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1. Introduction  

In line with recent environmental policies, increased attention has been paid to the 

development of bio-based nanocomposite materials for several industrial applications, such 

as automotive, construction, packaging or medical applications. Thus, much effort has been 

devoted to the use of natural fibers in composite materials as an alternative to conventional 

inorganic fillers, traditionally used to reinforce thermoplastic matrices (i.e., glass fibers, 

aramid or carbon fibers, for instance).(Eichhorn, 2006; Pandey, et al., 2005) Hence, natural 

fibers present very attractive properties such as low cost, renewability, biodegradability and 

low density.(Bledzki & Gassan, 1999; Samir, et al., 2005) 

Cellulose is the most abundant biopolymer on earth, and is present in natural fibers such 
as wood, cotton or hemp, as well as in a wide variety of living species, such as animals, 

plants and bacteria. This linear polymer is composed of β-1,4  linked glucopyranose units, 
with polymer chains associated by hydrogen bonds forming bundles of fibrils, also called 
microfibrillar aggregates, where highly ordered regions (i.e., crystalline phases) alternate 
with disordered domains (i.e., amorphous phases).(Samir, Alloin & Dufresne, 2005) In the 
last decades, the production of cellulose nanofibers from different sources has gained a 
tremendous success. Hence, apart from the already mentioned advantages related to 
natural fibers, cellulosic nanoelements also possess very high strength and stiffness, 
therefore making them excellent reinforcing agents for nanocomposites. As will be 
discussed later in detail, two main types of cellulose nanofibers can be produced: the 
Cellulose nanowhiskers (CNW) and Microfibrillated cellulose (MFC). These natural fillers 
differ from their size and crystallinity, but the highest aspect ratios are usually found for 
MFC.      
In the past decade, the EMPA Wood Laboratory has acquired a strong experience in the 

production, functionalization and use of MFC for a wide range of applications, including 

adhesives, packaging or medical applications. Consequently, this book chapter will 

specifically address the elaboration of functional nanocomposite materials using MFC as 

reinforcing agent. A first section will present the production and properties of MFC. In a 

second section, the chemical modification of MFC will be presented, therefore highlighting 

the possibility to tailor the surface polarity of the cellulosic fillers. Finally, a third section 

will address the elaboration of nanocomposite materials from unmodified and 

functionalized MFC. 
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2. Cellulose nanofibers 

As stated in the Introduction part, cellulosic nanoelements are mainly divided into two main 
families, which are the CNW and MFC. We will thus present these nanofibers in terms of 
preparation and morphological properties, with an emphasis on MFC. 

2.1 Cellulose Nanowhiskers (CNW) 

CNW, also called cellulose nanocrystals, are usually isolated from cellulose fibers through 
an acid treatment. This simple process involves an acid hydrolysis of the biomass using 
concentrated sulfuric acid (H2SO4), which removes disordered or paracrystalline regions of 
cellulose and leaves crystalline regions intact. After this treatment, cellulose nanocrystals 
with a rod-like morphology are produced. The geometrical dimensions of these 
nanoparticles depend on the starting cellulose source, resulting in CNW with widths in the 
nanometer scale and lengths from nanometer to micrometer scale. An example of CNW 
isolated from Microcrystalline Cellulose is presented in Fig. 1. 
 

 

