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1. Introduction 

The Andaman arc is the site of the giant mega-thrust earthquake of 2004 (Mw 9.3), one of the 

largest earthquakes that ever occurred globally (Lay et al., 2005). The earthquake originated 

at Bandah Aceh in the south, off the coast of northern Sumatra and ruptured a zone of about 

1200 km cutting through the Andaman-Nicobar Islands. The focal mechanism given by the 

Harvard University indicated a thrust fault mechanism with a NW-SE trending plane. It is 

generally believed that this earthquake was caused by a sudden slip of the mega-thrust lock–

up zone on the interface between the subducting Indo-Australian plate beneath the Burma 

plate (Sieh, 2005). Detailed marine seismic mapping across the subduction zone in the Sumatra 

region is, however, suggestive of a possible brittle failure at mantle depths (Singh et al., 2008). 

The Indian plate borders the Burmese plate along the Burma and Andaman arcs to the east. 

While the Indian plate obliquely subducts in the Andaman arc (Fitch, 1972; LeDain, 1984; 

Curray, 1979), it is believed to have a nearly strike-slip environment in the Burmese arc 

(LeDain, 1984; Kumar and Rao, 1995; Kumar et al., 1996; Vigny et al., 2003) with a possible 

cessation of subduction in the recent times (Rao and Kumar, 1999; Rao and Kalpna, 2005). 

The main tectonic features marking the India-Burma plate boundary are the Indo-Burman 

ranges in the north and the Andaman-Nicobar ridge to the south. To the east of the ridge 

lies the Andaman sea which is an active back-arc extensional basin (Curray, 2005) that was 

initiated about 4 million years ago (Raju et al., 2004), and exhibits transform faulting 

evidenced by strike-slip and normal fault earthquakes. The Burmese plate adjoins the Sunda 

plate to the east, along the NS trending Sagaing fault which is known to have a right lateral 

strike-slip motion. The West Andaman Fault and the Sumatran fault system are the major 

tectonic features towards southern Andaman, forming the continuity of the Sagaing fault 

across the Andaman-Nicobar ridge (Figure 1). 

On 10 August 2009, at 19:55:39 UTC an earthquake of magnitude 7.5 occurred to the north of 

the Andaman-Nicobar Islands off the coast of Diglipur Island at latitude 14.013o N and 

longitude 92.923o E (figure 1). The earthquake was felt not only in the Andaman and 

Nicobar Islands but also in several cities along the east coast of the Indian peninsula. This 

earthquake is considered significant due to its large size for a normal fault event in this 
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region, but more importantly since its location marks the northern limit of the very long 

(1200 km) rupture zone of the great Sumatra-Andaman earthquake of 26 December 2004 

(Mw 9.3) (Ammon et al., 2005; Lay et al., 2005). In the present study, seismic waveform data 

of the 10 August 2009 earthquake of Mw 7.5 and its aftershocks recorded by a network of 

five broadband stations in the Andaman and Nicobar Islands, are modeled to obtain 

moment tensor solutions with accurate focal depths. A joint inversion adopting a Monte-

Carlo approach additionally yields a P wave velocity model of the crust-mantle structure 

along the arc that best fits all the earthquake waveforms. Further, modeling of teleseismic 

receiver functions and Bouguer gravity anomalies in this region provides, in conjunction 

with the new velocity model, fresh constraints on the seismicity, crustal structure and 

tectonics of the northern Andaman subduction zone. 
 

 

Fig. 1. Tectonic map of the Burma-Andaman arc region indicating locations of the 10 August 

2009 earthquake of Mw 7.5 and its aftershocks analyzed in this study. Also indicated in the 

inset is the ISLANDS seismic network deployed in the Andaman-Nicobar Islands 
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2. Data and methodology 

A seismic network of broadband stations is currently being operated in the Andaman and 

Nicobar Islands (Figure 1, inset) by the National Geophysical Research Institute, Hyderabad, 

under a research project funded by the Ministry of Earth Sciences of the Government of 

India. This project entitled (I)nvestigation of (S)eismicity and (L)ithospheric Structure 

beneath the (AND)aman and Nicobar Islands (S)ubduction zone (ISLANDS), is complimented 

by 3 permanent stations of the India Meteorology Department, New Delhi. The seismometers 

are of the Reftek or CMG-3T make while the data loggers are of the Reftek make equipped 

with GPS for accurate time keeping. The sampling rate is set at 100 per second. Broadly the 

stations have a NS disposition from Port Blair in the south to Diglipur in the north. 

