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1. Introduction 

Maintaining genetic fidelity is paramount for all living organisms. The process of replicating 

DNA is especially dangerous for cells. Not only must the genetic sequence be replicated 

precisely by the replicative polymerases, but stalled replication forks and single-stranded 

DNA present at the forks increase risks of chromosome breakage leading to rearrangements. 

Also, once the cell commits itself to the replication process it has to be fully completed 

before chromosomes can be disentangled and condensed prior to their proper segregation in 

the subsequent mitosis. Many processes have evolved that ensure the precision and stability 

of the replication process; helicases remove bound proteins in front of the fork, 

topoisomerases ensure that topological entanglements generated during replication are 

resolved; checkpoint activation in response to stalled replication forks controls an array of 

molecular responses, repair polymerases and proteins to be recruited to stalled replication 

forks to allow replication restart; moreover, origin firing is controlled such that firing of 

origins is delayed in response to the replication checkpoint and dormant origins can be 

activated if replication is not completed. It is at first hand therefore surprising that at specific 

loci in the genome, molecular mechanisms exist where deliberate pausing or termination of 

the replication fork occur. This wonder is further confounded by the fact that several studies 

have shown that these replication barriers cause genetic instability (see MacFarlane, Al-Zeer 

and Dalgaard, Chapter 16). What the evolutionary benefits of these replication barriers 

might be remains a major question. More and more evidence is accumulating that indicates 

many replication barriers have opposing effects on genome stability; on one hand they 

promote genetic stability though a controlled stalling of the replication fork at specific sites 

or situations, however, in doing so they potentially cause fork collapse and genetic 

instability. In many cases these barriers “coordinate” transcription and replication, 

preventing collisions between the two types of enzymatic complexes, suggesting that such 

collisions are more detrimental to the stability of the genome than the instability induced by 

stalling at a replication barrier (references are given in the main text). Thus, one might argue 

that most replication barriers evolved to promote genetic stability while allowing 

“controlled” genetic instability, although other functions of replication barriers are also 
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evident. Here, we review what different types of natural replication impediments are 

known, how they prevent replication fork progression, and what potential biological 

function they have. 

2. Epstein-Barr virus protein EBNA-1 

Epstein-Barr virus or human herpes virus 4 DNA is replicated once per cell-cycle in latently 
infected cells. Here the DNA binding EBNA-1 protein plays several important roles for viral 
replication. First, EBNA-1 binds to inverted repeats at the cis-acting OriP sequence, where it 
acts to recruit cellular ORC proteins and as a consequence, other replication factors required 
for replication. Binding to the OriP sequence occurs at a region with dyad symmetry 
containing four low-affinity binding sites for EBNA-1 (Ambinder, et al. 1990). However, 
EBNA-1 also interacts with another region within OriP called FR (family of repeats), which 
contains twenty 30-bp high-affinity sites for the EBNA-1 dimer (Rawlins, et al. 1985). When 
replication is initiated at OriP it proceeds in a bi-directional manner but the replication fork 
moving toward FR is stalled by the bound EBNA-1, thus converting the bi-directional 
replication process into an uni-directional replication one. Reducing the number of FR 
repeats from 20 to 15, 6, 2 or 0 showed that 6, 15 or 20 copies promoted barrier activity (Dhar 
& Schildkraut, 1991). The FR region with bound EBNA-1 acts both as a barrier for the 
cellular MCM replicative helicase during viral replication as well as the SV40 large T-
antigen for SV40 plasmids. The latter barrier activity has been observed both in vitro and in 
vivo (Dhar & Schildkraut, 1991, Ermakova, et al. 1996, Aiyar, et al. 2009). EBNA-1 also 
prevents strand unwinding by both the SV40 large T-antigen 3’ to 5’ helicase and the E. coli 
dnaB 5’ to 3’ helicase (Ermakova, et al. 1996). Interestingly, FR/EBNA-1 complexes 
containing 20 or 40 repeats also act as a barrier to RNA polymerase II transcription, and 
since a viral transcript (although catalysed by RNA polymerase III; Howe & Shu, 1989; 
Howe & Shu, 1993) is oriented toward FR, the FR/EBNA-1 barrier could have a role in 
preventing collisions between transcription and replication forks (Aiyar, et al. 2009). In 
addition to its role in replication, the FR/EBNA-1 element is also required for maintenance 
and partitioning of viral DNA. The element tethers the viral episome to a cellular 
chromosome, thereby allowing appropriate segregation into the daughter cells (Marechal, et 
al. 1999; Sears, et al. 2003; Sears, et al. 2004). Interestingly, the FR/EBNA-1 element also has 
a negative effect on plasmid maintenance; puromycin resistance encoding plasmids 
containing 20 or more copies of the element are not efficiently maintained in cell culture 
(Aiyar, et al. 2009). Thus, the FR/EBNA-1 replication barrier element might have both 
negative and positive effects on viral copy number. 

3. rDNA replication barriers 

Most organisms share the same basic arrangement of the rDNA, consisting of one or more 
arrays of a genetic unit, where each unit contains a RNA polymerase I transcribed pre-curser 
rRNA encoding the 25-28S large rRNA, the 16-18S small rRNA as well as the 5.8 S rRNAs. 
The latter is separated from the origin of replication by a non-transcribed spacer (NTS). This 
NTS contains one or more replication barriers that pause or stall replication forks, thus 
preventing them from entering the polymerase I transcribed unit. Such barriers have been 
described in many different organisms, including fission yeast (Schizosaccharomyces pombe), 
budding yeast (Saccharomyces cerevisiae), ciliated protozoa (Tetrahymena thermophila), Pea 
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(Pisum sativum), frog (Xenopus laevis), mouse (Mus musculus) and human (see below for 
references). Generally these barriers are thought to prevent collisions (and therefore genetic 
instability) between the polymerase I transcription bubbles and the replication forks moving 
in opposite directions, but data suggests that they have both a positive and a negative effect 
on genome stability (see below). 

3.1 Pea rDNA barriers 

2D-gel analysis of the rDNA of P. sativum detected several replication barriers in the NTS, 
located just downstream the RNA polymerase I transcript. The P. sativum replication barrier 
region maps to a 27 base pair direct repeat region with the consensus sequence 
TCCGCC(T/A)CTTGT-ATTCGTTGCGTTG(A/C)A that is either present in 9 or 3 copies in 
two different classes of arrays (Hernandez, et al. 1988; Hernandez, et al. 1993; Lopez-Estrano, 
et al. 1999). This repeated sequence motif shows some similarity with the sequence that 
mediates barrier activity in S. cerevisia (Hernandez, et al. 1993), and mobility shifts indicate that 
an unknown transacting factor(s) can bind to the repeats (Lopez-Estrano, et al. 1999). 

3.2 Ciliate rDNA barriers 

In T. thermophila the rDNA barriers are developmentally regulated. In the germ line 
micronucleus the 10.3 kb rDNA is present in a single copy, while in the differentiated macro 
nucleus the rDNA has been excised from the genome, arranged into an inverted repeat (the 
two polymerase I transcripts arranged in opposite directions), telomeres are added and the 
repeat is amplified 10000 fold (Reviewed in Tower, 2004). This amplification occurs within 
one cell cycle. Interestingly, here the 5’ NTS contains three replication barriers that pause the 
replication fork in a polar manner (MacAlpine, et al. 1997). These barriers are located 
between the site of replication initiation (that occurs at two sites flanking the centre of the 
inverted repeat) and the polymerase I transcript. Thus, here the barriers are upstream of the 
RNA polymerase I transcript. The consensus sequence of the three cis-acting sequences is 5’ 
A(A/T)TTTCANNNNNNNNNNNNNNNNNNA(A/G)TTTCATTCANNNNNNNNNTTT
TTTTT 3’. These replication pause sites are active both during vegetative growth and when 
amplification occurs. In addition to the three pause sites, an additional replication barrier is 
present which only acts during amplification and not during vegetative growth. This barrier 
is present in the middle of the palindrome and acts to stall the fork until a converging 
replication fork initiated at the other side of the palindrome arrives to promote termination 
(Zhang, et al. 1997). Interestingly, this central barrier element is required for both proper 
excision of the rDNA before amplification in the macronucleus, as well as for maintaining 
genetic stability at the unamplified rDNA gene in the micronucleus (Yakisich & Kapler, 
2006). In the absence of the barrier element breakage occurs at the loci leading to loss of the 
chromosome arm, which again has a dominant effect on the stability of the homologues 
chromosome present in the diploid nucleus.  

3.3 Frog rDNA barriers 

Similarly, developmentally regulated replication barriers have been described in X. laevis. 
Firstly, a barrier is present at the RNA polymerase I termination region. This barrier can be 
detected in cell culture and tissues where the rDNA is highly transcribed, but not in early 
embryos and in egg extracts where transcription is low or absent (Hyrien & Mechali, 1993; 
Wiesendanger, et al. 1994; Hyrien, et al. 1995). Secondly, 15 weaker pause sites distributed 
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over the rDNA unit appear during the midgastrula stage, for then to disappear again at the 
neurula stage (Maric, et al. 1999). The appearance of these pause sites was proposed to 
reflect chromatin remodelling associated with the developmental regulation of polymerase I 
transcription.  