Fig. 1. AFM image of CNW 

2.2 Microfibrillated Cellulose (MFC) 

As compared with CNW, MFC consists of long, flexible and entangled cellulose nanofibers. 
MFC can be prepared from different raw materials and preparation processes, the 
characteristics of the resulting nanofibers being dependant on these two parameters. Wood 
constitutes the most important source of cellulose nanofibers, however research on other 
potentially suitable cellulose-based materials is in progress, especially in developing 
countries where agricultural wastes are underutilized. For this reason, cellulose sources 
coming from agricultural by-products have already successfully been tested for the 
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production of MFC, such as wheat straw, sugar beat pulp, potato pulp or bagasse.(Siro & 
Plackett, 2010) 
Concerning the production of MFC, several mechanical treatments have been used, such as 
a two-steps process including a refining and a high-pressure homogenization steps, 
cryocrushing, and grinding methods. Developed in 1983 by Turbak et al., the 
homogenization technology allows the production of a network of interconnected cellulose 
microfibrils, with diameters from 10 to 100 nm and aspect ratios from 50 to 100.(Boldizar, et 
al., 1987; Gardner, et al., 2008; Turbak, et al., 1983; Zimmermann, et al., 2004) Without any 
cellulose pre-treatment, the two-steps mechanical process has usually led to the obtention of 
MFC with the smallest diameters.(Zimmermann, Pöhler & Geiger, 2004) Nevertheless, in 
order to decrease the high energy consumption associated with such processes, chemical 
(Habibi, et al., 2006; Iwamoto, et al., 2007; Lasseuguette, et al., 2008) and enzymatic 
(Henriksson & Berglund, 2007; Janardhnan & Sain, 2006; Paakko, et al., 2007) pre-treatments 
together with subsequent mechanical processes have also led to the preparation of cellulose 
nanofibers with diameters between 5 and 30 nm. In the EMPA Wood laboratory, MFC is 
obtained from cellulose fibers after a two-step mechanical disintegration process, consisting 
of an initial refining step followed by a high pressure homogenization step. Fig. 2 presents 
an example of MFC isolated from oat straw cellulose powder in our laboratory. 
 

 

Fig. 2. SEM image of MFC mechanically isolated from oat straw cellulose powder 

3. Limitations of MFC in composite applications 

Nevertheless, despite all previously stated advantages, MFC suffers from its strong 
hydrophilic character which causes two critical issues, namely the hornification during 
drying and agglomeration of MFC in non-polar matrices during compounding. 
Irreversible agglomeration of cellulose during drying is called hornification and is explained 
by the formation of additional hydrogen bonds between amorphous parts of the cellulose 
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fibrils during drying. (Young 1994; Hult et al. 2001) The formation of these bonds is related 
to the amount of water removed, and does not depend directly on temperature. As in the 
crystalline parts of cellulose, water cannot break the formed hydrogen bonds of hornificated 
cellulose during rewetting.(Eyholzer, et al., 2010a) For this reason, isolation of MFC is 
preferentially done by mechanical disintegration of never dried pulp in aqueous suspension 
of low cellulose concentration (1 to 2 % w/w). The consequences are high storage volumes 
and shipping costs, as well as a decrease in storage life of the product due to bacterial 
degradation. 
Moreover, in order to match the targeted property improvements, the natural fibers must be 
homogeneously dispersed in the polymeric matrix, which is non-trivial. Hence, due to its 
strong hydrophilic character and high aspect ratio, MFC tends to flocculate through 
hydrogen bonding.  In general, the dispersion of hydrophilic MFC in apolar solvents, as 
well as its further homogeneous incorporation in most common apolar thermoplastic 
polymers, is challenging. A non homogeneous dispersion of the filler in the polymer matrix 
is often obtained, thus decreasing the final mechanical properties of the nanocomposite 
material.(Hubbe, et al., 2008) For these reasons, the preparation of nanocomposite materials 
from MFC has often been restricted to water soluble polymers,(Dufresne & Vignon, 1998; 
Lu, et al., 2008b; Zimmermann, Pöhler & Geiger, 2004; Zimmermann, Pöhler & Schwaller, 
2005) latexes,(Samir, et al., 2004) acrylic and phenol-formaldehyde resin through a fiber 
impregnation process,(Iwamoto, Nakagaito & Yano, 2007; Nakagaito & Yano, 2008; 
Nakagaito & Yano, 2004; Nakagaito & Yano, 2005), or poly(lactic acid) under specific 
compounding conditions.(Iwatake, et al., 2008; Nakagaito, et al., 2009; Suryanegara, et al., 
2009) As compared with neat matrices, the incorporation of MFC led to an increase in 
mechanical properties such as bending and tensile strength,(Iwatake, Nogi & Yano, 2008; 
Nakagaito, Fujimura, Sakai, Hama & Yano, 2009; Nakagaito & Yano, 2004; Suryanegara, 
Nakagaito & Yano, 2009; Zimmermann, Pöhler & Geiger, 2004) Young’s modulus,(Iwatake, 
Nogi & Yano, 2008; Nakagaito & Yano, 2008; Nakagaito & Yano, 2005; Zimmermann, Pöhler 
& Geiger, 2004; Zimmermann, Pöhler & Schwaller, 2005), as well as thermal 
stability.(Dufresne & Vignon, 1998; Iwatake, Nogi & Yano, 2008; Lu, Wang & Drzal, 2008b; 
Nakagaito, Fujimura, Sakai, Hama & Yano, 2009; Samir, Alloin, Paillet & Dufresne, 2004; 
Suryanegara, Nakagaito & Yano, 2009) Moreover, recent studies have highlighted the 
possibility to prepare optically transparent nanocomposites by impregnating MFC with an 
acrylic resin.(Iwamoto, Nakagaito & Yano, 2007) 
Nevertheless, the hydrophilic character of MFC constitutes a major obstacle for its use in 
composite applications. In order to tackle this problem, one strategy involves the chemical 
modification of MFC’s surface hydroxyl groups, in order to prevent hornification 
phenomena and/or decrease the nanofiber surface hydrophilicity. 

