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1. Introduction  

Polymer nanocomposites are increasingly desirable as coating, packaging, filtering and 

structural materials in a wide range of aerospace, automobiles, membrane, and electrical 

engineering applications [Mai and Yu, 2006; Ray and Bousmina, 2008]. This is due to our 

increased ability to analyze, synthesize, and manipulate a broad range of nanofillers and 

significant investment by laboratories and research centers in industry, government, and 

academia. In addition, polymers possess general advantages of low cost, lightweight, design 

flexibility, easy processing, and corrosion resistance. The polymer nanocomposites are one 

kind of composite materials comprising of nanometer-sized particles, typically at least one 

dimension less than 100 nm, which are uniformly dispersed in and fixed to a polymer 

matrix. In this way, the nanoparticles are acting like additives to enhance performance and 

thus are also termed nanofillers or nano-inclusions [Ramanathan et. al., 2007; Vaisman et. al. 

2007]. The nanofillers can be plate-like, high aspect ratio nanotubes, and lower aspect ratio 

or equiaxed nanoparticles. Frequently employed inorganic nanofillers include metals and 

metal oxides, semiconductors, clay minerals, and carbon-based materials such like carbon 

blacks, carbon fibers, graphite and carbon nanotubes (CNTs). 

CNTs have received much attention for their unique structural, mechanical, and electronic 

properties as well as their broad range of potential applications [Kim and Park, 2008; Kang 

et al. 2008; Xu et. al., 2008; Kumar, 2002; Wong et al., 1998]. CNTs are cylinder-shaped 

macromolecules with a radius as small as a few nanometers, which can be grown up to 20 

cm in length [Zhu et. al., 2002]. Their properties depend on the atomic arrangement, 

chirality, diameter, and length of the tube and the overall morphology. They exist in one of 

two structural forms, single-walled carbon nanotube (SWNT) or multi-walled carbon 

nanotube (MWNT). SWNTs are best described as a 2-D graphene sheet rolled into a tube 

with pentagonal rings as end caps [Harris, 2004]. SWNTs have aspect ratios of 1000 or more 

and an approximate diameter of 1 nm. Similarly, MWNTs can be described as multiple 
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layers of concentric graphene cylinders also with pentagonal ring end caps. Conventional 

MWNT diameters range from 2-50 microns [Harris, 2004]. Measurements using in situ 

transmission electron microscopy and atomic force microscopy have produced estimates 

that Young’s modulus of CNTs is approximately 1 TPa [Treacy et. al., 1996; Wong et. al. 

1997]. For comparison, the stiffest conventional glass fibers have Young’s modulus of 

approximately 70 GPa, while carbon fibers typically have modulus of about 800 GPa. CNTs 

can accommodate extreme deformations without fracturing and also have the extraordinary 

capability of returning to their original, straight, structure following deformation [Harris, 

2004]. In addition, they are excellent electrical conductors and have very high thermal 

conductivities. Many of these exceptional properties can be best exploited by incorporating 

the nanotubes into polymer matrix, and the preparation of nanotube containing composite 

materials is now a rapidly growing subject.  

Recently, our group has developed a process of simple saponification to make highly porous 

nanocomposites. In this process, at least one vinyl acetate (VAc) containing polymer or 

blend is dissolved in an appropriate solvent and a suitable viscosity of the solution is 

achieved. A functonalized nanotube was dispersed in polymer solution and then the 

polymer suspension was precipitated/saponified in alkaline non-solvent. This causes 

separation of the heterogeneous polymer suspension into a solid nanocomposite and liquid 

solvent phase. After rinsing off the coagulant and drying, sponge-like structure of connected 

matrix polymer and nanotube were obtained. Production parameters that affect the pore 

structure and properties include polymer and nanotube concentration, VAc content in 

polymer, saonification time and temperature, and precipitation media. These factors can be 

varied to produce porous structure with a large range of pore sizes, and altering chemical, 

thermal and mechanical properties. Porous materials are heterogeneous systems with 