The 10 August 2009 Andaman earthquake of Mw 7.5 and 4 of its aftershocks of magnitude 

4.6 to 5.8 (Table 1) were recorded by the broadband stations. Whole waveforms are modeled 

using the moment tensor inversion method of Kikuchi and Kanamori (1991) where the 

Green’s functions are obtained using a combination of the Reflection-Transmission 

coefficient matrix approach (Takeo, 1987) and the discrete wave-number summation method 

(Bouchon, 1981). The earthquake waveforms are low-pass filtered, resampled, instrument 

corrected and integrated to obtain the displacement seismograms which are compared with 

the synthetic seismograms. The normalized cross-correlation function is used as the criterion 

for assessing the quality of waveform matching. The Andaman-Nicobar region being a 

subduction zone, it is hard to assume a simple velocity model. However, since the stations are 

mostly aligned parallel to the arc, a 1-D model approximation is considered to be reasonable, 

especially while modeling in the low frequency range (< 0.1 hz). Velocity models of Curray 

(2005) and Kayal (2004) close to the epicentral region were considered as the starting point and 

a random search was performed around these model parameters using a Monte-Carlo 

approach where over 1000 velocity models comprising 5 layers were tested to simultaneously 

fit waveforms of all the 5 events under consideration. The best model obtained was selected 

based on the criterion of minimum misfit error between observed and synthetic seismograms 

of all the events. Table 2 indicates the search limits and the final velocity model obtained. 

A complimentary approach to ascertain the discontinuities in the layered velocity model is 

the Receiver function approach using an independent data set comprising the teleseismic 

earthquake waveforms in the epicentral distance range of 30-100°.  The method we follow to 

obtain the P-receiver functions involves rotation of the Z, N and E components into a ray 

coordinate system to essentially decompose the wave field into its P, SV and SH 

components (Vinnik, 1977). The converted phases are then isolated from the P-coda by 

deconvolving the P from the SV component by simple spectral division in the frequency 

domain using a water level stabilization.  In addition, low pass filtering with a gauss 

function limits the frequency band to enhance the scattered wavefield, especially from 

deeper interfaces. In order to make receiver functions at different slowness values 

(corresponding to different epicentral distances) comparable, and to distinguish multiples 

from converted phases, a moveout correction is applied separately for the converted phases 

and multiples. Additional stations further south in the Nicobar region have also been used 

in comparison to the waveform modeling study.  

To further constrain the velocity model obtained from seismic waveform modelling and 

Receiver function approach, satellite gravity data over the Andaman region was analysed. 

The satellite gravity data are often used to study lithospheric structure underneath the 

oceans, due to their better accuracy in the deep ocean (Sandwell and Smith, 1997). Free-air 

gravity anomalies are primarily dominated by bathymetry of the subduction zones; 
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nevertheless they also reveal the fore arc sediment infill and deep lithospheric structure of 

the converging plate (Well et al., 2003; Gravemeyer and Tiwari, 2006). To remove the effect 

of bathymetry and sediments, 3D effect of bathymetry (GEBCO) and sediment thickness 

(NOAA-NGDC) was computed from the free-air gravity anomalies (Sandwell and Smith, 

1997). The gravity anomalies corrected for sediments (SCGA) are utilised to determine the 

north-south gradient along the Andaman subduction zone to obtain an insight into the 

along-strike segmentation. To reconfirm the nature of gradients, we also computed the 

gradient of Bouguer gravity anomalies by applying only bathymetry correction. 
 