3.4 Budding yeast rDNA barriers 

The replication barrier in the rDNA of S. cerevisiae was the first to be described (Brewer & 
Fangman, 1987; Linskens & Huberman, 1988). Like the other barriers it is located in one of 
two NTS regions downstream of both the coding regions of the polymerase I transcribed 35S 
rRNA and the RNA polymerase III transcribed 5S rRNA. However, unlike the other 
eukaryotic systems, the barrier activity is not mediated by the Reb1 factor involved in 
Polymerase I transcription termination (S. cerevisiae Reb1 is related to Mammalian TTF1 and 
S. pombe Reb1; see below) (Reeder, et al. 1999). Instead the barrier activity is mediated by an 
unrelated S. cerevisiae factor Fob1 that binds to the DNA at a region closer to the origin 
(Kobayashi & Horiuchi, 1996) and about 90% of replication forks are stalled at this barrier 
(Brewer et al. 1992). Barrier activity is independent of transcription (Brewer, et al. 1992) and 
Fob1 interacts with three sites, RFB1-3, where the latter two are the minor barrier sites 
(Brewer, et al. 1992; Gruber, et al. 2000; Ward, et al. 2000; Kobayashi, 2003). The cis-acting 
sequences show phylogenetic conservation between Saccharomyces species (Ganley, et al. 
2005). Fob1 possesses a Zn2+-finger domain and a domain with similarity to integrases 
(Dlakic, 2002); mutations in the former affect DNA binding activity, barrier activity and 
HOT1 (HOT1 is a recombination hot spot in the rDNA) activity, whilst a mutation of the 
putative catalytic residue D291A of the integrase domain has no effect (Kobayashi, 2003). 
Using Atomic Force Microscopy (AFM) it was shown that Fob1 interacts with the barrier 
sequence in a fashion where the DNA is wound around the protein (Kobayashi, 2003). 
Moreover, the same data suggest that Fob1 acts as a dimer interacting with two sequences at 
the same time. The position of the stalled replication fork has been precisely mapped 
(Gruber, et al. 2000); the 3’ end of the leading-strand and the 5’ end of the lagging-strand 
map three nucleotides apart, 41 and 38 nucleotides in front of the sequences required for 
pausing at RFB1, respectively. However, weaker signals due to fork stalling were also 
observed in a region between RFB1 and RFB2 (Figure 1).  
 

 

Fig. 1. Positions of the sites of replication stalling for the S. cerevisiae rDNA barrier. Positions 
of stalling of the leading-strand polymerase (red arrows) and 5’-ends of the last lagging-
strand Okazaki fragment (blue arrows) are shown relative to the binding sites of Fob1.   
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AFM analysis also shows that the RNA primer at the lagging-strand has been removed in 

the stalled replication complex. (Kobayashi, 2003). Stalling of the replication fork at the Fob1 

barrier depends on Tof1 (S. pombe Swi1/Human TIMELESS) and Csm3 (S. pombe Swi3/ 

Human TIPIN), but not Mrc1 (S. pombe Mrc1/ Human Claspin) (Mohanty, et al. 2006). When 

the replication fork is stalled at the Fob1 barrier located at an ectopic site (Calzada, et al. 

2005) the replisome (Mrc1, Tof1, MCM-Cdc45, GINS and DNA polymerases α and ε) is 

maintained intact, thus allowing the replication fork to restart. The stability of the stalled 

replication fork was also shown not to depend on replication checkpoint kinases Mec1 and 

Rad53 or the Sml1 factor (See Section 6.0), nor does the replication restart depend on the 

Rad52 recombinase. Stalling leads to the recruitment of the Rrm3 helicase, which was 

suggested to mediate restart. These data and suggestions were later verified by a study that 

showed that replication stalling was dependent on Tof1 and Csm3, but partly restored in 

Δtof1 Δrrm3 and Δcsm3 Δrrm3 mutants (Mohanty, et al. 2006). It was proposed that Tof1 and 

Csm3 mediate stalling by counteracting Rrm3, but since Rrm3 is required for efficient 

replication past many non-histone DNA binding proteins (See Section 10.0), the effect could 

be unspecific (Mohanty, et al. 2006). Similarly, the requirement for two other helicases, Sgs1 

and Srs2, was tested in the absence of Tof1 but neither affected barrier activity. Another 

study looked at Sgs1, Top3, Dnl4 and Rad52 with again no major effects on barrier activity, 

although in all the mutants there was an increase in the amount of single-stranded DNA at 

the fork measured using electron microscopy (Fritsch, et al. 2010). However, increased 

barrier activity was observed in a Dna2 mutant, a helicase implicated in Okazaki fragment 

maturation, suggesting that events at the lagging strand affect the stalled fork (Weitao, et al. 

2003a; Weitao, et al. 2003b). The biological function of the Fob1 barrier has been an area of 

intense research and resulted in some key findings. Firstly, Fob1 barrier activity promotes 

recombination between repeats in the rDNA array and has a role in repeat expansion 

through induction of recombination and unequal sister-chromatid exchange (Kobayashi & 

Horiuchi, 1996; Kobayashi, et al. 1998; Mayan-Santos, et al. 2008; Ganley, et al. 2009). Double 

stranded breaks have been detected at the barrier and related to replication fork pausing, 

potentially due to fork collapse (Weitao, et al. 2003a; Weitao, et al. 2003b; Fritsch, et al. 2010). 

Secondly, barrier activity acts to prevent collisions between the DNA replication fork and 

the polymerase I transcription forks, leading to fluctuations in copy numbers and formation 

of extra chromosomal rDNA circles (ERCs) (Takeuchi, et al. 2003). Thirdly, Fob1 barrier 

activity has also been implicated in ageing as its fork barrier activity leads to formation of 

ERCs that accumulate in the mother cell, as well as in an increased loss of heterozygosity of 

markers distal to the rDNA array on chromosome XII (Defossez, et al. 1999; Lindstrom, et al. 

2011). However, recent data suggest that age related replication stress underlies the ageing 

process, and not the formation of ERCs (Lindstrom, et al. 2011). Forthly, Fob1 also has a role 

in silencing of the rDNA through the recruitment of the regulator of nucleolar silencing and 

telophase exit (RENT) complex that includes Net1, Sir2, CDC14, Tof2, Lrs4 and Csm1 as well 

as Cohesin (Huang & Moazed, 2003), but this role is independent of the replication barrier 

activity of the protein (Bairwa, et al. 2010). The RENT complex inhibits polymerase II 

transcription and represses recombination (Kobayashi, et al. 2004; Kobayashi & Ganley, 

2005). Lastly, Fob1 also regulates the activity of Topoisomerase I, as Fob1 dependent but 

replication independent topoisomerase I catalysed nicks have been mapped within the 

replication barrier region (Burkhalter & Sogo, 2004; Di Felice, et al. 2005). 
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3.5 Mammalian rDNA barriers 

Replication barriers have also been identified in human and mouse rDNA arrays (Little, et 
al. 1993b; Langst, et al. 1998; Lopez-estrano, et al. 1998b). The barrier signals were detected 
by 2D-gel analysis of replication intermediates and map to the binding sites of the TTF-I 
transcription factor within the NTS region located downstream of the 38S rRNA polymerase 
I transcribed regions. The TTF-1 transcription factor belongs to the same family of proteins 
as S. pombe Rtf1 and Reb1 and S. cerevisiae Reb1 (see Figure 2). TTF-I mediates termination of 
polymerase I transcription, but also has additional roles in polymerase II termination as well 
as both polymerase I transcription activation and silencing (Langst, et al. 1998; Wang & 
Warner, 1998). TTF-I binds to ten 18 base-pair long or eleven 11 base-pair long Sal-boxes in 
mouse and human cells, respectively, which are located within the NTS region of the rDNA. 
TTF-I binding mediates polar polymerase I transcription termination (Grummt, et al. 1985a; 
Grummt, et al. 1985b; Lang, et al. 1994; Reeder & Lang, 1994). However, TTF-I Sal-box 
binding also promotes replication barrier activity. 2D-gel analysis of replication 
intermediates isolated from the human cell cultures suggests that the rDNA replication 
barriers are bi-polar, stalling forks moving in both directions (Little, et al. 1993a). A similar 
analysis of the mouse barriers showed that in this system the TTF-I dependent barriers are 
polar, mediating replication stalling at each of the four clusters of Sal-boxes of replication 
forks moving in the opposite direction to that of the flanking RNA polymerase I 
transcription (Lopez-estrano, et al. 1998a). Finally, an in vitro study suggests that only Sal-
box 2 acts as a strong replication barrier (Gerber, et al. 1997). Using the SV40 in vitro  
 

 