complex micro-structure [Roberts and Knackstedt, 1996]. These systems are diphase 

composites with a solid matrix and gaseous filler [Mills et. al., 2003]. Physical and 

mechanical properties of such heterogeneous systems depend not only on the nature of the 

materials but on their morphology as well [Garboczi, 2000]. Materials with highly pore 

structure and controlled pore volume have potentials in a wide range of applications such as 

cell culture media, enzyme immobilization, organic electronics, membranes, absorbents, 

supports for liquid chromatography, ion-exchange applications, bio-separators, metal 

recovery and tissue engineering [Kanny et. al., 2002; Benson, 2003; Sears, et. al., 2010; 

Zeleniakiene, 2006]. It was the objective of the study reported here to use new approaches to 

produce vinyl alcohol (VOH) group containing polymer/MWNT nanocomposites with high 

porosity and to study their properties and applicability.  

2. Preparation and properties of highly porous nanocomposites 

Using CNTs as a property enhancing nanofiller for a high performance, lightweight 

composite is one of the lynchpins of nanocomposite research. The exceptional and unique 

properties of CNTs offer a great advantage for the production of improved composites. 

However, use of CNT reinforcements in polymer composites has been a challenge because 

of the difficulties in optimizing the processing conditions to achieve good dispersion and 

load transfer. Thus initial published results showed only modest improvement in 

mechanical properties with MWNT nanofillers [Thostenson and Chou, 2002]. One of the 

www.intechopen.com



Preparation and Applicability of Vinyl Alcohol Group 
Containing Polymer/MWNT Nanocomposite Using a Simple Saponification Method 

 

113 

major problems in the production of nanocomposites involving the use of nanofiller 

particles is the aggregation of the nanoparticles that severely limits the filler loading level. 

To improve dispersion, several techniques have been attempted, including the use of 

surfactants, sonication, and other mixing methods. Recent work has demonstrated superior 

dispersion of MWNTs in polymers by functionalization of the nanotubes to compatibilize 

them with solvents and the matrix polymers [Chiu and Chang, 2007; Wu et. al., 2006; 

Balasubramanian and Burghard, 2005; Yoon et. al., 2004]. The improved dispersion of 

nanotubes with functional groups has been accompanied by increased mechanical 

properties of the nanocomposite. Among of them, electron-beam irradiations are potent to 

induce the uniform and consistent modification of the MWNTs because of the high amount 

of energy, they impart to the atoms via the primary knock-on atom mechanism. This study 

investigated the preparation, properties and applicability of various VOH group conataing  

nanocomposites with high porosity through simple saponification method using electron-

beam irradiated MWNT. 

2.1 Functionalization of MWNT by electron-beam irradiation  
CNTs are often formed in entangled ropes with 10–100 CNTs per bundle depending on the 

method of synthesis. They can be produced by a number of methods: direct-current arc 

discharge, laser ablation, thermal and plasma enhanced chemical vapour deposition (CVD) 

process [Lau and Hui, 2002]. The method of production affects the level of purity of the 

sample and whether SWNTs or MWNTs are formed. Impurities exist as catalysis particles, 

amorphous carbons and non-tubular fullerenes [Thostenson et. al., 2001]. Fig. 1 shows the 

SEM image and EDX analysis result of MWNT produced by a CVD process without any 

purification. As-received MWNT contain some impurities and entangle into a bulk piece. 

EDX results of the pristine MWNT show small peaks which are corresponding to Fe, Si and 

S. The Si peak has its origin in silicon substrate whereas the other peaks are due to the 

precursor gases present in the gas mixture and catalyst. The Pt peaks was due to the 

platinum sputtering process during SEM sample preparation. Average diameter and 

average length of MWNT were 15 nm and 20 μm, respectively.  