4. Chemical modification of MFC 

In the past decades, the chemical modification of MFC has received a significant interest 
from the scientific community. Thus, many reactions have already been performed in order 
to permanently modify the surface properties of the nanofibers (i.e., surface polarity), 
involving the use of the TEMPO oxidative agent,(Lasseuguette, Roux & Nishiyama, 2008; 
Saito, et al., 2006) silane reagents,(Andresen, et al., 2006; Gousse, et al., 2004; Gousse, et al., 
2002; Grunert & Winter, 2002; Lu, et al., 2008a) isocyanates,(Nair, et al., 2003; Siqueira, et al., 

2009) poly(ε-caprolactone),(Habibi & Dufresne, 2008) or anhydrides.(Cavaille, et al., 1997; 
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Ifuku, et al., 2007; Kim, et al., 2002; Nogi, et al., 2006; Sassi & Chanzy, 1995; Stenstad, et al., 
2008)  
In our laboratory, we have been particularly interested in developing simple and efficient 
modification pathways that could be potentially suitable for the modification of MFC at 
industrial scale. In this section, we will present two examples of chemical modifications 
which were envisaged to improve the nanofibers’ properties in polar and non polar 
environments. 

4.1 Carboxymethylation of MFC 

Partial carboxymethylation of the MFC hydroxyl groups has been envisaged to overcome 
hornification during drying, with the aim to prepare dry, water-redispersible MFC (Fig. 3). 
 

 

Fig. 3. Carboxymethylation of MFC 

The success of the reaction was monitored using different characterization techniques, such 
as Fourier-Transformed Infrared Spectroscopy (FTIR) and Solid-State NMR spectroscopy. 
Finally, the impact of the modification on the properties of the modified MFC was 
evaluated, such as redispersion properties in water and crystallinity. 
Two sets of experiments were compared. Unmodified and chemically modified MFC were 
dried to a powder from an aqueous suspension, and then redispersed in water. Finally, a 
drop of these suspensions was freeze-dried and the morphology of the resulting nanofibers 
was assessed using Scanning Electron Microscopy (SEM). Fig. 4 presents the crystallinity 
values, SEM and redispersion test images of these two samples. Results indicated that the 
crystalline structure of MFC was partially affected by the treatment, but a crystallinity of 
49% could still be remained. But most importantly, differences were noted concerning the 
dispersion properties and morphology of these two samples. After 1h, a complete 
sedimentation of the unmodified MFC was observed, and the SEM characterization revealed 
large aggregates which were not dispersed in the suspension. These results confirmed the 
hornification problem of unmodified MFC. On the other hand, a stable and transparent 
suspension was obtained for the carboxymethylated MFC, a network of nanofibers with 
overall diameters below 100 nm being observed by SEM after freeze drying. Moreover, by 
varying the Degree of Substitution (DS), other morphological and dispersion properties of 
MFC could be obtained (not shown here). 
In conclusion, these results confirmed the possibility to prepare dry, redispersable MFC 
with the carboxymethylation reaction, which is strongly interesting for composite 
applications. 
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Fig. 4. Crystallinity (Χc), redispersion tests in water (0.2% w/w, 1h) and SEM images of 
unmodified and carboxymethylated MFC 