Fig. 2. Protein domains and DNA interaction sequences of the related TTF-I, Reb1 and Rtf1 
factors. Left, the positions of the  structural myb DNA-binding motifs identified by a hidden 
Markov model analysis are shown (Eydmann, et al. 2008); Domains with defined functions 
are indicated by square horizontal brackets. The position of the Rtf1-S154L mutation that 
changes the polarity of the RTS1 element is indicated in red. Right, DNA recognition 
sequences of Reb1 and Rtf1 and Human/Mouse TTF-I.  
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replication system, this study also defined the Sal-box 2 cis-acting sequence requirements for 
site-specific replication termination, and verified the TTF-I dependence for barrier activity. 
When bound to Sal-box 2, TTF-I counteracts the strand displacement activity of the SV40 
large-T antigen 3’-5’ helicase (Putter & Grummt, 2002b). Three cis-acting elements are 
required for full activity of Sal-box 2. Firstly, the in vitro barrier activity depends on the Sal-
box 2 sequences that mediate TTF-I binding (Grummt, et al. 1985a; Putter & Grummt, 2002b). 
Secondly, this binding site is flanked by a GC-rich box that consists of 20 cytosine residues 
followed by a GC-rich stretch at the origin-proximal side. Introduction of point mutations 
within this region, shortening the stretch of cytosines (dC stretch), or inverting this region 
relatively to the Sal-box, abolished replication barrier activity and contra-helicase activities 
(Gerber, et al. 1997; Putter & Grummt, 2002a). The 20 base pair long dC stretch potentially 
forms a secondary structure, a poly dG-dG-dC triple helix that can act as a barrier for the 
progressing helicase or polymerase (Putter & Grummt, 2002a). Thirdly, flanking the GC rich 
sequence is a stretch of 26 thymidines that acts as an enhancer of the barrier activity; 
deletion of the thymidines causes a ~30% reduction in activity (Putter & Grummt, 2002a). 
The position of the in vitro leading-strand replication termination site has been mapped to 28 
nucleotides from the Sal-box just in front of the long stretch of dC residues (Gerber, et al. 
1997).  
Several studies of the 883 amino acid long TTF-I factor have been performed. Two regions 
within the protein have been implicated in polymerization of the protein (Sander, et al. 
1996a; Gerber, et al. 1997), (Figure 2). A 323 N-terminal truncated version of TTF-I is fully 
active for both in vitro transcription and replication termination, while a 445 amino acids N-
terminal truncation leads to loss of both activities. Neither of these truncations affect the 
DNA binding of the protein, however, the region between residue 323 and 445 is required 
for polymeric TTF-1 to interact simultaneously with two DNA sites (Sander & Grummt, 
1997; Evers & Grummt, 1995; Sander, et al. 1996b; Gerber, et al. 1997). Similar to the other 
replication barriers described below, the data suggest that passive binding of TTF-1 is not 
sufficient to cause replication barrier activity, but that in addition specific interactions with 
replication fork proteins must occur. Furthermore, dimerization or polymerization of TTF-I 
might be important for replication termination as observed recently for S. pombe Reb1 (see 
3.6). Interestingly, TTF-I binds both in the promoter region and, as described above, in the 
transcription termination region of the polymerase I transcribed element, and a 3C analysis 
shows that these two regions interact by a mechanism that depends on TTF-I (Nemeth, et al. 
2008). This interaction has been proposed to be important for regulation of transcription 
initiation; TTF-1 recruits the chromatin remodelling complex NoRC to the promoter region 
through a direct interaction in the N-terminal part of TTF-I to silence rDNA transcription 
(Nemeth, et al. 2004). The N-terminal domain of TTF-I has a negative effect on DNA binding 
through an interaction with the DNA binding domain. This inhibition is relieved through 
the interaction in trans with NoRC (Nemeth, et al. 2004). The described interaction between 
TTF-I molecules bound at the promoter and termination regions, also opens up the 
possibility that there might be coordination between transcription initiation at the promoter 
and replication barrier activity at the transcription termination region. 
The proteins Ku70 and Ku86 have also been implicated in replication barrier activity at the 
mammalian rDNA (Wallisch, et al. 2002). Using affinity purification with a bait that 
consisted of the GC-rich region that flanks the Sal box 2, a protein fraction was isolated 
which stimulated in vitro replication termination. The stimulating activity could be depleted 
from the HeLa cell extracts using an oligonucleotide sequence containing the GC rich region 
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bound to DYNA beads, and subsequently the depleted extracts could be complemented by 
addition of recombinant Ku70/Ku86. Thus, Ku70/Ku86 binding promotes replication 
termination at the Sal-box 2, potentially involving the formation of secondary structures 
when the DNA is unwound by the helicase or replicated by the polymerase. 

3.6 Fission yeast rDNA barriers  

The rDNA barrier region of S. pombe is more complex than the other systems described, in 

that four different barrier elements have been defined; RBF1-4. These barrier elements are 

clustered downstream of the coding region of the 25S rRNA gene in the NTS. Again the 

elements act as polar barriers for replication forks initiated at the origin and moving toward 

the RNA polymerase I transcribed unit, thus preventing collisions between the two types of 

enzymatic complexes. Two different trans-acting factors have been identified that serve as 

barriers at these sites, Reb1 and Sap1.  

Sap1 is responsible for the barrier activity at the RFB1 site, which in one study was 

delineated to a 21 bp region (Krings & Bastia, 2005) and in another to a 30 bp region (Mejia-

Ramirez, et al. 2005). Sap1 is an essential DNA binding protein involved in chromatin 

formation, checkpoint activation and maintenance of genome stability (Arcangioli & Klar, 

1991; Ghazvini, et al. 1995; de Lahondes, et al. 2003; Noguchi & Noguchi, 2007). Loss of Sap1 

causes chromosomal segregation defects, while overexpression causes toxic DNA 

replication dependent chromosome fragmentation and abnormal mitosis. Due to the fact 

that Sap1 is essential, the evidence for Sap1 binding at the RFB1 site is indirect. Firstly, Sap1 

was purified from crude extracts as a factor that binds the cis-acting sequences at RFB1 

(Mejia-Ramirez, et al. 2005). Secondly, RFB1 point mutations that affect Sap1 binding in vitro 

also affect barrier activity in vivo (Krings & Bastia, 2005). Lastly, supershifts can be achieved 

with antibodies against tagged-Sap1 in EMSA experiments (Krings & Bastia, 2005). Binding 

of the dimeric Sap1 protein to the RFB1 site causes a slight bending of the DNA in vitro 

(Krings & Bastia, 2005). Replication fork stalling at RFB1 is dependent of the trans-acting 

factors Swi1 and Swi3 (Mejia-Ramirez, et al. 2005). Sap1 also binds the SAS1 sequence 

required for mating-type switching (Arcangioli & Klar, 1991), but does not cause barrier 

activity at this locus (Kaykov, et al. 2004; Krings & Bastia, 2005; see Section 8.1). A 

comparison of the interactions between Sap1 and these two cis-acting sequences showed 

that the Sap1 dimer bound differently to the two sites; the interaction of the Sap1 protein 

with RFB1 covered successive major grooves, had translational symmetry and occurred with 

higher affinity; while the interaction with SAS1 was a minor groove interaction, occurred 

with a relatively lower affinity and had rotational symmetry (Krings & Bastia, 2006).  

Reb1 was identified as mediating barrier activity at the two cis-acting sites RFB2 and RFB3 
(Sanchez-Gorostiaga, et al. 2004). Reb1 also mediates Polymerase I termination at the same 
sequences (Melekhovets, et al. 1997). Reb1 belongs to the same family of factors as 
Human/Mouse TTF1, S. cerevisiae Reb1 and S. pombe Rtf1, which are characterized by the 
presence of a repeated myb domain (Eydmann, et al. 2008) Figure 2). Reb1 acts as a dimer 
that dimerizes through a 146 amino acid long N-terminal domain (Biswas & Bastia, 2008). 
This dimerization allows the dimeric protein to interact with two recognition sites at the 
same time (Singh, et al. 2010). When the two sites are in cis the intervening DNA is looped 
out, however, the dimeric protein can also interact with two sites in trans. In the latter case, 
“chromosome kissing” was observed between a Reb1 dependent barrier on chromosome 2, 
Ter344314, and two sites on chromosome 1, Ter4257637 (Cyp8) and Ter4680236 (Srw1/Ste9) 
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(Singh, et al. 2010). Furthermore, using weakened binding sites at the Ter344314 and 
Ter4680236 sites it was shown that this “chromosome kissing” was important for barrier 
activity. Only the middle 156-418 AA Section of Reb1 is absolutely required for barrier 
activity. Barrier activity at RFB2 and RFB3 depends on both Swi1 and Swi3, however, a Swi1 
mutation (swi1-rtf) that abolishes barrier activity at the RTS1 element does not affect barrier 
activity at the RFB1-4 (see Section 8.0; Krings & Bastia, 2004). Interestingly, when the 156-418 
AA Reb1 segment was expressed in S. cerevisia, it was unable to act as a barrier even though 
it was binding to the RFB3 sequence (Biswas and Bastia, 2008). Finally, Reb1 has also been 
shown to be important for gene regulation; Reb1 binding at the promoter of Ste9 is required 
for transcriptional activation and G1 arrest (Rodriguez-Sanchez, et al. 2011). Reb1 also acts 
as a replication barrier at this site. 
The RFB4 barrier is the weakest of the four barriers, and has been proposed to be generated 
by collisions between the polymerase I transcription machinery and the DNA replication 
machinery (Krings & Bastia, 2004). The intensity of the RFB4 barrier signal increases in the 
absence of Swi1, Swi3 or Reb1, potentially because more replication forks are colliding with 
the transcription machinery. Also, RFB4 does not act as a replication barrier when the region 
is moved onto a plasmid.  