The MWNT were electron-beam irradiated in air at room temperature using an electron-

beam accelerator. Irradiation dose of 800, 1000, and 1200 kGy were used, respectively. Fig. 2. 

demonstrates a higher magnification SEM micrographs of MWNT before and after 

 

 

Fig. 1. SEM image and EDX analysis result of the pristine MWNT 
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Fig. 2. SEM micrographs of the surface morphology of pristin MWNT and MWNT1200 

treatment with the electron-beam irradiation. The pristine MWNT has relatively smooth 

surface without extra phase or stain attached on its sidewall. Although the electron-beam 

irradiation increased up to 1000 kGy, the surface appearance did not changed compare to 

the pristine MWNT. After the 1200 kGy EB irradiation, the smooth surface was disappeared, 

many wrinkled structure were formed, and the surface roughness increased. In general, the 

surface of the synthesized CNT is smooth and relatively defects free. However, stresses can 

induce Stone Wales transformations, resulting in the formation of heptagons and concave 

areas of deformation on the nanotubes [Thostenson et. al., 2001].  

 

 

Fig. 3. FTIR spectra of the electron-beam irradiated MWNT 

The pristine MWNT and electron-beam irradiated MWNT were further characterized by 
FTIR spectroscopy. The pristine MWNT exhibit the peaks of C-C bond stretching appeared 
in the range of 3000–2800 cm-1. FTIR spectra of MWNT after electron-beam irradiation more 
than 1000 kGy showed new peaks at 1782 cm-1 due to the C=O bond resulting from C=O 
stretch of the carboxyl and carbonyl groups (Fig. 3). Element analysis presented a decrease 
in the hydrogen/carbon ratio up to 1000 kGy. After the 1200 kGy irradiation, the hydrogen 
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/carbon ratio was significantly increased. This indicated that low irradiation dose clean the 
impurities of MWNT, but the increase of irradiation doses could affect surface roughness 
and chemical composition.  

2.2 Preparation of porous VOH group containing polymer/MWNT nanocomposites 
Highly porous VOH group containing polymer nanocomposite particles were created by 
simple saponification method. A VAc group containing polymer/MWNT/toluene 
suspension was saponification by dropwise addition to KOH in alcohol solution which 
saponifying the VAc groups in polymer selectively. The VAc group containing polymer 
used in this study was poly(ethylene-co-vinyl acetate) (EVA, VAc content 28 and 40 wt%) 
and poly(vinyl acetate) (PVAc). The heterogeneous suspension was stirred at room 
temperature for ambient time, and then the solution was filtrated, and washed with 
methanol. The approximate size of the prepared particles is 30-50 μm. The abbreviation of 
the sample name, EVA40/MWNT1200, for example, means that the content of VAc in the 
EVA was 40 wt % and MWNT was electron-beam irradiated 1200 kGy does. 
 

 

Fig. 4. SEM micrographs of the 3h-saponified PVAc/MWNT1200 (a: ethanol/KOH, c: 
methanol/KOH), EVA40/MWNT1200 (b: ethanol/KOH) and EVA28/MWNT1200 (d: 
ethanol/ KOH) coagulants 

After rinsing off the coagulant and drying, sponge-like structure of connected matrix 
polymer and MWNT were obtained. This causes separation of the heterogeneous polymer 
suspension into a solid nanocomposite and liquid solvent phase. The precipitated 
coagulants form a porous structure containing a network of uniform open pores. Production 
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parameters that affect the pore structure and properties significantly include the MWNT 
concentration, the VAc content in polymer, the precipitation media and the saonification 
time. At low polymer/MWNT suspension concentrations, the particles were less porous and 
the precipitated polymer phase had a granular structure consisting of aggregates of 
precipitated polymer micelles. While at high concentrations, void porosity was increased 
and the precipitated polymer phase became a spongy-like structure. It was also found that 
as the VAc content in polymer was decreased, the average pore size increased and number 
was decreased. In sharp contrast, the irradiation does of MWNT was not affected in pore 
size and structure. The pore size was obtained directly by image analysis from higher 
magnification SEM micrographs. Pore size control can be achieved with sub-nanometer 10 
to 200 nm range by selecting the matrix materials and the saponification conditions 
 

 