S.No Y/M/D Hr: Min: S Lat Lon Depth Mw Strike Dip Rake 

1 2009/ 8/ 10 19:55:35 14.10 92.91 18 7.5 39 48 -110 

2 2009/ 8/ 11 6:10:02 13.99 92.88 25 4.6 338 53 -163 

3 2009/ 8/ 13 9:21:35 14.05 92.74 26 5.8 345 77 -169 

4 2009/ 8/ 13 20:49:25.7 14.23 92.89 18 4.7 187 54 -91 

5 2009/ 8/ 14 19:39:49.9 14.04 92.99 11 5.3 196 49 -71 

Table 1. List of the earthquakes modeled in the present study, comprising location 

parameters and fault plane solutions of the 10 August 2009 Mw 7.5 Andaman earthquake 

and its aftershocks 

3. Results 

The significant results in this study comprise focal mechanism solutions from moment 

tensor inversion, accurate focal depths from waveform matching, and velocity structure 

from joint waveform inversion, Receiver function approach and gravity anomalies over the 

seismic zone under investigation. These results are very much comparable and in 

conjunction provide us new constraints on the structure and tectonic controls on 

seismogenesis in northern Andaman arc region. 

3.1 Moment tensor solutions 
The best fitting moment tensor solutions for the main shock and the aftershocks assuming a 

double couple mechanism, are obtained based on the criterion of minimum mismatch error 

between observed and synthetic displacement seismograms derived using the best model 

(figures 2 a-b). The obtained solutions are listed in Table 1 and plotted in a map view (figure 

3). A normal fault mechanism with NNE to NS oriented fault planes is obtained for the 10 

August 2009 mainshock and two of its aftershocks respectively. The focal mechanism of the 

main shock event is comparable to that reported by the Harvard CMT or the USGS. With the 

available data, it is not possible to constrain the east or west dipping fault plane. However, 

considering the geometry of the accretionary wedge in the forearc region of the overriding 

plate, the east dipping fault plane may be more acceptable. For the other two aftershock 

events, a strike slip mechanism is obtained with the two fault planes oriented NE and NW 

respectively. Strike slip mechanisms with this kind of fault plane orientation were reported 

earlier for the Andaman arc region close to the arc or in the outer rise zone to the west, but 

not in this region north of the Andaman Islands. The only other region with exactly the 

same kind of mechanism is the Sumatran Fault system further south and much eastward from 

the trench. The other types of strike slip mechanisms are those with a more NS trending fault 

planes associated with the transform faults in the Andaman sea and the Sagaing fault zone 

further east, where an inter-plate right lateral strike slip motion is understood to be occurring 
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between the Burma and the Sunda plates. In order to interpret these earthquake mechanisms 

in a relatively aseismic zone, we attempt to obtain better constraints on their focal depths 

together with a reliable 1-D velocity model through joint waveform modeling. 

 

 
(a) 

 

 
(b) 

Fig. 2. Waveform matching between the observed and synthetic seismograms of the a) 10 

August 2009 Mw 7.5 Andaman earthquake and b) 13 August 2009 Mw 5.8 aftershock. Red 

curves are the observed displacement seismograms while the blue ones are the synthetic 

seismograms of the three components 
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Fig. 3. Plot of moment tensor or focal mechanism solutions of the 10 August 2009 Andaman 

earthquake of Mw 7.5 and its aftershocks computed in this study. The normal fault solutions 

including the main shock are shown in red while the strike slip fault solutions are shown in 

blue. The main shock (star) and aftershocks (circles) are all located north of the Andaman 

Islands. The seismic broadband stations of the ISLANDS network are shown as inverted 

triangles 

3.2 P wave velocity structure 
The joint waveform inversion of 5 events for simultaneous estimation of fault parameters 

and velocity structure has yielded a 5-layered velocity model along the Andaman and 