4. Centromeric and telomeric replication barriers  

Replication pause sites have been described at both the S. cerevisiae telomeres and 
centromeres. At the Y’ elements of the telomeres the replication fork pauses at internal  
C1-3A/TG1-3 telomeric sequences as well as at the terminal C1-3A/TG1-3 repeats. The internal 
C1-3A/TG1-3 sequences promote stalling independent of the orientation relative to of the 
progressing replication fork, and the replication pausing is intensified in absence of the 
Rrm3 helicase (Ivessa, et al. 2002; Makovets, et al. 2004, Makovets, 2009). In the rrm3 mutant 
strain, pausing can also be observed at an inactive ARS element in the subtelomeric region. 
Insertion of Tetrahymena telomeric repeats in the subtelomeric region of S. cerevisiae did not 
lead to pausing suggesting that it is the binding of a trans-acting factor that leads to the 
barrier activity and not the repeat sequences themselves (Makovets, et al. 2004). However, 
mutation of the sub-telomeric binding sites of Tbf1 and Reb1, deletion of the Rif1, Rif2, Sir2 
or Sir3 genes, or introduction of a C-terminal truncated version of Rap1, do not affect the 
replication pause (Makovets, et al. 2004; Makovets, 2009). Tbf1 and Reb1 act at chromatin 
barriers in the subtelomeric region, while Sir2 mediates silencing at the telomeres and Rap1 
binds directly the telomeric repeats when they are double stranded. The C-terminal 
truncated version of Rap1 is unable to interact with the Rif proteins and deficient in the 
recruitment of Sir proteins to the telomeres, although DNA binding to the telomeric repeats 
is unaffected. Thus, it is argued that it is most likely Rap1 binding per se, potentially 
through the interaction with other unknown protein(s), which mediate the pause activity. 
Since the strength of the replication pause is dependent on the length of the telomeres, a 
potential role of the pause is to regulate the time in which the telomeres can be elongated; 
short telomeres do not cause pausing and are therefore replicated faster, thus giving 
telomerase longer time for elongation. 
Several replication pause sites have also been observed at the sub-telomeric regions of S. 
pombe, however, it is not known what proteins mediate pausing at these sites (Miller, et al. 
2006). In addition, a protein that binds the telomeric repeats, named Taz1, has been 
attributed an interesting role; in the absence of Taz1 replication defects are observed at the 
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telomeric repeats, leading to loss of telomeric sequences and chromosome entanglement. In 
addition, in the absence of Taz1, replication pausing is observed at the junction between the 
telomeric repeats and the sub-telomeric region, as well as at repeats located internally 
within the chromosome. In the latter case, the requirement is independent of the orientation 
of the repetitive sequence (Miller, et al. 2006). One possibility is that Taz1 has a role in 
recruiting replicative helicases that act to aid fork progression through the repeats. With 
respect to this, it is interesting to note that the human homologues of Taz1, TRF1 and TRF2, 
have also been shown to affect telomeric replication, although in a different manner (Ohki & 
Ishikawa, 2004). Using the SV40 in vitro replication system, it was shown that addition of 
recombinant TRF1 and TRF2 lead to stalling of the replication fork at the telomeric region of 
the linear SV40 DNA. Similarly, overexpression of TRF1 in HeLa cells, leads to an increase 
of replication foci that overlap with telomeric signals, suggesting an increase of replication 
forks stalled at telomeres. 
Replication pausing is also observed at the S. cerevisiae centromeres CEN1, CEN3 and CEN4, 
and presumably replication pausing occurs at all centromeres (Greenfeder & Newlon, 1992). 
Interestingly, pausing at the centromeric DNA is bipolar and thus occurs independently of 
the direction by which the replication fork enters the centromeric DNA. A mutational 
analysis of the cis-acting sequences showed that the barrier activity is dependent on the 
ability of the centromeric DNA to form a nuclease resistant core protein structure, 
suggesting that it is the interaction with centromeric proteins that causes the pause to 
replication fork progression (Greenfeder & Newlon, 1992). It is not known whether 
replication pausing is important for centromere function. Interestingly, recent papers 
describing the genome-wide localization of phosphorylated histone H2A show 
accumulation at the centromeric regions of both S. cerevisiae and S. pombe, thus, potentially 
replication stalling occurs at centromeres in both yeasts (see Section 11.0).  

5. Replication barriers at tRNA genes, retrotransposons and LTRs 

Early work identified replication pause sites at Ty1-LTRs and tRNA genes in S. cerevisiae 
(Greenfeder & Newlon, 1992, Deshpande & Newlon, 1996). These tRNA gene replication 
barrier activities were shown to be polar only stalling replication forks moving in one 
direction, that opposite to the direction of Polymerase III transcription. Cis- and trans-acting 
mutations that reduce or abolish the efficiency of transcription initiation correspondingly 
reduced or abolished replication barrier activity. Indeed, a temperature sensitive mutation 
in the large subunit of RNA polIII, that affects transcription initiation but not the formation 
of the initiation complex consisting of TFIIIC and TFIIIB at the tRNA gene also abolished 
barrier activity. Therefore, the replication barrier activity most likely results from a direct 
interaction between the transcription machinery and the progressing replication fork 
complex, although a build up of supercoiling between the approaching transcription and 
replication forks was also proposed as a potential mechanism for fork pausing (Deshpande 
& Newlon, 1996). Importantly, a later study showed that barrier activity is abolished in a 

Δtof1 mutant (S. pombe Swi1/Human TIMELESS), but is restored in the Δtof1 Δrrm3 double 
mutant (Mohanty, et al. 2006). In the same study, increased stalling was observed at the 
tRNA gene in the absence of the Rrm3 helicase. 
S. pombe tRNAGLU and sup3-e tRNA genes have also been shown to pause replication forks. 
However, in this system the tRNAs act as bi-polar barriers stalling replication forks moving 
in both orientations. Furthermore, the tRNA gene barrier activity is independent of Swi1 
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function (McFarlane & Whitehall, 2009; Pryce, et al. 2009). Similarly, polar replication 
pausing has been observed at S. pombe retrotransposons Tf2 LTRs (Zaratiegui, et al. 2011). 
Interestingly, replication pausing at these elements is abolished by the sap1-c mutation. The 
sap1-c allele was isolated as a spontaneous mutation that restored growth and improves 
viability to a double mutant strain of the two CENP-B homologues Abp1 and Cbh1. The 

Δabp1 Δcbh1 double mutant has poor viability due to increased levels of unreplicated regions 
and/or recombination structures, and the sap1-c allele was isolated as a spontaneous 
mutation that restored growth and viability. The sap1-c mutation reduces the Sap1 proteins 
ability to bind DNA. Thus, Abp1 and Cbh1 have roles preventing genetic instability and 

replication defects induced by Sap1 barrier activity. Δabp1 and Δcbh1 single mutants slightly 

increase the intensity of the Sap1 dependent barrier signal, and in the Δabp1 Δcbh1 double 
mutant recombination intermediates can also be observed by 2D-gel analysis of replication 
intermediates (Zaratiegui, et al. 2011). Abp1 also localizes to tRNA genes suggesting that it 
might have a role in maintaining genome stability at these replication barriers as well. Abp1 
interacts with Mcm10 that has been shown to have primase activity (Locovei, et al. 2006), 
thus Abp1 might promote replication restart after pausing through a priming event. 

6. Replication slow zones 

Replication slow zones have been described in S. cerevisiae and are characterized by 
increased amounts of replication intermediates as measured by 2D-gel analysis (Cha & 
Kleckner, 2002). These zones are regularly spaced throughout the genome between active 
origins, except at the centromere. The replication slow zones were identified as regions of 
genetic instability in the mec1 mutant background. Mec1 is the homologue of Human ATR 
and S. pombe Rad3, and has multiple roles in DNA replication, replication checkpoint 
activation, DNA damage repair and recombination. Interestingly, the genetic instability is 

suppressed by a Δsml1 mutation, suggesting that the instability is due to low levels of 
dNTPs. Sml1 is an inhibitor of ribonucleotide reductase, and the lack of Sml1 leads to an 

increase in dNTP levels. Similarly, the Δrrm3 mutation partly suppresses the genetic 
instability observed at replication slow zones, which is correlated with a decrease in the 
Sml1 protein level (Hashash, et al. 2011). Thus, the data suggest that low levels of dNTPs 
cause replication forks to slow down even in an unperturbed S-phase, and that Mec1 is 
important for maintaining the stability of these slow moving forks, potentially via the 
function of Mec1 in regulating the nucleotide pools through inhibition of Sml1 and in intra-S 
and G2-M checkpoint activation. Whether replication slow zones are important for genome 
stability in higher organism has yet to be established. 