Fig. 5. SEM micrographs of the saponified PVAc/MWNT1200 in methanol/KOH along with 
that of its corresponding saponification time [(a) precipitated in hexane, (b) 1 h, (c) 3 h, and 
(d) 6 h] 

Fig. 5 represents the SEM image of PVAc/MWNT1200 coagulant surface prepared using 

methanol/KOH solution as the saponification time. The surface of the PVAc/MWNT1200 

coagulant shows a dense skin layer, which appears to be nonporous. The formation of the 

skin layer and lack of an interconnected pore structure is likely due to the rapid 

precipitation where the rate of inter-diffusion depends on the value of the solubility 

parameters of the solvent and non-solvent. As the saponification time increase, the PVAc/ 

MWNT1200 nanocomposite coagulant form a porous structure containing a network of 

open-cell pores at the nanometer length scale. 
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2.3 Mechanical properties of EVOH/MWNT nanocomposites 
Table 1 demonstrates the tensile properties of the electron-beam irradiated MWNT 

(MWNT1200) filled EVA nanocomposites before and after saponification in KOH/metanol 

solutuion. PVAc/MWNT1200/toluene and EVA/MWNT1200/toluene suspensions were 

prepared with MWNT1200 loadings of 10 wt%. The suspensions were solvent-casting onto a 

PTFE film-supporting surface and the prepared film was subsequently hot pressed to sheet 

of uniform thickness. Dumbbell specimens for tensile tests were prepared in accordance 

with IEC 60811-1-1 specification. Tensile properties of samples were determined with a 

universal test machine. The hot-pressed sheets of PVAc/MWNT-10% nanocomposite are 

very brittle and can not be perform the tensile test. 

 

Sample code 
Tensile properties 

Tensile strength (MPa) Elongation at break (%) 

EVA28 10.6  0.9 1472  106 

EVA28/MWNT1200-10% 8.9  0.8 162  20 
EVA28/MWNT1200-10%-6h 17.6  2.0 412  50 

EVA40 9.0  1.0 1625  156 

EVA40/MWNT1200-10% 7.2  0.9 522  59 

EVA40/MWNT1200-10%-6h 18.7  2.3 756  81 

Table 1. Tensile properties of the hot-pressed specimens 

As shown Table 1, addition of 10 wt% of MWNT1200 reduced the tensile strength of EVA28 

and EVA40 by 16 and 20 %, respectively. This means that MWNT1200 contents were at 

values of 10 wt%, the MWNT did not disperse uniformly and they formed agglomerations 

in the polymer matrix. In addition the elongation at break of both nanocomposites 

decreased with the presence of filler that indicates interference by the filler in the mobility or 

deformability of the matrix. It is noteworthy that tensile strength and elongation at break of 

nanocomposite samples prepared by simple saponification method were significantly 

increased than those of corresponding unsponified ones. After 6h saponification time, the 

tensile strength of EVA28/MWNT1200-10% and EVA40/MWNT1200-10% was increased by 

about 98 and 160 %, respectively. This is indicated that saponification process enhances the 

overall dispersion state of the MWNT nanofibers due to enhanced interactions between the 

filler and the polymer matrix. 

2.4 Resistivity of saponified VAc containing polymer/MWNT nanocomposites 

The surface electrical resistance of the hot-pressed films (80 mm length  10 mm width) was 

detected by a megohmmeter according to ASTM D 257. The charge time was 10 s, and the 

current stress of the measurements was 5000 V at 20  1 C. Volume resistivity (v) of 

prepared films was calculated by use of equation (1). 