Nicobar Islands in addition to accurate focal mechanism solutions and focal depths. The best 

model obtained (table 2, figure 4) depicts a Moho at 30 km with a high Vp/ Vs ratio of 1.81 

indicative of an oceanic crust as suggested by Curray (2005). Waveforms of the farthest 

station Port Blair (PBA0) were given additional weightage to place better constraints on the 
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Moho depth and upper mantle velocity in view of its nearly regional distance. The high 

value of the crustal thickness is interpreted as a double crustal column comprising the 

overriding Burmese plate having a thickness of about 21 km including a 5 km thick 

sedimentary layer in the accretionary wedge, and the Indian crust with an apparent 

thickness of about 9 km. Such a configuration appears quite reasonable considering the 

location of the Islands at a lateral distance of about 85 km from the trench towards the 

forearc. While there could be parametric variations in the distance from trench, crustal 

thickness of each plate and the dip angle, the suggested model seems to provide the least 

misfit error in the seismic waveform modeling, and is also independently confirmed by 

Receiver function and gravity modeling as discussed in sections 3.3 and 3.6. 
 

 

Fig. 4. The best fitting P wave velocity model for the Andaman region obtained by joint 

inversion of waveforms of 5 earthquakes simultaneously while randomly varying the 

structural model parameters in a Monte-Carlo approach. The search limits and the model 

parameters obtained are listed in Table 2 

 

Layers Vmin-Vmax Hmin-Hmax Velocity Depth to top Layer 

 1 3-4.5 0-0 3.1 0 

2 4.0-6.0 1-5 4.3 4 

3 5.0-6.5 5-15 6.4 5 

4 5.5-7.5 15-25 7.1 21 

5 7.5-8.5 25-35 8.2 30 

Table 2. The search limits considered for random selection of 1000 models using a Monte-

Carlo approach and the best estimate of the P wave velocity model for the Andaman region 

based on joint waveform inversion of the 5 earthquakes simultaneously 
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3.3 Crustal discontinuities from Receiver function analysis 
A total of 802 receiver functions are obtained using 372 distant events recorded at 5 stations 

in the Andaman-Nicobar region since 2009 (Figure 5). These are the first results for this 

region from Receiver function analysis. A fairly good back-azimuthal coverage can be seen 

for the events used (Figure 6). The moveout correction is made with reference to a slowness 

value of 6.4 s/ o, corresponding to an epicentral distance of 67o.The receiver functions binned 

in narrow slowness intervals and stacked are shown in Figure 7 for stations DGPR, BART, 

CTBY, PBA and CMBY. The positive conversions prominently seen close to 2-2.5s at stations 

DGPR, BART and PBA could correspond to the top of the subducting Indian plate. When 

converted to depth these times transform to depths in the range of 16-20km.  These 

conversions for stations CTBY and CMBY are not so clear. Also, two stations BART and 

CTBY that are in close proximity reveal contrasting crustal configurations suggesting a 

complex structure along the Andaman subduction zone. The Moho conversion, although 

weak, is traceable at the permanent stations like CMBY and DGPR close to 4s, 

corresponding to a depth of ~30km, very similar to that obtained using waveform modeling. 

 

 

Fig. 5. Location of broadband seismic stations in the Andaman and Nicobar Islands.  Yellow 

circles denote permanent stations operated by the India Meteorologial Department.  Inset : 

The Andamnan-Nicobar region  is shown as a rectangular box in the Indian subcontinent 
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Fig. 6. Teleseismic earthquakes in distance range of 30°– 100° used in this study. The study 

region (Andaman and Nicobar Islands) is indicated by a rectangle 

 

 

Fig. 7. SV components of P wave receiver functions at stations DGPR, BART, CTBY, PBA 

and CMBY in the Andaman and Nicobar Islands, stacked in narrow slowness bins. Stations 

are arranged from north to south. Summation traces moveout corrected for converted 

(bottom) and multiple (top) phases are shown in the top panel 
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3.4 Resolution of focal depths 
A wide range of focal depths were tested for each event at intervals of 1 km, using the 

waveform matching criterion. Figures 8 a-d show the normalized misfit error as a function 

of focal depth for the 10 August 2009 earthquake and 3 of its aftershocks. It can be seen that 

the focal depth is extremely sensitive to waveform matching since it strongly influences the 

relative amplitudes of various phases in the seismogram, including the local /  regional 

depth phases. The best estimates of focal depths are obtained on the basis of minimum 

mismatch error which is generally within 1 or 2 km. It is found that while the main shock 

and its aftershocks with normal fault mechanism have shallow focal depths within 18 km, the 

aftershocks with strike-slip mechanism occur at deeper levels of 25 and 26 km respectively. 