7. Replication barriers mediated by DNA structures or repetitive sequences  

Inverted repeats and micro repeats, through formation of triplexes and G-quartets have all 
been shown to inhibit DNA polymerase progression in vitro (for a review see Mirkin & 
Mirkin, 2007). Similarly, there is growing in vivo evidence that structures and repetitive 
sequences in the DNA are difficult templates, which promote replication fork stalling and as 
a consequence genetic instability. Since formation of structures distinct to the double helix 
are not energetically favoured, especially in front of the replication fork where there is 
supercoiling, it is most likely that the structures are formed in the lagging-strand template 
(Mirkin & Mirkin, 2007). Sequences that have been shown to mediate fork stalling include 
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inverted repeats as well as (CAG)n/(CTG)n, (CGG)n/(CCG)n, and (GAA)n/(TTC)n repeat 
sequences. In the case of the inverted repeats, a very elegant recent study showed that while 
two Alu sequences oriented as direct repeats did not affect replication fork progression, the 
same sequences oriented as inverted repeats caused fork stalling in E. coli, S. cerevisiae and a 
mammalian cell line (Voineagu, et al. 2008). In E. coli and the mammalian cell lines the 
ability of the inverted repeats to mediate stalling was dependent on the homology between 
the inverted sequences, and it gradually decreased with decreasing homology, thus 
supporting the idea that structures formed at the sequences were responsible for the pause. 
Furthermore, by varying the distance between the inverted sequences the authors were able 
to show they were most likely due to formation of hairpins in the lagging-strand template 
and not by cruciforms formed in front of the replication fork. The foundation of this 
conclusion was the fact that similar barrier activity was observed even in the presence of a 
12 bp spacer, which would either reduce or abolish the ability of the repeated sequence to 
form a cruciform structure. Interestingly, S. cerevisiae Tof1 and Mrc1 (homologues of S. 
pombe Swi1 and Mrc1 and Human Timeless and Claspin) are required for efficient passage 
through the repeats and mutation of these factors leads to an increase in the intensity of the 
replication pause signal, an effect which is opposite to that observed at protein-mediated 
barriers. The repetitive sequences d(CGG)n, d(CCG)n d(CTG) and d(CAG) are also thought 
to form hairpin structures with both Watson-Crick and nonWatson-Crick base pairs, and 
d(CGG) sequences can form quartets (Chen, et al. 1995, Gacy, et al. 1995, Zheng, et al. 1996, 
Mariappan, et al. 1998). Both (CAG)n/(CTG)n and (CGG)n/(CCG)n repeats have been 
shown to stall replication forks in S. cerevisiae and mammalian cells, while (GAA)n/(TTC)n 
have been shown to stall forks in S. cerevisiae (Pelletier, et al. 2003; Krasilnikova & Mirkin; 
2004a, Krasilnikova & Mirkin, 2004b; Kim, et al. 2008). The barrier activity was length 
dependent, although there were differences between systems; 10 (CGG)/(CCG) repeats 
were sufficient to stall replication forks in S. cerevisiae but 40 were required in mammalian 
cells (Voineagu, et al. 2009). Similarly, 60 (GAA)/(TTC) repeats do not cause any barrier 
activity, while increased barrier activity can be observed with increasing number of repeats 
(120, 230 and 340 units). There are also variations in whether the orientation of the repetitive 
sequences are important for barrier activity; in S. cerevisiae (GAA)n/(TTC)n barrier activity 
is orientation-dependent, whilst (CGG)n/(CCG)n repeats pause the replication fork in both 
orientations (Pelletier, et al. 2003; Kim, et al. 2008): In mammalian cells (CGG)n/(CCG)n 
repeats act as a barrier in both orientations (Voineagu, et al. 2009). Again, both S. cerevisiae 
factors Tof1 and Mrc1 were required for efficient replication through the repeat sequences as 
observed for an inverted repeat. Interestingly, a mutant Mrc1 protein (Mrc1AQ) that can not 
be phosphorylated by the checkpoint kinases did not affect the barrier activity, thus the 
authors concluded that it is not the checkpoint function of Mrc1, but this factor’s role in 
stabilizing stalled replication forks that is required (Voineagu, et al. 2009). Instability of 
stalled replication forks at repeat sequences is thought to underlie a range of Human 
diseases including fragile X-syndrome, Fraxe, Huntinton’s disease and myotonic dystrophy 
(reviewed in Pearson, et al. 2005). 

8. Cellular differentiation involving replication barriers: Mating-type switching 
in fission yeast  

In the fission yeast S. pombe, a program of mating-type switching is mediated by a 
replication-coupled recombination event. Three different replication barriers are involved in 
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setting up this cellular program of differentiation, where the expressed mating-type specific 
cassette at the mat1 locus is replaced with a gene cassette expressing the information of the 

opposite mating-type. The information is copied from one of the two transcriptionally 
silenced centromere-distally located donor loci, mat2P and mat3M, into to the expressed 

mat1 locus. In order for this program of cellular differentiation to occur, the mat1 locus has to 
be replicated in a centromere-distal direction. The unidirectional replication of the mat1 

locus is maintained by the RTS1 element, which is located at the centromere-proximal side 
of mat1 and which acts as a polar replication terminator. Replication forks that move in the 

centromere-distal direction are terminated at the RTS1 element, while forks moving in the 
centromere-proximal direction are allowed to pass through unhindered (Dalgaard & Klar, 

2001). At the sequence level the RTS1 element consists of two cis-acting regions that 
cooperate for function (Codlin & Dalgaard, 2003); a 446 base pair region named region B 

that contains four repeated ~55 bp long motifs as well as a 64 bp enhancer region called 
region A of similar length. Each of the repeated motifs of region B contributes to the overall 

barrier activity. A linker substitution analysis of region-B-motif-4 established that only a 20 
bp region within the 55 bp long repeat is required for activity. This 20 base pair region 

shows similarity to the S. pombe Reb1 recognition site (Figure 2). Region A on the other hand 
is characterized by an uneven distribution of purines and pyrimidines on the two strands. In 

the absence of region A, the presence of each of the repeated motifs of region B has an 
additive effect on overall barrier activity. In the presence of region A, the region B motifs 

cooperate for function leading to a four-fold increase in overall barrier activity. Individually, 
region A does not possess any barrier activity. A recent study showed that the factor Sap1 

binds to the enhancer region A (Zaratiegui, et al. 2011), however, it is not known whether 
Sap1 binding contributes to enhancer activity. Several factors have been identified that are 

required for efficient replication termination at the RTS1 element. Rtf1 is a member of the 
family of factors that include S. cerevisiae Reb1, S. pombe Reb1 and human/mouse TTF-I 

(Eydmann, et al. 2008, see Sections 3.4 & 3.5; Figure 2). Deletion of the rtf1 gene abolishes 
RTS1 barrier activity. This protein family is characterized by the presence of two myb-

domains that respectively contain three and two myb DNA interacting motifs. Each of the 
two Rtf1-myb domains have been expressed and purified separately and have been shown 

to have DNA binding activity; Rtf1-domain I binds RTS1 DNA in vitro, interacting both with 
the repeated motifs of region B and the enhancer region A (Eydmann, et al. 2008). The Kd 

for the interaction with region A is 3467 nM, while the interaction with the repeated motif is 
somewhat stronger with a Kd for the interaction at 549 nM. A ten base pair substitution that 

abolishes barrier activity of the region B motif 4 in vivo strongly reduces binding of the Rtf1-

domain I in vitro. Rtf1-domain II on the other hand only interacts weakly with the region B 
motif 4. A 10 bp substitution of the region flanking the binding site of domain I, that 

abolishes barrier activity of motif 4 in vivo, also abolishes binding of the Rtf1-domain II in 

vitro. Amino acid substitutions have been identified in both Rtf1-domain I and II that abolish 

barrier function, establishing genetically that they are of functional importance (Eydmann, 
et al. 2008). In addition, a point mutation has been identified in Rtf1-domain I (S154L) that 

changes the polarity of the RTS1 barrier, such that instead of terminating replication forks 
moving in the centromere-distal direction, it acts as a pause site for replication forks moving 

in the centromere-proximal direction. The Rtf1-domain I-S154L mutation slightly enhances 
the domain affinity for region A and motif 4, such that the Kd is now 343 nM for region A 

and 265 nM for the motif 4. This observation suggests that the Rtf1-S154L protein is binding 
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the RTS1 element, but that it is unable to stall the replication fork, thus a protein-protein 
interaction(s) between Rtf1 and the progressing replication fork may be important for 

barrier activity. In addition, a dominant Rtf1-mutation has been identified that abolishes 
termination of replication. This non-sense mutation truncates the Rtf1 protein such that 120 

amino acids of the C-terminus are missing. Two-hybrid analysis of this 120 AA C-terminal 
Rtf1 tail shows that it can interact with itself. This discovery suggests that Rtf1 self-

interactions are required for barrier activity and that the tail-less Rtf1 allele interferes with 
the action of the wild-type protein at RTS1 (Eydmann, et al. 2008). 