4.2 Acetylation of MFC 

In another approach, the acetylation of MFC has been envisaged to decrease the nanofibers 
hydrophilicity, and further improve the chemical affinity between MFC and non-polar 
environments (Fig. 5).  
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Fig. 5. Chemical modification of MFC with Acetic Anhydride 

The acetylation reaction has been monitored spectroscopically, and the kinetics of the 
reaction was obtained by plotting the evolution of the DS against reaction time (Figure 6). 
As shown in this graph, the DS increased rapidly during the first 60 min, suggesting that the 
reaction occurred primarily on easily accessible surface hydroxyl groups (OH). On the other 
hand, the reaction rate gradually slowed down up to 180 min, with DS ranging from 0.37 to 
0.41. This behavior was associated with the modification of less accessible surface OH 
groups which may be located deeper in the nanofibers, as well as steric hindrance induced 
by grafted acetyl groups on fiber surfaces, thus affecting the reaction rate.  
In parallel, the dispersion properties of unmodified and acetylated MFC were examined in 
CHCl3, a solvent of low polarity (Fig. 6). All nanofibers were first manually dried to a 
powder form and redispersed afterwards in CHCl3. Unmodified MFC could not be 
dispersed, as a result of strong hornification during drying. However, the suspensions of 
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acetylated MFC showed varying degrees of stability, which were dependent on DS. Stable 
suspensions were observed for acetylated MFC with a DS above 0.18, the suspensions being 
increasingly homogeneous with the modification rate. This behavior was associated with the 
increasing amount of acetyl moieties on the cellulose surface, thus limiting the interactions 
between adjacent microfibrils. However, a total flocculation was observed for MFC with a DS 
of 0.13, which was associated with an incomplete acetylation of the nanofibers surface. These 
innovative results confirm that the acetyl groups prevent the interactions between nanofibers, 
and suggest that a minimum DS is required to efficiently disperse dried MFC in CHCl3. This 
finding is of great interest from an economical point of view, as the acetylation treatment 
would also provide powdered MFC, reducing significantly the transportation costs. 
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Fig. 6. Evolution of DS as function of reaction time. Photographs indicated by red arrows 
display the stability of the suspension in CHCl3 

5. Elaboration of nanocomposites from MFC 

As stated in the previous sections, our activities in the EMPA Wood Laboratory have been 
dealing with the reinforcement of polar and non polar polymer matrices for many 
applications. In this section, examples of nanocomposites reinforced with unmodified and 
chemically modified MFC will be presented, and the envisaged applications of the resulting 
nanocomposites will be addressed for all of them. Two polymer matrices were envisaged, 
namely the hydrophilic Hydroxypropyl Cellulose (HPC) and the hydrophobic Poly(lactic 
acid) polymers. Unmodified and functionalized MFC were both used as reinforcing agents, 
and the impact of the modification on the resulting composite properties was evaluated. All 
nanocomposite films were prepared using a solvent casting approach, a simple and efficient 
method commonly used at laboratory scale for the preparation of composite materials. 
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5.1 HPC nanocomposites 

HPC is a highly interesting cellulose derivative which has been extensively analyzed, 
regarding its ability to form liquid crystalline (LC) mesophases (Werbowyj & Gray, 1976; 
Werbowyj & Gray, 1980) and its compatibility with cellulosic nanofibers.(Johnson, et al., 
2009; Zimmermann, Pöhler & Geiger, 2004). Therefore, we envisaged to reinforce HPC using 
unmodified and carboxymethylated MFC, and we studied the impact of drying these 
nanofibers on their reinforcing potentials in HPC composites.(Eyholzer, et al., 2010b) The 
carboxymethylated nanofibers being not susceptible to hornification problems, the 
preservation of their ability to reinforce matrices in powder form would be highly beneficial 
from a practical and industrial point of view. 
The polymer matrix was reinforced with either never-dried (aq) or dried and redispersed (s) 
nanofibers. All composite films had a filler content of 20% (w/w) and were characterized by 
dynamic mechanical analysis (DMA). The viscoelastic responses of all composites studied 
are presented in Fig. 7. 
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Fig. 7. Temperature dependence of the Storage modulus (E’) (left) and tan δ (right) for neat 
HPC (black) and its nanocomposites reinforced with 20% (w/w) of unmodified (green) and 
carboxymethylated (red) MFC. (aq: never-dried, s: dried and redispersed) 