 
L

v
AR

v
  (1)  

Where A, Rv and L represent the area of the effective electrode (cm2), measured resistance 

(), and distance between electrodes (cm), respectively.  
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Fig. 6 show a rapid decrease in v of PVAc/MWNT1200, EVA40/MWNT1200, 

EVA28/MWNT1200 nanocomposites with increasing MWNT content. This rapid decrease is 

characteristic of the loading level at which the MWNT particles begin to come into contact 

with one another to form a electroconductive network. As MWNT particles are loaded in a 

polymer matrix over a percolation threshold concentration, the nanocomposite becomes an 

electrical conductor at room temperature. The percolation threshold of the PVAc/ 

MWNT1200, EVA28/MWNT1200, and EVA40/MWNT1200 nanocomposites formed by 

solution mixing was approximately 2.5, 2.5 and 5 wt%, respectively due to the advantageous 

effect of composites with higher aspect ratios compared with spherical or elliptical fillers in 

forming conducting networks in the polymer matrix. 

 

 

Fig. 6. v change of the PVAc/MWNT1200, EVA40/MWNT1200 and EVA28/MWNT1200 
nanocomposites with increasing MWNT content 

The electron transport in CNT assemblies is different from that in individual nanotubes. It 

has been reported that SWNT fibers exhibit room temperature resistivity in the range of 1 

×10-4 to 7×10–4 -cm, which is nearly 100 times higher than that of single CNT. The 

resistivity of MWNT fibers are one or two orders of magnitude higher than that of SWNT 

fibers [Zhang et. al., 2004; Zhu et. al, 2006]. Such large differences between single nanotubes 

and fiber assemblies may arise from high impurity content such as amorphous carbon and 

catalytic particles in the fibers, which may profoundly affect electron transport by causing 

significant scattering, and contact resistances between nanotubes [Li, 2007]. Therefore, two 
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approaches can be used to improve the electrical conductivity of polymer/CNT 

nanocomposites: 1) reduce the impurity content of CNTs by post treatments [Li, 2007]; 2) 

minimize the contact distances between nanotubes by enhancing the dispersity of individual 

nanotubes.  

Fig. 7 shows the dependence of v change for PVAc/MWNT1200, EVA40/MWNT1200 and 

EVA28/MWNT1200 nanocomposite films with the saponification time. Among them, 

PVAc/MWNT1200 nanocomposite showed lowest v and it has also the lowest v after 

saponification process. It can be also founded that the v almost maintained with 

saponification time. This may be because of the easy dispersion of MWNT particles in the 

rubbery phase and hence the high VAc polymers disperse the fillers well. The EVA28 and 

EVA40 consists of more crystalline phase and hence the MWNT particles find it more 

difficult to disperse and hence form relatively more agglomerations, whereas in high VAc 

grades, the amount of free volume is more and hence the fillers can disperse relatively easily 

[George and Bhowmick, 2009]. In sharp contrast, the v of saponified EVA40/MWNT1200 

and EVA28/MWNT1200 nanocomposites decreased significantly with the saponification 

time. An increase of VOH units would raise the intermolecular interaction between EVOH 

molecules, and it enhanced crystallization of EVOH molecules. When the matrix polymer 

crystallinity increased, filler particles segregate to the non-crystalline interlamellar and 

interspherulitic regions and forms more inter-connective pathways, which results in 

lowering the resistivity [Lee et. al., 2011].  

 

 

Fig. 7. v change of PVAc/MWNT1200, EVA40/MWNT1200 and EVA28/MWNT1200 
nanocomposite powders with saponification time 

In fact, this can be confirmed from XRD spectra of EVA28 in Fig. 8. On curve, there is a 

strong diffraction peak at 2θ=20.8 and a weak diffraction peak at 2θ=5.8. These diffraction 

peaks attribute to the crystallization of the main chain. Both the relative intensity increment 

and the peak shift at higher 2θ with the saponification time is a strong indication of the 

increased crystallinity of the saponified samples relative to the pure EVA28. All the 

observations are in accordance with the tensile properties discussed above. 
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Fig. 8. XRD spectra of the saponified EVA28 along with that of its corresponding 
saponification time 