In addition to DNA binding proteins other factors have been shown to be required for RTS1 

function (Inagawa, et al. 2009). Rtf2 is required for efficient termination of DNA replication 

at the RTS1 element. An epistasis analysis of the enhancer region A deletion and the Δrft2 

mutation suggest that Rtf2 acts through the region A deletion. In the absence of Rtf2 

replication forks pause in an Rtf1-dependent manner, but are restarted again. This 

replication restart is dependent on the Srs2 helicase, but not the Rqh1 helicase. Potentially, 

Srs2 acts by removing Rtf1 from the DNA in front of the replication fork, in a manner 

similar to its role in preventing recombination by removing Rhp51/Rad51 from single-

stranded DNA (Krejci, et al. 2003; Veaute, et al. 2003). Rtf2 is the defining member of a 

family of proteins that are conserved from S. pombe to humans, which are characterized by 

the presence of a novel type of C2HC2 ring finger motif that potentially only binds one Zn2+ 

atom. A similar Ring finger motif, named the SP motif, with only one Zn2+-atom binding 

site, is found in many E3 SUMO ligases including S. cerevisiae Siz1, Siz2; S. pombe Pli1, Nse2; 

human PIAS1, PIASxβ, PIAS3, PIASy, Mms21 (Watts, et al. 2007; Yunus & Lima, 2009) and 

an epistasis analysis suggests that Rtf2 and SUMO (pmt3) might act together in the same 

pathway (Inagawa, et al. 2009). However, Rtf2 also seems to have a role that is independent 

of SUMO, as slow moving replication forks are present at the RTS1 element in the Rtf2 

single mutant that are absent in the SUMO single mutant. In addition, Rtf2 interacts with 

proliferating cell nuclear antigen (PCNA) and might be travelling with the replication fork. 

Sumorylation and ubiquitination of PCNA at residues K127 and K164 has in S. cerevisiae 

been shown to affect molecular events at stalled forks (Stelter & Ulrich, 2003). Of these 

residues only K164 is conserved in S. pombe PCNA (gene pcn1). Interestingly, when lysine 

K164 is mutated to an alanine, it has no effect on barrier activity measured by genetic assays, 

which utilize efficiency of sporulation as the readout (Figure 3B). Thus most likely, Rtf2 

targets either other residues of PCNA or other replication proteins for SUMOylation. 

Finally, both Swi1 and Swi3 are required for barrier activity at the RTS1 element (Dalgaard 

& Klar, 2000). Swi1 and Swi3 travel with the replication fork as part of the Replication 

Progression Complex (RPC) and genetic evidence suggests that Swi1 might interact directly 

with Rtf1 to mediate replication barrier activity; a point mutation in Swi1, swi1-rtf3 G2785A, 

has been identified that abolishes termination of RTS1 but does not affect other replication 

barriers such as the rDNA barrier and the mat1 pause site MPS1 (Dalgaard & Klar, 2000; 

Krings & Bastia, 2004). Recent work has demonstrated that in vitro the hetromeric complex 

of Swi1 and Swi3 can interact with double-stranded DNA (Tanaka, et al. 2010). In addition, a 

super-shift can be achieved through an interaction with purified Mrc1, a replication 

checkpoint protein that is also traveling with the RPC. Furthermore, data suggested that the 

swi1-rtf3 G2785A mutation affects the super-shift caused by Mrc1 binding, thus providing a 

possible mechanism for the loss of barrier activity at RTS1 (Tanaka, et al. 2010). However,  
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Fig. 3. A. Comparison of the effect on barrier activity of the Δmrc1 mutation and the swi1-rtf 
mutation. The upper two panels show replication intermediates that have been digested 
with SacI and PstI and separated on a 2D-gel as described earlier. T is a termination signal, D 
the descending arc and P the pause signal. The analysed RTS1 element is present on a 
plasmid (pBZ142) (Method is described in Codlin  &  Dalgaard, 2003). Below, as 
comparison, the effect of the swi1-rtf mutation on the RTS1 element at it wild-type genomic 
position is shown (reproduced from (Dalgaard & Klar, 2000).  B.  Sporulation assays used 
for identifying effects on replication pausing at the MPS1 element  (left two panels) and 
replication termination at the RTS1 element (right two panels). In the first case a reduction 
of replication pausing will lead to reduced sporulation, while in the second case reduced 
termination will lead to increased sporulation (For a description of the assay see Codlin & 
Dalgaard, 2003) . 
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our analysis of a Δmrc1 strain shows that this mutation does not affect the overall RTS1 
barrier activity, although the region of stalling does seem to be slightly expanded and the 
intensity of the descending arc is slightly more intense suggesting an increase of replication 
restart (Figure 3A). Thus, the swi1-rtf3 G2785A mutation must affect other protein-protein 
interactions required for barrier activity at RTS1, the most likely candidate for the 
interacting partner being Rtf1. A model for the possible mechanism of replication 
termination at RTS1 is given in Figure 4.  
 

 

Fig. 4. Model for the molecular mechanism of replication termination at the RTS1 element. 
Rtf1 molecules interact with the repeated motifs present in the RTS1 element as well as the 
enhancer region A. Potentially, C-terminal interactions of Rtf1 are important for stabilizing 
the interactions and can provide additional constraints when the DNA template is unwound 
by the approaching helicase. The function of the interaction of Sap1 with the enhancer 
region (region A) is unknown. When the replication complex approaches the RTS1 element, 
protein-protein interactions stall the progression. These protein-protein interactions are 
most likely between Rtf1-domain I and Swi1. The interactions potentially lead to inhibition 
of DNA unwinding by the MCM2-7 replicative helicase. The stalled replication fork is 
stabilized by the action of Rtf2, potentially by SUMOylation of other replication factors 
(Inagawa, et al. 2009) .  