5.1.1 Neat HPC 

The neat HPC films (black) show three regions that are separated by two relaxations, αa and 

αm, both involving large-scale molecular motions. (Pizzoli, et al., 1991)  In the first region 

ranging from -30 to 20°C, the films exhibit a very high storage modulus which is in the 

range of several GPa. At these temperatures, the bulk HPC consists of essentially three 

distinct phases: a crystalline phase, a disordered isotropic amorphous phase and a phase of 

intermediate order which was described as a frozen anisotropic amorphous phase.(Pizzoli, 

Scandola & Ceccorulli, 1991; Rials & Glasser, 1988; Wojciechowski, 2000) At 20 °C, a first 

transition can be observed, indicated by the peak in the tan δ curve. This Tg-like transition 

was attributed to the αa relaxation, denoting a devitrification process of the disordered 

amorphous phase. The second region between 20 and 130 °C is characterized by a relatively 
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large drop in storage modulus, exhibiting a remarkable softening of the films. Around 130 

°C a second Tg-like transition occurs with a strong increase in the tan δ intensity, known as 

the αm relaxation. (Pizzoli, Scandola & Ceccorulli, 1991)  In the third region above 130 °C, 

the storage modulus decreases drastically and the neat HPC films start to flow. At these 

temperatures, the flexible side chains of HPC act like an internal plasticizer, allowing the 

rather stiff main chains some mobility. To avoid plastic deformation of the neat HPC films 

in tensile geometry, we limited data acquisition to 140 °C for this reference sample.  

5.1.2 Viscoelastic properties of composites reinforced with never-dried (aq) and dried 
and redispersed (s) nanofibers 

To allow easier comparison, green and red curves denote composites reinforced with 
unmodified and carboxymethylated MFC, respectively. Open and filled circles correspond 
to nanocomposites reinforced with never-dried (aq) and dried and redispersed (s) MFC. 
For all composites studied, the storage modulus of the composite films increased with fiber 

loadings regardless of the treatment. Below the αa relaxation at -20 °C, the increase in 

storage modulus was generally small. At 75 °C, after the αa relaxation, this increase became 

more pronounced. However, the strongest increase in E’ compared with neat HPC was 

observed at 140 °C, after the αm relaxation. This later increase in storage modulus was 

associated with the formation of a highly rigid percolating network of fibrils.(Dalmas, et al., 

2007) The rigidity of this network arises from strong hydrogen bonds and entanglements 

between the fibrils. Clearly, the tan δ intensity of all composites was reduced over the whole 

temperature range but most pronounced in the high temperature region above 130 °C. This 

decrease in tan δ is commonly associated with the increased volume fraction of the filler in 

the composites. However, it can be observed that the decrease in tan δ intensity depends on 

the filler type, becoming more pronounced for the functionalized MFC. This suggests that 

the presence of the fillers, together with the resulting percolating networks, promoted 

different degrees of segmental restrictions of the molecular motion of HPC chains, leading 

to an increase in E’ and a decrease in tan δ. The efficiency of these segmental restrictions 

may depend on surface chemistry (i.e. the availability of carboxylate groups COO-), surface 

area to volume ratio and aspect ratio of the filler.(Johnson, Zink-Sharp, Renneckar & 

Glasser, 2009) As carboxymethylation prior to mechanical disintegration enhances the 

isolation of fibrils,(Eyholzer, Bordeanu, Lopez-Suevos, Rentsch, Zimmermann & Oksman, 

2010a) this might lead to the production of fibrils which are favorable in terms of the above 

mentioned properties compared to unmodified nanofibers, and therefore account for more 

efficient segmental restriction of HPC molecular motion.  

