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An Alternative Approach to the Problem of  
CNT Electron Energy Band Structure 

Ali Bahari 
Department of Physics, University of Mazandaran, Babolsar  

Iran 

1. Introduction 

We intended to discuss in this chapter, TBM (tight binding method), APW (augmented-
plane-wave), OPW (orthogonalized -plane-wave) methods and corresponding theoretical 
concepts. In particulars, we pay a great attention to the theory of CNT (Carbon Nano Tube), 
but discuss in less details some conventional band structure models, unless nearly electron 
approximation (NFA), TBM,  APW  and OPW models have been used for determining the 
electron energy band structure of solids. In fact, this chapter is partly based on the many – 
electron description of nano transistor – CNTFET (carbon nano tube field effect transistor), 
which was done with a number of MSC and PhD students for a number of years at 
university of Mazandaran in Iran (See our published papers [1-7] for more details). We hope 
this chapter can complete the present book and be of interest for researchers whom work in 
the nano technology and for beginners. Some part of the material may be used in lection 
course for students. 
There are actually two different approaches for studying the band spectrum of CNT. In the 
first view, some researchers believe that carbon atoms are as isolated atoms and consider the 
CNT potential of neighbor's atoms as a perturbation and neglect the intra atomic potential. 
The second approach is about the density functional theory (DFT), in that the exact 
exchange energy (EXX) instead of the exchange energy given by the local – density 
approximation (LDA). The EXX energy, which corresponds to the Fock term in the Hartree- 
Fock scheme, is treated as a function of electron densities via the eigenfunctions of the 
Kohn-Sham KS equations [8].  This approach cannot satisfy the electron behavior in CNT 
due to its self-interaction-free in its construction. 
Indeed, this chapter discusses about electronic band energy. It is an energy interval in which 
electronic states exist in the CNT. This energy structure has been usually obtained by 
solving the Schrödinger equation for electrons in the CNT. As usual, the electronic wave 
functions depend on both the wave vector and the spatial coordinates.  The eigenvalues and 
eigenvectors have been determined by Fourier – transforming the differential equation into 
an algebraic equation. The solution of this equation can be used for some special cases with 
some reasonable approximation, such as NFE and TB methods. However, these approaches 
cannot be used for samples with critical dimensions of less than 100 nm due to overlap 
integrals in nano scale samples. 
The reason is that carbon atoms are not in fact stationary, but continually undergo 

vibrations (like thermal vibrations of ions in a crystal) about their positions, in where, the 
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overlapping between carbon atom functions is of importance, in particularly while the 

nearest neighbor atoms come close together. In principle a many – electron problem, for the 

full Hamiltonian of the CNT should be taken into account. It means Hamiltonian should 

contain not only the one – electron potentials describing the interactions of the electrons 

with the massive carbon atomic nuclei, but also pair potentials describing the electron – 

electron interactions in CNTs. But this idea should be included both the exchange and 

correlation effects into the interaction phenomena due to nearly free electrons. The  

Schrödinger  equation  for  a  many-electron  system  can  be  then reduced  to  the  effective  

one-particle problem for  an  electron  in  a  self-consistent  field. 

We therefore need to develop a method of band structure spectrum; because in the 

conventional method of solution, the unknown functions of Schrödinger equation has 

usually been expanded in some bases set.  The search for the unknown expansion 

coefficients will be necessarily reduced to the solution of a secular equation which is usually 

of large dimension and  provide high speed of expansion convergence, in order to doing less 

effort for finding band structure spectrum. 

As stated above, in second view, a large majority of the electronic structures and band plots 

are calculated using DFT [9], which is not a model but rather a theory. It involves the 

electron-electron many-body problem via the introduction of an exchange-correlation term 

in the functional of the electronic density. Although, the band shape is typically well 

reproduced by DFT, there are also systematic errors in DFT bands due to shrinking the CNT 

size. 

In addition, some researchers [10 and references therein] believe OPW can solve this 

problem, but some critical technological barriers and fundamental limitations to size 

reduction are threatening the use of OPW method for calculation of band energy. It means 

that there are some difficulties with current crystalline potentials which reside quite simply 

in considering, for example, electrons of carbon atoms as independent particles. 