Our centroid depth estimate of 18 km for the mainshock is comparable to the values of 21 km 

and 22 km reported by the USGS and Harvard respectively. The depth segregation indicates 

that the normal fault earthquakes are very likely to be confined to the overriding Burmese 

crust, while the deeper strike slip fault earthquakes need to be accommodated in the lower 

crust of the subducting Indian plate. In any case, the depth inference would have important 

implications for understanding earthquake genesis in this seismically quite zone, particularly 

in the aftermath of the 2004 megathrust earthquake of Mw 9.3. 

 

 

Fig. 8. Normalized waveform mismatch error as a function of focal depth for the 10 August 

2009 Mw 7.5 Andaman earthquake and its aftershocks numbered 1, 2, 4 and 5 in Table 1.  

Note the well resolved focal depth based on the criterion of minimum mismatch error 

3.5 Vertical distribution of seismicity 
The seismicity distribution of the 10 August 2009 earthquake and its aftershocks in depth 

shows an interesting vertical distribution confined both latitudinally and longitudinally at 
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about 14o latitude and 93o longitude (figure 9). Such a pipe-like seismicity trend is quite 

unusual and was absent prior to the 2009 earthquake, as can be seen from the blank zones in 

figures 10 a and b which depict earthquake hypocenters from the USGS catalog prior to the 

2009 event. In fact this zone has been completely aseismic at least for several decades, and 

also marks the termination of the 2004 mega-thrust earthquake. Such a trend is not seen for 

other large earthquakes in this region except for the 2008 Little Andaman earthquake (Mw 

6.6) also a normal fault earthquake located to the south, closer to the arc at 11o N. The region 

between these two earthquakes is demarcated by a high gravity gradient whose 

implications are discussed in section 3.6. 

 

 
 (a) (b) 

Fig. 9. Hypocentral depth sections of the 10 August 2009 Mw 7.5 Andaman earthquake and 

its aftershocks along a) East-West and b) North-South profiles across the epicentral region 

north of Andaman arc, indicating a distinct segregation of events with normal fault 

mechanism (red stars) and strike slip mechanism (blue stars) above and below the 21 km 

depth separating the overriding Burmese crust and the underlying Indian crust respectively. 

Note the peculiar vertical seismicity distribution of aftershocks (source: USGS) at about 14o 

latitude and 93o longitude 

3.6 Modeling of Bouguer gravity anomalies 
In the Andaman arc region, the sediments-corrected gravity anomalies (SCGA) are found to 

be low starting from trench and reach to their minima over the accreted wedge and the 

forearc basin and again increase towards volcanic arcs (Figure 11). Since gravity anomalies 

are corrected for sediments and bathymetry, they mainly reflect the geometry of subduction 

zone and deeper structures. Part of the anomalies might also be originating due to the 

sediment and bathymetry since the global data that are used for correction have less spatial 

resolution than the Free air gravity anomalies. However, we filter all the data for 5 minutes 

wavelength to avoid artifacts due to different resolution of data. The gravity gradients 
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(Figure 12) also show a similar character, the most striking feature being the reversal from 

negative to positive values towards north starting from 11o N and culminating in a positive 

maximum at 14o N coinciding with the epicenter of the 2009 main shock earthquake. The 

causative of the positive gradient over the fore-arc in the north might be the thinning of the 

fore arc crust due to stretching of the Sunda plate, eventually leading to normal or strike slip 

faulting. The figure also suggests that large non thrust earthquakes seem to occur over positive 

gradients. 