Nevertheless, a clear difference was observed between the films containing unmodified and 

carboxymethylated MFC. For all temperatures studied, storage modulus values of HPC 

reinforced with dried and redispersed (s) unmodified MFC were clearly lower than its 

never-dried analogues. This effect can be attributed to the hornification of MFC upon drying 

as described earlier, leading to a reduction of the fiber’s aspect ratio and the prevention of a 

percolating network formation. In contrast, films containing dried and redispersed 

carboxymethylated MFC showed an almost identical response as those containing the 

never-dried fibers in the whole temperature range.  

In conclusion, carboxymethylated MFC can be dried and redispersed in water without 

affecting its mechanical performance in nanocomposite applications.  
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5.2 PLA nanocomposites 

Polylactic acid (PLA) is a hydrophobic biopolymer, soluble in chloroform, and is considered 
biodegradable and biocompostable. This thermoplastic polymer can be synthesized from 
natural resources (e.g. starch or corn) and shows high strength and stiffness. Therefore, PLA 
has gained strong interests in several fields of applications, such as food packaging, 
automotive or medicine.(Garlotta, 2001) Its reinforcement with natural fibers has already 
been reported in literature, but few studies report the use of cellulose nanofibers, such as 
MFC as filler reinforcement in PLA matrices. Moreover, the same limitations have often 
been pointed out, such as aggregation of the filler and a lack of compatibility at the fiber-
matrix interface.(Iwatake, Nogi & Yano, 2008; Mathew, et al., 2005)  
In this context, we proposed to reinforce PLA with acetylated MFC, as it was shown earlier 
that such nanofibers display excellent dispersion properties in CHCl3, a PLA 
solvent.(Tingaut, et al., 2010) In addition to an improved filler dispersion as compared with 
unmodified MFC, an improved fiber/matrix interface was therefore expected due to the 
grafting of hydrophobic acetyl moieties on the surface of the nanofibers. PLA 
bionanocomposites with tunable properties were prepared using unmodified and acetylated 
MFC (with DS ranging from 0 to 0.77), with MFC contents from 2.5 to 17 wt%. The resulting 
nanocomposites were characterized in terms of filler dispersion and mechanical properties.  
The quality of filler dispersion in the PLA matrix was visually evaluated assessing the 
transparency of the resulting films. Similar differences were observed among all filler 
contents tested, and therefore only photographs corresponding to nanocomposites 
reinforced with 10 wt% MFC are presented in Fig. 8. As compared with the neat PLA film, 
nanocomposite films were less translucent, but different behaviors were obtained 
depending on the DS. The addition of unmodified MFC led to a film off-white in color, with 
the appearance of MFC aggregates as white dots all over the film. When acetylated MFC 
was used, the presence of aggregates progressively vanished with an increase in DS, and the 
films became increasingly translucent. These observations suggest that the MFC dispersion 
in the PLA film was significantly improved by the surface grafting of acetate groups, and 
correlate with the improved dispersion of acetylated MFC in CHCl3. 
The mechanical properties of the composites were evaluated using tensile tests 
measurements (Fig. 9). As it can be seen, in general, the presence of the MFC had a strong  
 

 

PLA PLA + 10% MFC 

DS = 0 DS = 0.77

 

Fig. 8. Optical micrographs of neat PLA and its nanocomposites reinforced                         
with 10% (w/w) of unmodified and acetylated MFC 
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Fig. 9. Evolution of the Modulus of Elasticity (Young’s modulus), Tensile strength and Strain 
at break as function of MFC content and DS 
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influence on the Modulus of elasticity (E’), Tensile strength (σ) and Strain at break (ε) of the 
resulting nanocomposites. 

As compared with neat PLA, a gradual increase in E’ and σ was noted upon the 

incorporation of nanofibers, whatever the type of fibrils used. This reinforcing effect might 

result from the formation of a stiff hydrogen bonded cellulose network above a percolation 

threshold.(Dufresne & Vignon, 1998; Siqueira, Bras & Dufresne, 2009) But most 

interestingly, the DS significantly altered the reinforcement of nanocomposites. Hence, at 

the same filler content, higher E’ and σ were systematically measured for nanocomposites 

reinforced with nanofibers with a DS of 0.35. This behavior was attributed to an improved 

dispersion and/or compatibility between the bulk PLA and the modified MFC at this 

particular modification rate, and suggests that an optimum DS is required to elaborate 

nanocomposite materials with higher mechanical properties. Surprisingly, nanocomposites 

reinforced with MFC having a DS of 0.77 did not present the highest mechanical properties, 

for which the best chemical affinity towards the hydrophobic PLA matrix would be 

expected. These findings suggest that a combination of the DS, which will adjust the 

chemical affinity of the microfibrils to the matrix, and the filler content are essential in order 

to achieve a good polymer-matrix interaction.  

