 
likelihood – state relationship. 

 1 1( , , , ) ( )k m m m k m mP X i X x x X j P X i X x        (15) 

However, to identify state levels and state values, uniform midrise quantization process is 
carried out to discretize wind speed signal to state levels with optimum threshold or cutoffs 
values.  

4.1 Design of optimum uniform quantizer 

A midrise uniform Quantizer has been implemented that minimizes the mean square 

quantization error given a set of M states; we define 1 2[ ]Mx x x x  as a state value vector, 

and [ (1) (2) ( 1)]t t t tx x x x M  as a quantized threshold levels or partitions vector. x is the 

original analog wind speed signal and qx is the quantization signal. The quantization step   

is defined as; 

 ( 1) ( ) ( 1) ( )t tx m x m x m x m         (16) 

The uniform Quantizer works as follows: 
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( ) ( 1)

( ) ( 1) ( )
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q t
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x if x x

x x M if x x M

x m if x m x x m


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  




  (17) 

4.2 State and transition probabilities in discrete state space Markov model 
Given the initial and final boundaries of each state; state probabilities can now be defined as: 
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 

 





  (18) 

Where m is defined as any given state index and has the range from m= 1 to m=M. Equation 
(19) presents Markov linear state space model that takes prediction coefficients error signal 
modeled as disturbance d, and a regeneration time  in which the signal updates itself, for 
example updates every 10 minutes (1 sample), or every one hour (6 samples) and so on. 

 
1

( ) ( ) ( )
N

j j
j

x n a x n j d n


     (19) 

we define a processing time from o   by a rectangular function. Equations (20) and (21) 
define subsequent use of state space representation.  
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1

, 1
1

( ) ( ) ( )
N

j j j
j

x n a x n j d n






     (20) 

  , 1,( ) ( ) ( )j j jx n A x n d n      (21) 

 

Where  A  is the prediction coefficient matrix. Transition probabilities are calculated based 

on the counting method discussed in [11], in which we define : 

( | )transN k m   The number of transitions from state m to state k in the time series,(m is the 

originating state, k is the next state) 

( )stateN m  The number of occurrences of state m in the time series signal. 
Both state and transition counters are related by (22) and the total size of the time series is 
defined in (23) 

 
1

( ) ( | )
M

state trans
k

N m N k m


   (22) 

 
1 1 1

( ) ( | )
M M M

state trans
m m k

N N m N k m
  

     (23) 

Using the statistical counter values of ( )stateN m and ( | )transN k m , the transition and state 

probabilities can be statistically computed as: 

 
( | )

( | )
( )

trans
trans

state

N k m
P k m

N m
   (24) 

 
( )

( ) state
state

N m
P m

N
   (25) 

Where, K = 1,…, M and, m= 1,…, M. Note that (25) represent the statistical (actual) state 

probabilities of wind speed signal while (18) represent the theoretical state probabilities 

defined be either Weibull or Normal probability density functions. The probability state 

space representation is defined as: 

  , 1,( ( )) ( )j trans jP x n P x n      (26) 

Where  P  is the transition probability matrix. 

In Figures 11, transition probability plots of normalized wind speed data  are shown. The 

plots are generated from the same one-year sample size used in short term prediction 

(section 2). Those transition probabilities obviously appeared in cluster around the diagonal. 

This means smooth transitions between states and suggesting that the data does not exhibit 

frequent wind gusts. Moreover, we see the difference between theoretical and actual 

(statistical state probabilities (Figures 17 & 18). The reason is due to the use of the uniform 

quantization while we conjecture that a non-uniform quantizer will achieve a better match 

between the actual and theoretical probabilities. 

www.intechopen.com



 
Wind Farm – Impact in Power System and Alternatives to Improve the Integration 

 

262 

5

10

15

5

10

15

0

0.2

0.4

0.6

0.8

1

Original StateNext State

T
ra

n
s
it
io

n
 P

ro
b
a
b
ili

ty

 

Fig. 11. Gaussian transition probabilities for M = 16 states 
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Fig. 12. Weibull transition probabilities for M = 16 states 
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Fig. 13. Gaussian transition probabilities for M = 32 states 
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Fig. 14. Weibull transition probabilities for M = 32 states 
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Fig. 15. Gaussian transition probabilities for M = 64 states 
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Fig. 16. Weibull transition probabilities for M = 64 states 
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Fig. 17. Weibull state probabilities for M = 16 states 
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Fig. 18. Gaussian state probabilities for M = 16 states 
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Applying the quantization process and Markov state model to the decomposed wind speed 

signals presented in Figure 10 (16-year time series in hourly resolution) results in log normal 

distribution of wind speed state probabilities. The final results of the state probabilities are 

shown in Figures 19 - 21. Figures 22 – 24 show the transition probabilities for each 

decomposed wind speed signal. It is shown that smooth transitions appear in medium and 

low frequency component signals (i.e., centered around the diagonals), while high 

frequency component transition probabilities exhibit significant non-uniformities and 

disruptions due to fast changes and high frequencies variations driving the high frequency 

decomposed wind speed signal. 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Fig. 19. Lognormal state probabilities (M = 128) for high frequency wind signal. 
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Fig. 20. Lognormal state probabilities (M = 128) for medium frequency wind signal. 

 

 

Fig. 21. Lognormal state probabilities (M = 128) for low frequency wind signal. 
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Fig. 22. Lognormal transition probabilities (M = 128) for high frequency wind signal. 

 

 

Fig. 23. Lognormal transition probabilities (M = 128) for medium frequency wind signal. 

www.intechopen.com



 
Modeling Wind Speed for Power System Applications  

 

269 

 
Fig. 24. Lognormal transition probabilities (M = 128) for low frequency wind signal. 

5. Conclusion  

This chapter characterizes wind speed signal using stochastic time series distribution models. 
It presents a short term wind speed prediction model using a linear prediction method by 
means of FIR and IIR filters. The prediction model was based on statistical signal 
representation by a Weibull distribution. Prediction accuracies are presented and they show 
independencies on past value expect for the most recent one. These in turn validate a Markov 
process presentation for stationary wind speed signals. The chapter also studies the integration 
of a complete wind speed pattern from a decomposition model using Fourier Transform for 
different wind time series models defined by different frequencies of each wind pattern. 
Uniform quantization and discrete Markov process have been applied to the short, medium 
and long term wind speed time series signals. The actual state and transition probabilities 
have been computed statistically based on the counting method of the quantized time series 
signal itself. Theoretical state probabilities have been also computed mathematically using 
the fitted PDF model. A comparison of the statistical and theoretical state probabilities 
shows a good match. Both low and medium frequency signals exhibit smooth variation in 
state transition probabilities, while the high frequency component exhibit irregularity due to 
fast, short term variations.  
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