 

 
 (a) (b) 

Fig. 10. Hypocentral depth sections in the North-South direction using USGS catalog of 

earthquake data from a) 2005 to just before the 10 August 2009 Andaman event and b) 1973 

to just before the 10 August 2009 Andaman event. Note the clear absence of seismicity in the 

region below 14o latitude which got activated since the 10 August 2009 Andaman 

earthquake (figure 6) 

It is quite interesting that the highest gravity gradient of 1.5 mgal /  km coincides exactly 

with the location of the 2009 mainshock of Mw 7.5 and its aftershocks vertically distributed 

beneath. The anomaly has a radius of less than 100 km and adjoins the Andaman basin to 

the east which is the site of active back arc spreading that was initiated about 4 my ago (Raju 

et al., 2004). This region is largely asesimic in nature and devoid of evidence for active 

subduction as suggested by Kumar et al. (1996) based on focal mechanism studies. Richards, 

et al., (2007) has inferred a near-vertical lithospheric tear in this region between the Burma 

and Andaman arcs which may be related to this pipe-like seismicity distribution. Further, 

tomographic images from a recent study by Pesicek et al. (2010) also indicate the lack of a 

clear subduction in this region which gradually changes to a dipping trend of a subducted 

slab in the southern Andaman arc and the Sunda arc further south. The positive anomaly is 

viewed in this perspective to indicate a vertical barrier or a lithospheric tear (also visible in a 

corresponding depth section numbered 5 in figure 7 of Pesicek et al., 2010) that terminated 

the rupture of the 2004 megathrust earthquake. 
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Fig. 11. Satellite derived gravity anomalies (BCGA; Sandwell and Smith, 1997) corrected for 

bathymetry (GEBCO) and sediment thickness (NOAA-NGDC) over Andaman subduction 

zone. Locations of earthquakes (m> 5.5) are also superimposed in coloured circles (USGS). 

Red triangles are volcanoes. Star is the epicentre of 2009 earthquake (Mw 7.5). Black teethed 

line is trench axis and west Sumatra fault 

 

 

Fig. 12. Gradients of gravity anomalies along axis (N-S) for the Andaman-Nicobar region. Star 

is the epicenter of 2009 earthquake (Mw 7.5), whose epicenter and aftershocks are found to 

coincide with the location of the maximum horizontal gradient of about 1.5 mgal/ km. The 

positive anomaly has an extension from 11o N to 17o N adjoining the Andaman basin to the 

east, possibly indicating the absence of a clear lithospheric slab beneath the arc in this region 
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Fig. 13. Modeling of Bouguer gravity anomalies across the Andaman arc near the epicentral 

region providing a good match between the observed (dark line) and synthetic (dotted line) 

curves. The obtained model indicates a double crust of 30 km beneath the Andaman Islands 

including a thin (9 km) Indian crust overlain by a thicker (21 km) Burmese crust including a 

5 km thick sedimentary column. The gravity model compares well with other models 

obtained from (a) seismic waveform modeling in the present study and (b & c) marine 

seismic sections numbered 1106 and 1109 respectively near the study region (Curray, 2005) 
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The configuration of the India-Burma plate subduction as inferred from interpretation of 

gravity anomalies is shown in figure 13. The model shown in the depth section also provides 

the minimum misfit between the observed and computed gravity anomalies across the 

subduction zone. The basic configuration proposed corresponds to a coupling of the 

overriding Burmese crust with that of the subducting Indian crust beneath the Andaman and 

Nicobar Islands, facilitating an apparently thick oceanic double crust. A good comparison can 

be seen with the seismic velocity model obtained in this study from waveform modeling and 

those by Curray (2005) from marine seismic data, plotted at the appropriate locations in figure 

13. Teleseismic Receiver function analysis has also provided very similar results in this study. 

4. Discussion 

The results obtained from seismic waveform modeling, teleseismic receiver function 

analysis and gravity modeling are consistent, thereby providing a reliable velocity model 

that can be interpreted in terms of a double-crustal configuration at least beneath the 

Andaman and Nicobar Islands. This also provides a basis to interpret the 10 August 2009 