Finally, the DS seemed to have a strong influence on ε. As compared with neat PLA, a 

progressive decrease in ε was measured upon filler content for nanocomposites reinforced 

with unmodified MFC, as expected. These results are in agreement with the increased 

stiffness of the materials with the MFC content. However, different results were obtained 

when acetylated MFC was used. Hence, ε progressively increased not only with the filler 

content, but also with the DS of the nanofibers. These results might be associated with a 

disruption of the fiber network upon the introduction of acetyl moieties on MFC, therefore 

increasing the strain at break of the materials. However, additional experiments are needed 

to validate this hypothesis. 

In conclusion, PLA bionanocomposite materials with enhanced properties (i.e., 

transparency, mechanical properties) were obtained as compared with those reinforced with 

unmodified MFC. Other properties could also be improved with the acetylated nanofibers, 

such as the hygroscopicity and thermal stability (not shown here). But most importantly, all 

these properties could be tailored by adjusting both the DS and the amount of MFC. 

6. Conclusion 

As demonstrated across this book chapter, Microfibrillated cellulose (MFC) is an excellent 

candidate for composite applications. Nevertheless, this highly promising natural material 

also suffers from its strong hydrophilic character, therefore leading to few drawbacks, 

namely the hornification phenomena upon drying, high shipping cost, susceptibility to 

biodegradation, as well as the lack of compatibility with non polar matrices. 

We have here demonstrated that all these issues could be easily tackled through a chemical 

approach. Hence, the chemical modification of the cellulose hydroxyl groups clearly 

highlighted the possibility to use MFC in both dry or wet forms in composite applications, 

whatever the polarity of the matrix. 

In aqueous environments, bionanocomposites from hydroxypropyl cellulose (HPC) with 
dried and redispersed carboxymethylated MFC powders were prepared. In general, the 
mechanical response of these composites was independent of whether the fibrils were dried 
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or not prior to compounding. On the other hand, MFC without carboxylate groups showed 
a strong decrease of its reinforcing potential when dried before mixing with HPC due to 
hornification. In conclusion, these results demonstrated that carboxymethylated MFC in 
powder form has a high potential for polymer reinforcement with increased shelf life and 
easier handling compared to conventional MFC. 
In hydrophobic environments, novel bionanocomposites were synthesized from PLA and 
acetylated MFC, with the objective of demonstrating that the final nanocomposite properties 
could be tailored through a careful control of the DS. It was shown that a DS above 0.18 
prevented hornication upon drying. This was possible since the grafted acetyl groups 
allowed reduced hydrogen bonding between cellulose microfibrils. Moreover, we 
demonstrated that the resulting powdered nanofibers were easily redispersed in 
chloroform, a PLA solvent of low polarity, leading to very stable suspensions. These 
nanofibers were used to reinforce PLA through a solvent casting approach in chloroform. 
We showed that MFC with increasing DS provided more translucent nanocomposites versus 
unmodified MFC. Concerning the mechanical properties, regardless of the microfibril type, 
increasing amounts of MFC provided higher modulus of elasticity (E’) and Tensile strength 

(σ). However and most interestingly, higher E’ and σ values were measured for 
nanocomposites reinforced with acetylated MFC as compared with those reinforced with 
unmodified nanofibers, which was associated with an improved dispersion and/or 
compatibility at the fiber/matrix interface. We conclude that the possibility to redisperse 
dried acetylated MFC in a non polar solvent, such as chloroform, is very promising from an 
economical point of view, and opens up new opportunities for the development of novel 
nanocomposites materials using non polar matrices.  
Thus, the chemical modification of MFC with simple and efficient methods constitutes a 
great industrial interest because the modified nanofibers can be stored in dry form, 
improving their durability against bacteria and reducing transportation costs. 
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