Furthermore, the OPW expansion converges poorly for a CNT even when modified by the 

addition of an atomic like function to the basis set. The APW expansion also converges 

rapidly, but requires the crystal potential to be approximated by an unphysical spherical 

muffin-tin potential. However, in many of above methods you need to an ingenious the 

choice of CNT potential, which is not so easy due to the enormously complicating effects of 

the interactions between atoms (and electrons).  Henceforth, a more accurate calculation of 

the electronic properties of a CNT should start with modifying of above approaches, in 

particularly, NFA, TB and OPW methods. We should thus develop a modified APW/OPW 

expansion and compare its convergence with the other methods.  

An alternative approach to the problem of CNT band energy and of constructing exchange – 

correlation potential uses the calculation of the total energy. However, after describing the 

conventional methods and/or models, we will see that these models cannot sufficiently 

describe the electron behaviors in CNT. A new method is presented for finding the band 

structure of a lattice of potentials which individually are spherically symmetric, but with 

overlap's functions. The method does not necessitate a division of space into non-

overlapping spherical regions. It exploits the properties of the complete set of functions 

associated with the individual potentials. An expansion of the wave function of the crystal 

in this set yields a relatively simple determinant secular equation. The present method can 

be employed to introduce a matrix of CNT band energy. 
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2. Summary of some band structure models 

Several efficient methods have been developed in last four decades: Korringa, Kohn and 
Rostocker ( KKR) model [11], indicates the initials of Korringa (in 1947), Kohn, and Rostoker 
(in 1954),  DFT, Green function methods [12] and ab intitio approximation [13] have been 
used for studying the electronic band structure of CNT, because they lend themselves very 
well in reproducing the band shape.  In this area, we naturally prefer to consider the 
simplest form of the approximation centers non-overlapping spheres (referred to as muffin 
tins) on the atomic positions. In one hand, within these regions, the potential experienced by 
an electron is approximated to be spherically symmetric about the given carbon atoms. In 
the remaining interstitial region, the potential is approximated as a constant. Continuity of 
the potential between the atom-centered spheres and interstitial region is enforced. On the 
other hand, The KKR method is one of the popular methods of electronic structure 
calculation and is also called Green’s function method. Therefore,  KKR is actually referred 
to multiple scattering theory of solving the Schrödinger equation, in where the problem is 
broken up into two parts:  solving the scattering problem of a single potential in free space 
and then solving the multiple scattering problems by demanding that the incident wave to 
each scattering centre should be the sum of the outgoing waves from all other scattering 
centers. The scheme has met great success as a Green function method, within DFT. To 
calculate the bands including electron-electron interaction many-body effects, one can resort 
to so-called Green's function methods. 
Indeed, knowledge of the Green's function of a system provides both ground (the total 
energy) and also excited state observables of the system. The poles of the Green's function 
are the quasiparticle energies, the bands of a solid.  Sometimes spurious modes appear. 
Large problems scaled as O(n3), with the number of the plane waves (n) used in the 
problem. This is both time consuming and complex in memory requirements. Its 
applications range from the full potential ab initio treatment of bulk, surfaces, interfaces and 
layered systems with O(N) scaling to the embedding of impurities and clusters in bulk and 
on surfaces. In this way, after the single particle Hamiltonian (H) is generated either by 
empirical pseudo potential method or the charge patching method, it needs to be solved in 
an order N scaling [14]. 
As we know, the band plot can obviously show the excitation energies of electrons injected 
or removed from the system. It can say nothing about energies of a fictive non-interacting 
system, the Kohn-Sham system, which has no physical interpretation at all. The Kohn-Sham 
electronic structure must not be confused with the real, quasi particle electronic structure of 
a system, and there is no Koopman's theorem holding for Kohn-Sham energies, as there is 
for Hartree-Fock energies, which can be truly considered as an approximation for quasi 
particle energies. Hence, in principle, DFT is not a band theory, i.e., not a theory suitable for 
calculating bands and band-plots. 
The self-energy can also in principle be introduced variationally [14]. A variational 
derivation of the self-energies for the electron-electron and electron-phonon interactions are 
presented in [36].Due to the presence of the strong Coulomb interaction between electrons 
in the CNT atoms, the differential equations for the single- electron Green functions contain 
the multi-electron Green functions and all these coupled equations form an infinite system 
of differential equations for an infinite number of Green functions. In order to find  some 
approximate finite closed system of equations one can either to apply the perturbation 
theory and retain only some appropriate chain of ladder diagrams or to assume some 
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approximation to decouple the infinite system of equations and obtain a finite closed 
system. For CNT, the self-energy is a very complex quantity and usually approximations are 
needed to solve the problem.  
In addition to DFT and KKR methods, one of the other popular methods which has been 
usually used to all band structure calculations and studies, is NFA model. It is a method of 
approximating the energy levels of electrons in a CNT by considering the potential energy 
resulting from carbon atomic nuclei and from other electrons in the CNT as a perturbation 
on free electron states. Although the NFA is able to describe many properties of electron 
band structures, it can only predict the same number of electrons in each unit cell, which 
conflict with this result as for materials require inclusion of detailed electron-electron 
interactions (treated only as an averaged effect on the crystal potential in band theory) 
known as Mott insulators [15]. The Hubbard model is an approximate theory that can 
include these interactions and contains a large number of closely spaced molecular orbitals, 
which appear as a band.  
Anyway, we cannot here explain all band structure's model, but they are based on some 
elementary theory as reflected in Bloch, NFA or NFE and TB idea, which well models useful 
for illustration of band formation need these idea. The main is that each model describes 
some types of solids very well and others poorly. The NFE model works well for metals, but 
poorly for non-metals. The NFE model works particularly well in materials like metals 
where distances between neighboring atoms are small. In such materials the overlap of 
atomic orbitals and potentials on neighboring atoms are relatively large. In that case the 
wave function of the electron can be approximated by a modified plane wave. The TB model 
is extremely accurate for ionic insulators, such as metal halide salts (e.g. NaCl), but cannot 
be used for free electrons in a solid, e.g. CNT.  
The main difficulty with current graphite potentials resides quite simply in considering 
electrons of carbon atoms as independent particles. The reason is due to neglecting the wave 
function's overlapping, i.e., in the independent electron approximation the electron – 
electron interactions are just represented by an effective one – electron potential.  
If we pay somewhat closer attention to the form of potential, recognizing that it will be 
made up of a sum of atomic potentials centered at carbon atoms, then we can draw some 
further conclusions that are important in studying the electronic structure of graphite as 
well as graphene structures. Suppose that the basis consists of identical atoms at positions 
dj. Then the periodic potential unk(r) will have the form 