Andaman earthquake of Mw 7.5 and its aftershocks manifesting as a peculiar vertical 

distribution. Firstly, it appears that the main shock is an intra-plate normal fault earthquake 

occurring in the crust of the overriding Burmese plate. The fault planes oriented parallel to 

the local trend of the Andaman arc, seem to suggest relaxation of the overriding Burmese 

plate segment in the shallow accretionary wedge zone of the fore-arc basin probably in 

response to the buckling during the 2004 giant mega-thrust earthquake of Mw 9.3, leading 

to gravitational sliding of the Burmese crust including the sedimentary column in the 

eastward dip direction (figure 14). For an Mw 7.5 earthquake, fault dimensions of 80 x 30 km 

can reasonably be assumed based on empirical relations (Leonard, 2010). A similar 

dimension was also assumed by Mahesh et al. (2011) based on empirical relations of Wells 

and Coppersmith (1994). Considering the derived centroid depth of 18 km and a fault plane 

dip of 48o, a 30 km width of the fault plane can be more or less accommodated in the 

overriding Burmese crust. However, considering the large magnitude of this event, an 

extension of the fault into the underlying Indian crust below cannot be ruled out. Catherine 

et al., (2009) have interpreted this earthquake in terms of reactivation of the strike-slip 

planes of the Ninetyeast ridge subducting beneath the arc. However, in that case the focal 

depth would have to be much higher, the fault strike more northward and the fault plane 

dip angle much steeper. Also, positionally this earthquake appears to be further eastward 

compared to the probable location of the ridge with respect to the arc. Another possible 

interpretation of the normal faulting mechanism for the main shock away from the trench 

could be the upper plate retreat due to divergent absolute plate motions as inferred from 

magnetic data from the ocean floor of the Indian plate (Whittaker et al., 2007). These results 

are, however, inferred over a larger geological time frame of several million years, especially 

towards the southern Andaman and Java-Sumatra region, and a closer examination would 

be required in order to associate with this specific event north of the Andaman Islands. 

The strike slip events with estimated focal depths of 25 and 26 km can hardly be designated 

as inter-plate events due to (i) the their deep occurrence well within the underlying Indian 

plate zone, and (ii) because of their nearly vertical fault planes oriented NW and NE 

respectively, contrasting with the shallow dipping NS trending decollement plane in the 

India-Burma subduction zone. Earthquakes with a similar mechanism do occur in the 

Andaman arc region, except that they are associated with the transform faulting in the 

Andaman sea, the Sumatran fault zone to the east or the NS trending right-lateral strike-slip 
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faulting along the Sagaing fault zone farther east. Hence, these strike-slip events are distinct 

from the above mechanisms and are seen to be associated with intra-plate deformation in 

the subducting Indian plate. An examination of earthquakes west of the arc, in the outer rise 

zone and the Indian Ocean deformation zone indicates focal mechanism solutions having 

identical strike-slip mechanism with a left-lateral sense of slip on the NE trending fault 

plane gradually changing to NS at the ninetyeast ridge and to its southeast (figure 15). This 

indicates strain accommodation in the Indian crust due to differential motion of the Indian 

lithospheric plate under the Andaman arc. Previously, a model of wrench fault tectonics 

comprising extensive left lateral strike-slip motion in the diffuse deformation zone was 

suggested by Neprechnov (1988) to describe the India-Australia plate kinematics. Rao and 

Kumar (1996) had proposed a combination of a rigid plate Euler pole rotation model that 

explained the thrust fault earthquakes in the eastern part of the deformation zone and normal 

fault mechanism in the western part near the Chagos bank, in conjunction with a non-rigid 

left-lateral strike-slip faulting all along the deformation zone. It is opined that the strike slip 

earthquakes obtained in the present study occurred in the Indian crust under the Andaman arc 

as a part of the wrench fault tectonics of the Indo-Australian subduction, since the Australian 

plate subducts faster and smoother beneath the Sunda arc as compared to a much slower and 

stiffer convergence of the Indian plate in the Burma-Andaman arc (Stein and Okal, 1978). 
 