8.1 Molecular differentiation of sister chromatids through replication pausing 

Another replication barrier required for S. pombe mating-type switching is the MPS1 site 
required for imprinting at the mat1 locus (Dalgaard & Klar, 1999; Dalgaard & Klar, 2000; 
Vengrova & Dalgaard, 2004). mat1 imprinting is required for mating-type switching. At 
MPS1 the replication forks are paused but then all re-started again. All cis- and trans-acting 
mutations that abolish replication pausing at MPS1 also abolish imprinting, suggesting a 
mechanistic role between imprinting and replication pausing. Also, inversion of the mat1 
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locus relative to the RTS1 element so that it is replicated in the opposite orientation, 
abolishes both pausing and imprinting (Dalgaard & Klar, 1999). The cis-acting sequences 
that are required for pausing at the MPS1 are named the abc region (Sayrac, et al. 2011). 
Replication pausing can be observed both in P and M cells and interestingly the required 
sequences are located within the two Plus (P) and Minus (M) DNA cassettes that are 
swapped during the switching process (Dalgaard & Klar, 2000; Vengrova & Dalgaard, 2004). 
Thus, different cis-acting sequences mediate barrier activity in the two cell-types. Generally 
there is no sequence similarity between the P and M cassettes, however, within the abc 
region there is some sequence similarity (Sayrac, et al. 2011). The part of the abc region that 
is required for pausing is about 60 bp long and is located approximately 30 nucleotides from 
where the imprint is introduced. Both the P- and M-abc regions act as pause sites for the 
replication fork when they are located on a plasmid. Furthermore, competition experiments 
suggest that a trans-acting factor is binding to the abc region to mediate pausing; 
introduction of two multi-copy plasmids each containing 10 copies of the M- or P-abc 
regions cause a 30-40% reduction in sporulation (the sporulation efficiency is dependent on 
the efficiency of mating-type switching and mating). Importantly, the data does suggest that 
the factor(s) binding to the abc region is present in the cells in a significant number of 
molecules. Interestingly, the abc region does not mediate replication pausing at the 
transcriptionally silenced donor loci, even though mat2P is replicated in the correct 
orientation for pausing. This observation is important as it establishes a mechanism by 
which replication barriers can be regulated in other systems through the regulation of 
heterochromatin formation.  
As mentioned above, replication pausing at MPS1 is required for introduction of an imprint 
that marks switchable cells of S. pombe. This imprint has been shown to consist of two 
ribonucleotides incorporated into the DNA (Vengrova & Dalgaard, 2004; Vengrova & 
Dalgaard, 2005; Vengrova & Dalgaard, 2006). Several cis-acting regions have been identified 
that are required for the introduction of the imprint. First, there is a small cis-acting 
sequence located distal to mat1 that is named SAS1 (Arcangioli & Klar, 1991). SAS1 mediates 
binding of the trans-acting factor Sap1 that is required for barrier activity at the rDNA and 
LTRs (see Sections 3.6 & 5.0). However, the deletion of a 264 bp region (Msmt0) that includes 
SAS1 does not affect replication pausing at MPS1, suggesting that Sap1 has another role 
during imprinting (Dalgaard & Klar, 2000). A study of the interaction between Sap1 and its 
binding sites SAS1 and in the rDNA suggests that the protein might be interacting 
differently with the DNA at the two sites and that this might cause the difference in whether 
the protein mediates barrier activity (see Section 3.6). Another cis-acting sequence that is 
required for the introduction of the imprint is a 204 bp spacer region that is located 
centromere-proximal to the abc region and the site of imprinting (Sayrac, et al. 2011). 
Deletion of this region leads to abolishment of imprinting but only a small decrease in the 
intensity of the MPS1 signal. Replacing the region with a randomized sequence only has a 
small effect on both imprinting and pausing. Similarly, gradually reducing the length of the 
spacer region gradually reduces imprinting. High-resolution Southern blot analysis of 
replication intermediates from the strain carrying the spacer deletion mapped the position 
both of the 3’ end of the leading-strand and the 5’ end of the lagging-strand to the 
imprinting site, suggesting that the imprint consists of ribonucleotides that originate from 
the priming of an Okazaki fragment. Furthermore, the high-resolution Southern blot 
analysis also detected a centromere-proximal lagging-strand priming site about 350 
nucleotides from the site of the imprint in the wild-type strain, which also previously has 
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been detected by RIP mapping (Vengrova  &  Dalgaard, 2004; Sayrac, et al. 2011). This 
priming site is absent in the spacer deletion strain (instead a diffuse set of priming sites are 
observed closer to the imprint), but restored when the spacer is replaced by a random 
sequence (Sayrac, et al. 2011). The analysis also showed that while the sequences within the 
abc region are required, there is no sequence requirement for the region where the imprint is 
introduced. The data suggest that the imprint is formed in response to a site-specific 
priming event induced by replication pausing, and that the position of subsequent priming 
sites for subsequent replication fork restart is important for the formation of the imprint. 
Potentially, topological restraints could prevent access of factors if the priming site chosen 
after the release of the fork is too close to the imprinting site. This is the first example of a 
cis-acting region affecting the position of priming sites and suggests that chromatin could 
affect primer localization during lagging-strand replication. Importantly, the data provide a 
mechanism by which replication barriers can act to differentiate sister-chromatids for 
cellular differentiation. 
The mat1 imprint/ribonucleotides are maintained in the DNA for one cell-cycle, potentially 
through the binding of a trans-acting factor to flanking cis-acting sequences and act 
themselves as a replication barrier in the S-phase of the next cell-cycle (the 3’-end of the 
leading-strand was mapped to the nucleotide preceeding the ribonucleotides), thus leading 
to induction of the replication-coupled recombination event that drives mating-type 
switching (Vengrova & Dalgaard, 2004). Ribonucleotides have been shown to frequently be 
incorporated during DNA replication (Nick McElhinny, et al. 2010a; Nick McElhinny, et al. 
2010b) and to stall DNA polymerases when present in the replication template in vitro 
(Vengrova & Dalgaard, 2004). Interestingly, only a single ribonucleotide present in a DNA 

template has been show to act as a barrier for DNA polymerase ε (Nick McElhinny, et al. 

2010). However, RNA can template DNA repair in vivo and both S. cerevisiae polymerases α 

and δ can use templates containing four ribonucleotides in a row, although with decreased 
efficiency (Storici, et al. 2007).   

9. Interference between RNA polymerase II transcription and the DNA 
replication machinery  

In S. cerevisiae, RNA polymerase II transcription has been shown to interfere with DNA 
replication fork progression. Transcription associated recombination (TAR) increased when 
the orientation of polymerase II transcribed genes was head-on to the progressing 
replication fork (Prado & Aguilera, 2005). Using cell-cycle specific promoters they also 
showed that this increase was dependent on the S-phase. The study also detected a 
replication barrier by 2D-gel analysis of replication intermediates within the recombination 
substrate that was dependent on polymerase II transcription. The intensity of the replication 
barrier signal was increased in an Rrm3 mutant. Importantly, more recent data suggest that 
it is the formation of RNA-DNA hybrids (R-loops) that are the cause of TAR and not the 
collision of the two types of forks (Aguilera & Gomez-Gonzalez, 2008; Gonzalez-Aguilera, et 
al. 2008). Also, several mutations affecting the maturation of mRNPs increase TAR. While 
these experiments were done using a CEN-plasmid, a genome wide study identified 96 sites 
where there were high levels of DNA polymerase binding (Azvolinsky, et al. 2009). A 
significant number of these were genes highly transcribed by RNA Polymerase II. However, 
there was no correlation between the direction of replication and transcription at these sites. 
The sites also correlated with high occupancy of the Rrm3 helicase, but the absence of Rrm3 
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did not lead to an increase in the DNA polymerase occupancy. Similarly, 2D-gel analysis of 
replication intermediates detected replication fork barriers at some of these sites, but the 
absence of Rrm3 did not lead to an increase in pausing at these barriers. R-loops have also 
been proposed to act as barriers for replication fork progression in human cells (Tuduri, et 
al. 2009; Tuduri, et al. 2010). Topoisomerase 1 (Top1) together with ASF/SF2, a splicing 
factor of the SR family, act to suppress the formation of DNA-RNA hybrids during 
transcription, thus preventing these R-loops from interfering with the progression of 

replication forks. In Top1 deficient cells γH2AX, a phosphorylated specialized histone (see 
Section 11.), accumulates at genes that are highly expressed during S-phase such as histone 
genes. The Top1 deficiency might affect fork progression in two ways; through Top1’s role 
in releasing super-coiling between two types of converging forks, and through Top1’s role 
in regulation of mRNP assembly, presumably by binding and phosphorylating splicing 
factors of the SR family (Rossi, et al. 1996; Soret, et al. 2003; Malanga, et al. 2008). It has long 
been known that in bacterial genomes highly-expressed genes are oriented such that 
transcription does not interfere with replication and it has been proposed that this might 
also be true for a large fraction of the human genome (Huvet, et al. 2007). 

10. The Rrm3 helicase mediated replication progression at non-nucleosomal 
protein-DNA barriers 

The S. cerevisiae Rrm3 5’ to 3’ helicase has been shown to have an important function at 
replication barriers. Rrm3, which is a member of a family conserved from yeast to humans 
(Zhou, et al. 2002), was originally identified because its absence caused an increase in 
recombination and formation of extra chromosomal circles at the rDNA array (Keil & 
McWilliams, 1993; Ivessa, et al. 2000). Rrm3 travels with the replication fork, interacts in vivo 
with Pol2 (the catalytic subunit of DNA polymerase ε) and has a role in replication at all the 
yeast chromosomes (Azvolinsky, et al. 2006). Importantly, in the absence of Rrm3 replication 
pausing/stalling is observed (or increased) at an estimated 1400 sites in the genome, 
including centromeres, tRNA genes, inactive replication origins, and the silent mating-type 
loci, as well as telomeric and rDNA sites (Ivessa, et al. 2003). Potentially, Rrm3 is required 
for proper replication through all stable, non-nucleosomal protein-DNA complexes. 

Replication through the rDNA is generally impaired in a Δrrm3 mutant leading to 
replication stalling at several sites including the polymerase III transcribed 5S rRNA gene, at 
inactive origins and at the beginning and end of the RNA polymerase I transcription unit 
(Ivessa, et al. 2000). In addition, the intensity of the Fob1-dependent replication barrier 
significantly increased and more replication termination was observed at the barrier. Rrm3 
also affects replication at the telomeres and internal tracts of C1-3A/TG1-3 telomeric DNA; in 
the absence of Rrm3 replication slowing at the repeats were increased and in addition 
replication stalling was observed at multiple sites within the sub-telomeric regions 
including in active origins (Ivessa, et al. 2002). At the silent mating-type regions and at the 
tRNA genes the Rrm3-dependent stalling was shown to be dependent on the presence of the 
associated protein complexes (Ivessa, et al. 2003). Also, loss of the ATPase function of Rrm3 
has the same effect as deletion alleles, establishing that the catalytic activity of the helicase is 
needed for this function. Due to the increased genetic instability of Rrm3 mutants, their 
viability is dependent on mrc1, mre11, rad50, sgs1, srs2, top3, xrs2 and dia2, genes involved in 
activation of the inter-S phase checkpoint and replication fork restart (Torres, et al. 2004; 
Morohashi, et al. 2009). Interestingly, Dia2 is an F-box protein (E3 ubiquitin ligase) that also 
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travels with the replication fork and might have a role at stalled DNA replication forks at 
protein-DNA barriers, perhaps by interaction with key substrates (Mimura, et al. 2009; 
Morohashi, et al. 2009). However, a recent study looking at the Fob1-dependent barrier 
using 2D-gel analysis of replication intermediates did not detect any effect on intensity of 

the barrier signal in a Δdia2 mutant (Bairwa, et al. 2011). 