3 Applicability of VOH group containing polymer/MWNT nanocomposites 

3.1 Positive temperature coefficient (PTC) heating elements 
Electroconductive polymer nanocomposites are becoming increasingly useful because of their 
unique combination of metallic electroconductivity and polymer properties. Currently, there 
are several methods that can be used to impart electroconductivity to polymers: doping of 
intrinsically electroconductive polymers, incorporation of electroconductive additives into an 
insulating polymer matrix and coating of fibers with metals or electroconductive chemicals. 
Applicability of VOH group containing polymer/MWNT nanocomposites can be used in a 
variety of industrial applications such as heating elements, temperature sensors and current 
limiters [Kim and Park, 2008; Park et. al., 2004; Park et. al., 2005; Park, 2005; Park, 2006]. This is 
mainly due to their positive temperature coefficient (PTC) of resistivity. It has been well 
accepted that the strong PTC effect of them is caused by an increase in the average inter 
particle distance of filler, which is created by the large thermal expansion that occurs as a 
result of the melting of the polymer crystals [Park et. al., 2003].  
Fig. 9 indicates resistivity-temperature behavior of the saponified EVA28/MWNT-10wt% 
nanocomposites. All nanocomposites exhibited both negative temperature coefficient (NTC) 
and PTC effect. A NTC indicates that resistivity decreases with temperature; a PTC indicates 
that resistance increases with temperature. However, this NTC effect could be eliminated 
easily by chemical or electron-bam radiation crosslinking. As the saponification time 
increased, the PTC maximum peak temperature of nanocomposites is shifted at higher 
temperatures. A reproducible PTC composite should have high PTC effect to prevent the 
composite from overheating and relatively low room temperature resistivity to ensure 
sufficient thermal output. From Fig. 9, 3h- and 6h-saponified nanocomposites showed good 
PTC behavior with high melting temperature. They have great potential for use in industrial 
applications such like PTC heating elements and coating materials for surface film heater. 

www.intechopen.com



Preparation and Applicability of Vinyl Alcohol Group 
Containing Polymer/MWNT Nanocomposite Using a Simple Saponification Method 

 

121 

 

Fig. 9. PTC peak temperature change of the EVA28/MWNT-10wt% nanocomposites with 
saponification time 

3.2 Electromagnetic interference (EMI) shielding materials 
As electromagnetic radiation, particularly that at high frequencies tend to interfere with 

electronics, EMI shielding of both electronics and radiation source is needed and is 

increasingly required by governments around the world [Chung, 2001]. The radiation may 

be either electromagnetic in nature, such as X-rays and gamma rays, or charged particles, 

such as beta particles and electrons. The lifetime and efficiency of them can be increased by 

the effective shielding. Generally, highly electroconductive materials such like metals are 

used for shielding application. However, metals have their own shortcomings like heavy 

weight, susceptibility to corrosion, wear, and physical rigidity [Wu et al., 2006]. The 

polymer nanocomposites filled with carbon materials are attractive for EMI shielding 

materials which helps to reduce or eliminate the seams in the housing that is the shield. 

Many researches have been conducted to improve the EMI shielding of polymer materials 

by coating an electroconductive layer on the surface, incorporating electroconductive fillers, 

or utilizing electroconductive polymers. Among various electroconductive fillers that have 

been utilized, CNT is one of the most promising candidates, not only because of its good 

electrical conductivity but also because of its ability to improve mechanical properties. 

Recently, the mass production of MWNT causes price reduction. The MWNT is more 

affordable for EMI shielding material application in nanocomposites [Wu et. al., 2006]. 

3.3 Antibacterial agents 
In our previously study [Lee et. al., 2011], it is curious to observe that saponified EVA had 

some antimicrobial activity against Staphylococcus aureus (S. aureus) and Escherichia coli (E. 

coli). Antibacterial activity of EVA28 powders was gradually increased with saponification 

time. 6h-saponified EVA extirpated 45 and 57% of the viable cells of S. aureus and E. coil, 

respectively. As shown in Fig. 10, it possesses a porous structure that can adsorb various 

ions and organic molecules easily in its pores and on its surfaces. Bacterial growth or 
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movement may be restricted by porous media physical conditions. Bacteria are small living 

organism; their length change between 0.5-10 μm and their diameters are between 0.2-10 