 

Fig. 14. A cartoon depicting subduction of the Indian plate beneath the Burmese plate along 

a section cutting across the arc through the epicentral region (modified after Masterlark et 

al., 2008). Close up of the subduction zone explaining the mechanism of the 2009 Andaman 

earthquake of Mw 7.5 as a normal fault in the shallow forearc region as a result of intra-plate 

relaxation of the overriding Burmese plate against the accretionary wedge 
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Fig. 15. Focal mechanism solutions of the strike-slip type (green) earthquakes spread over 

the Indian Ocean deformation zone and the Andaman arc regions depicting a wrench fault 

tectonic mechanism (Neprechnov, 1988) described by wide spread left-lateral strike-slip 

motion along NE planes in the west to NS planes in the east near the ninetyeast ridge, that 

accommodates strains due to uneven convergence of subduction fronts in the Indo-

Australian plate with respect to the Andaman-Sumatra arc. This mechanism is invoked to 

explain the strike-slip events north of Andaman Islands obtained in the present study 

(black) which occurred at lower crustal depths of the subducting Indian lithospheric plate. 

Also indicated are the reverse fault earthquakes west of ninetyeast ridge (red) and the 

normal fault earthquakes near Chagos bank (blue) describing convergence in the east and 

divergence in the west between the Australia and India plates defined by an anti-clockwise 

Euler pole rotation model (DeMets, 1990). Stars indicate the giant Sumatran subduction 

earthquakes of 2004 and 2005. (Data source: Harvard CMT catalog) 

The vertical distribution of seismicity north of the Andaman Islands is suggestive of a 

lithospheric split or tear in this region giving rise to a vertical structure that acted as a 

barrier during the propagation of the 2004 Sumatra-Andaman earthquake of Mw 9.3. This 

feature has been interpreted as a near-vertical lithospheric tear by Richards et al. (2007). The 

absence of a lithospheric slab down to deeper levels and the presence of a vertical barrier is 

also evidenced by tomographic depth sections of Piscek et al., (2010). Evidence for such a 

structure also comes in the present study from the Bouguer gravity anomalies in this region 

which indicate the steepest gradient of 1.5 mgal /  km exactly at this location (figure 12). The 

focal depths estimated from waveform matching ranging from 11 km to 26 km indicate its 

www.intechopen.com



 New Frontiers in Tectonic Research-General Problems,  
Sedimentary Basins and Island Arcs 

 

266 

deep-seated nature (figure 8). In any case, this region has been devoid of any seismicity for 

several years (figure 10), and as shown in this study, the sudden burst of seismic activity 

starting with the 2009 event can be seen as a trigger releasing the stress accumulated along 

the lithospheric split zone, subsequent to the disastrous 2004 mega-thrust earthquake of Mw 

9.3. Detailed tomographic studies combining land based and ocean bottom seismograph 

data in the Andaman region in future can resolve this issue in addition to providing 

accurate 3D images of the subduction zone. 

5. Conclusions 

1. Joint inversion of broadband data of 5 earthquakes has provided a P wave velocity 

model of the Andaman region, based on best waveform fits between all the observed 

and synthetic seismograms. The model depicts a 30 km thick double oceanic crustal 

column corresponding to a thickness of about 21 km of Burmese crust including a 5 km 

thick sedimentary column, underlain by a thinner Indian crust with an apparent 

thickness of about 9 km, which is independently validated by receiver function analysis 

and gravity modeling. 

2. The hypocenters of the 10 August 2009 Andaman earthquake of Mw 7.5 and its 

aftershocks form a peculiar vertical distribution down to about 50 km depth. This zone 

is interpreted as a lithospheric split or tear in the Burma-Andaman arc, which 

incidentally coincides with the northern periphery of the rupture zone of the 2004 

mega-thrust earthquake of Mw 9.3. 

3. The main shock as well as the aftershocks can be classified into two groups – normal 

fault mechanism with shallow focal depths within 18 km, and strike slip mechanism at 

greater depths down to 26 km. The two groups are interpreted as intra-plate events 

occurring within the Burmese crust and the Indian crust respectively. 

4. While the events with normal fault mechanism are attributed to plate relaxation in 

the fore-arc region subsequent to buckling of the overriding Burmese plate during the 

2004 mega-thrust earthquake, the deep seated strike-slip fault events correspond to 

the crust of the Indian plate and represent a series of left-lateral strike-slip motions that 

accommodate the Indo-Australian plate convergence under the Burma-Sunda arc. 
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