11. γ-H2A.X formation at stalled replication forks 

Stalling of replication forks generally leads to the activation of the protein kinases of the 
PI(3) kinase-like kinase (PIKK) family, S. pombe Rad3, S. cerevisiae Mec1 and Mammalian 
ATR. One function of the activation of these kinases is to stabilize replication forks to 
prevent their collapse (Desany, et al. 1998; Lopes, et al. 2001). The PIKK mediated 
phosphorylation of a specialized histone called H2A.X (mammalian) or H2A (yeast) might 
help stabilize the stalled fork (Cobb, et al. 2005; Papamichos-Chronakis & Peterson, 2008) 
but also recruits DNA damage repair proteins (Mammalian Mdc1 and S. pombe Crb2 and 
Brc1; Du, et al. 2006; Williams, et al. 2010). Two studies have utilized this molecular beacon 
for identifying sites of replication stalling genome wide (Szilard, et al. 2010; Rozenzhak et al. 

2010). In S. cerevisiae, γ-H2A (the phosphorylated form of H2A) enriched loci are 
concentrated at the rDNA locus, telomeres, DNA replication origins, LTRs, tRNA genes and 
centromeres, all of which are known replication barriers, but also at actively repressed 
protein-coding genes (Szilard, et al. 2010). In the latter case, the analysis showed that 
actively repressed genes, which are notably enriched for the transcription factors Sum1 and 
Ume6 that are known to recruit the two Hst1 and Rpd3 histone deacetylases (HDACs) 
(Kadosh & Struhl, 1997; Xie, et al. 1999; Robert, et al. 2004). This observation suggests that 
hetero-chromatin may pose an obstacle to progression of DNA replication forks. 

Importantly, loss of Hst1 or Rpd3 histone deacetylase activity abolished the γ-H2A 

enrichment at genes specifically regulated by Hst1 or Rpd3. Generally, γ-H2A enrichment 
was depended on both Mec1 and Tel1 (the latter is activated by double-stranded breaks), 
suggesting that both replication fork stalling as well as collapse occurred at the identified 

loci. Also, increased γ-H2A enrichment was observed in a Δrrm3 mutant background, 
suggesting a decreased ability of replication forks to pass through the barriers, thus leading 

to an increase in γ-H2A accumulation. A similar genome wide study in S. pombe identified γ-
H2A enriched loci that corresponded well with those observed in S. cerevisiae, including the 
mating-type locus (including the RTS1 element, the region containing MPS1 and the 
imprint, and the IR elements that flank the transcriptionally silenced donor loci), the rDNA 
loci (including the gene coding region and the replication barriers), and all heterochromatin 
regions, including the centromeres (at the otr elements, but not the cnt or imr elements nor at 
the flanking inverted repeats) and telomeres, both Tf2-type retrotransposons and wtf 
elements and finally in a subset of gene coding sequences that were characterized by the 
presence of repetitive sequences (Szilard, et al. 2010). Contrary to what was observed in S. 

cerevisia γ-H2A accumulation was almost exclusively dependent on Rad3 and only at the 
telomere (in the absence of Rad3) on Tel1. In the mating-type region (the RTS1 element and 

MPS1), γ-H2A accumulation was dependent on Swi1 and Swi3 function in pausing and 

termination, while at the hetrochromatic regions γ-H2A accumulation is associated with the 

presence of Clr4-dependent heterochromatin and partially depends on Swi6. Several γ-H2A 
sites found in budding yeast were absent in fission yeast, including tRNA genes, LTRs (in 
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the absence of the transposon) and replication origins. The absence of γ-H2A accumulation 
at tRNA genes and LTRs is interesting, as fork stalling is observed at these sites by 2D-gel 
analysis (see Section 5.), and might reflect that either different types of stalled fork exist or 

that the duration of the stall is important for γ-H2A accumulation.  

12. Concluding remarks 

It is evident that many types of replication barriers have been defined. Whilst there are 
differences between these elements, there are also similarities. At some barriers replication 
forks only pause and then restart again without fork collapse. However, at others the 
replication fork is stalled until an approaching fork arrives from the other side for mediation 
of replication termination. Different molecular responses and levels of genetic instability are 
observed at the barriers. What determines the fate of a stalled replication fork at a barrier is 
still generally unknown. However, it is evident that helicases, such as S. cerevisiae Rrm3 and 
S. pombe Srs2 promote replication through protein mediated barriers (Section 8. & 10.) and 
Tof1 and Mrc1 through barrier caused by “structure” in the template (Section 6.), while S. 
pombe Rtf2 acts to stabilize the stalled fork for replication termination (Section 8.). It is also 
evident, that many different proteins can act as replication impediments. Generally, these 
proteins do not promote barrier activity through the formation of “stable” complexes, 
although in the absence of S. cerevisiae Rrm3 barrier activity stalling at stable protein-DNA 
complexes can be observed (Section 9.). Barrier activity is most likely generated via direct 
interaction(s) with the progressing replisome. For example, most protein-mediated barriers 
are polar, only stalling replication forks when encountered from one side, while for S. pombe 
Sap1 acts as a barrier at some cis-acting sites but not others (Sections 8. & 3.6). It should be 
mentioned that strong replication barriers often consist of several closely spaced cis-acting 
sequences where one or more trans-acting factors mediate the replication barrier. Also, these 
trans-acting factors have the ability to dimerize or polymerize, potentially increasing the 
efficiency of interaction, but more likely providing additional topological constraints when 
the DNA is unwound by the replicative helicase. Also, it is common for known protein-
mediated barrier activity to depend on the trans-acting factors Tof1/Csm3 (S. cereviaise) and 
Swi1/Swi3 (S. pombe), although there are some notable exceptions (for example, see Pryce et 
al. 2009). Putatively, the S. cerevisiae Tof1/Csm3 or S. pombe Swi1/Swi3 heteromeric 
complexes slide along the double-stranded DNA in front of the replicative helicase and 
senses the presence of barrier proteins. It has been shown earlier that in the absence of S. 
cerevisiae Tof1/Csm3 an uncoupling of the replicative helicase from the replicative 
polymerases can occur (Katou, et al. 2003; Nedelcheva, et al. 2005), thus Tof1/Csm3 (and 
phylogenetic related proteins) could directly inhibit MCM function when barrier proteins 
are encountered. Consistent with this model, the 3’ end of the leading-stand and the 5’ end 
of the lagging-strand have been mapped in close proximity about approximately 30-40 bp 
from the cis-acting sequences that mediate the barrier activity both at the S. cerevisiae rDNA 
barrier and at the S. pombe MPS1 site (Figure 5A; Sections 3.6 & 8.1).   
Interestingly, DNA structures in the template can also stall replication fork progression in a 
site-specific manner. These barrier signals most likely act on the lagging-strand as 
impediments to polymerase progression (Figure 5B). Interestingly, here S. cerevisiae Tof1 and 
Mrc1 are required for efficient replication through the elements (Mrc1 does not affect barrier 
activity at protein barriers), but not through the checkpoint activation function of these 
proteins. Still, the characteristics of these barriers suggest that the mechanism by which this  
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Fig. 5. The two types of replication barriers described. A) DNA bound factors can stall 
replisome progression, leading to a 3’ leading-strand end and 5’ lagging-strand end a certain 
distance from the barrier. B) Structure at the lagging-strand template leads to stalling of 
replisome progression. 

type of barriers stalls replication forks is different from the one by which protein barriers 
act. Potentially, structures in the lagging-strand template strand could also explain by S. 
pombe tRNA genes mediate barrier activity in a Swi1 independent manner. 
It is also evident from this comparison that replication barriers both prevent and cause 
genetic instability and a number of key points highlight this: I) Many of the described 
barriers have either been shown or are thought to prevent conflicts between progressing 
RNA polymerases I, II and III and replication forks, thus promoting genetic stability. II) 
Other barriers are thought to promote telomere addition for maintenance of genetic stability. 
III) Several barriers have been shown to cause genetic instability, including rDNA barriers 
(see Section 2.4), the RTS1 element (Ahn, et al. 2005), transposons (Zaratiegui, et al. 2011), as 
well as DNA structure in the template (Section 7.). IV) Again others have specific roles in 
induction of recombination events, including genetic rearrangements important for 
contraction/expansions of rDNA arrays and cellular differentiation or development in S. 
pombe and Tetrahymena (Sections 3.2 & 8.).   
It is highly likely that additional biological roles will be defined for replication barriers in 
the future. Here, research into such genetic elements’ roles in cellular differentiation and 
development in higher eukaryotes would be important. In addition, it will be interesting to 
understand how replication barriers drive evolution through instability at the stalled forks. 
It is already evident from studies of fragile sites, genomic rearrangements, repeat 
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expansion/contraction and mutations that underlie the genetic instability of cancer cells, 
that replication barriers are likely to have a profound role in disease formation. Thus, the 
importance of a better understanding of the molecular processes that lead to stalling of 
replication forks and that control the events at these forks, should not be underestimated. 
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