μm. Porosity networks with pore throat sizes narrower than the bacterial cell diameter 

prevent bacterial penetration into these regions [Fredrickson et al., 1997]. Porous regions are 

diffusion-limited or that are experiencing biomass sloughing due to rapid flow-induced 

shear forces [Applegate and Bryers, 1991] may be less likely to harbour significant bacterial 

populations. Furthermore, CNTs have been recently demonstrated to possess antimicrobial 

properties, and their relevant activities were ascribed to the behaviour of ‘nanodart’ with the 

proposed physical damage mechanism [Kang et. al., 2008]. 

 

 

Fig. 10. SEM micrographs of the EVA28 (a) and 6h-saponified EVA28 (b) in ethanol/KOH 
solution 

3.4 Membrane for purification and separation 
The development of advanced membrane technologies with controlled and novel pore 

architectures is important for the achievement of more efficient and cost effective 

purification. Present polymeric membranes are well known to suffer from a trade off 

between selectivity and permeability, and in some cases are also susceptible to fouling or 

exhibit low chemical resistance [Sears, et. al., 2010]. Due to the simplicity of their 

preparation, Bucky-papers were one of the first macroscopic structures fabricated from 

CNTs [Baughman et. al., 1999; Kim et. al., 2006]. The Bucky-paper is used to describe a mat 

of randomly entangled CNTs prepared by filtration [Kim et. al., 2006; Endo et. al., 2003] or 

alternative papermaking processes. CNTs are known to have a strong tendency to aggregate 

due to van der Waals interactions, and it is these van der Waals interactions which also hold 

the CNTs together into a cohesive Bucky-paper. Longer, narrower and more pure CNTs 

typically lead to stronger Bucky-papers with higher tensile strengths. With increasing 

MWNT diameter, the attractive van der Waals forces between CNTs become less effective, 

leading to Bucky-papers with lower tensile strength and poor cohesiveness. This can be 

improved to some extent through functionalization of MWNTs or the addition of polymers 

[Xu et. al., 2008]. Recently, EVOH membranes have attracted plenty of research interest in 

fields of biomedical science and water treatment because of its good blood compatibility and 

hydrophilicity [Guerra et. al. 1995; Young et. al., 1997]. As noted in the previous section, 

highly porous EVOH/MWNT nanocomposites with higher tensile strength were easily 

prepared by simple saponification method. As such they are of interest for applications such 
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like direct contact membrane distillation, capacitive deionization, and filtration of particles 

including bacteria and viruses. 

3.5 Carriers of catalyst and functional materials   
The highly porous nature of materials enables their use as carriers [Benson, 2003]. High 
surface area and controlled pore size distribution available as the raw material to the shape 
or monolith forming process. Capillary forces are quite strong, and will tightly contain 
many substances for slow release. In some cases, an encapsulation step may be required to 
ensure long term retention of contained substances. In one experiment, an accelerator 
component was placed into highly porous spheres, retained, and premixed with an 
adhesive. The two parts were mixed without fear of reaction since capillary forces prevented 
viscous liquids from escaping. Later, the reaction was initiated when the beads were 
crushed or heated to the activation temperature [Benson, 2003]. In addition any catalytic 
material attached to highly porous nanocomposite surfaces would have more efficient 
interaction with reactants due to large cavities and interconnected pores. As a main 
constituent for carrier materials provide a controlled surface area and porosity for the final 
catalytic system. This unique structure permits reactants to flow into spheres, interact with 
catalysts, form products, and still allows room for products to flow out and away from 
newly arriving reactants. Such accessibility of the catalyst to reactants is important for rapid 
and efficient reactions. Carboxyl groups and other functional groups could be modified on 
the MWNT surface [Chiu and Chang, 2007]. 

3.6 Chromatography and bio-processing 
Large interconnected cavities contained within chemically stable EVOH containing 
polymer/MWNT nanocomposites are ideally suited for liquid chromatography 
applications, including bio-processing. Because cavities of them are relatively uniform and 
are individually connected through a network of smaller pores, sample molecules find clear 
ingress and egress through the matrix, and diffusion limitations characteristic of 
conventional porous polymers are absent [Benson, 2003]. Therefore, mass transfer 
characteristics are extremely attractive. The focus of bio-processing is using living cells to 
make desired products, which is commonly carried out in a bioreactor. Downstream 
processing from this reactor gives concentrated and purified products. Separation of 
proteins and other biopolymers on conventional porous polymers occurs only in the outside 
few angstroms of the spheres [Krijgsman, 1992]. In contrast, because of the interconnections, 
separation on porous MWNT nanocomposites occurs throughout the entire volume of 
particles. Furthermore, since there are no needs to be modified by coating the surface with a 
hydrophillic polymer to avoid low recovery, pressure drop through columns of these 
particles is extremely low. In addition, the synthetic polymer-based media is their resistance 
to extreme chemical conditions, such as pH. These properties, and the suitability of such 
structures for containment and separation of biopolymers, make them ideal candidates for 
bio-processing applications.  

3.7 Polymeric fillers 
Surface modification of filler is an important topic. Fillers are commonly incorporated into 

polymeric resin compositions in order to modify the properties of the resin. However, most 

inorganic fillers have a naturally hydrophilic surface which is therefore not easily wetted by 
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polymeric resin compositions which are generally hydrophobic. This problem is especially 

acute when the resin is in the form of a low-viscosity liquid because under these conditions 

it is difficult to dissipate sufficient energy in the composition by mechanical agitation to 

effect dispersion of the inorganic filler in the polymeric resin. A further disadvantage of 

conventional inorganic fillers is that they generally have associated with them a small, but 

significant, quantity of water. EVOH copolymers have been widely used as food packages, 

biomedical and pharmaceutical industries due to their excellent gas barrier properties, high 

resistance to oils, good mechanical strength and harmlessness to health [Okaya and Ikari, 

1992]. They also have significant potential for polymeric filler and inorganic filler surface 

modifier due to their combined effect of hydrophilicity, as a consequence of the -OH side 

groups. Since the materials prepared by this method for industrial applications such like 

polymeric filler in electro-conductive and electrostatic discharge composite systems, 

polymer compound systems, and aqueous coating systems.  

 

 

Fig. 11. SEM image of the EVOH/MWNT/ sodium silicate hybrid composites prepared 
from aqueous coating system (a) and EVOH coated nanofiller (b).  

4. Conclusion 

Current interest in nanocomposites has been generated and maintained because CNT-filled 
polymers exhibit unique combinations of properties not achievable with traditional 
composites. Some studies were carried out to investigate the properties and applicability of 
highly porous VOH group containing polymer/MWNT nanocomposites produced by 
simple saponification method. As has been shown in this study, the possible applications of 
highly porous MWNT nanocomposites range widely, from heating elements to polymeric 
filler. In addition, they can be easily processed by various techniques such as extruding, 
injection molding, laminating, film-casting, and printing. Since the nanocomposites 
prepared by this method have highly porous, good hydrophilicity, good mechanical 
strength and thermal properties, they can be used for various industrial applications.  
Furthermore, MWNTs were subjected to electron-beam irradiation at various doses to 
determine the incidence of surface modification and, resultantly, deformation or destruction 
to the otherwise pristine graphitic structure. FTIR spectra obtained from electron-beam 
irradiated MWNT samples provide insight into the level of surface modification. Functional 
groups such like carboxyl and carbonyl groups on MWNT surface can interact with -OH 
group in polymer chains by hydrogen bonding and result in a better dispersion of MWNT 
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in EVOH matrix. Such modified MWNT could be also functionalized to introduce covalent 
groups onto the nanotube surface, thus aiding in the uniform dispersion into polymer 
composite systems. Afterward we carry out extensive studies to investigate the properties 
and applicability for VOH group containing polymer coated and reacted nanotube prepared 
by simple saponification method. 
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