 
R j

(r)  ( )nk ju r R d                                 
(1)

 

Where Ф(k) is the Fourier transform of the atomic potential, 

 -ik. R(k)  e  ( ) drr                                               (2) 

One can see that it has the form of a traveling plane wave, as represented by the factor eik.r, 

which implies that the electron propagates through the crystal like a free particle. The effect 

of the function uk(r) is to modulate this wave so that the amplitude oscillates periodically 

from one cell to the next. However, it cannot affect the basic character of the state function, 

which is that of a traveling wave. But the electron in CNT is not completely free. Since 

electrons in CNT can interact with the other of CNT atom's electrons, the special character of 
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the periodic function uk will be varied.  Moreover, Ψnk  may be delocalized throughout the 

CNT atoms  and not localized around any particular atom, meaning it may be as NFE wave 

functions (As an example graphene structure in figure 1. A graphene structure has been 

considered for determining of CNT band structure.  It only includes four nearest neighbors 

and can be expanded to the other neighbors as well.). 
To these notifications, researchers [16 and references therein] have considered some special 
form of crystalline potentials in calculating of the electronic band energy of the CNT .  They 
have tried to construct Bloch waves from appropriately defined functions (Known as 
Wannier functions) localized at each lattice site and used K.P approximation method. In this 
view the dispersion around the external points of an energy band can be found, but within 
these models, the spatial derivatives in the Schrödinger equation of the CNT, are carried out 
only for the plane wave component of the Bloch function, given by [2]; 

 

2 2

n,k n n,k

p  k k.p
 {     V(r)} u ( )  E ( ) u ( )

2 m 2m
r k r

m
   


      (3) 

Here, n denotes the band index, V and En are lattice potential and eigen state, respectively. 

For k = 0, it simplifies significantly, and an approximate solution can be found for all band 

involved. A non – vanishing but small wave vector can then be treated as a perturbation. 

The term 2  k  produces an energy shift that depends on k, but does not couple the bands. 

The term containing k.p, however, must be treated with degenerate perturbation theory. 

 

 

Fig. 1. Graphene structure. There are two different carbon shape atoms in the graphene 
sheet, where each 'a' atom has 3 'b' atom as the first neighbor's atoms, 6 'a' atom in the 
second neighborhood and 3 'b' atom as the third neighbor atoms and finally 6 'b' atom in its 
4'th neighbors. 

However, these wave functions represent a type of plane wave throughout space – a 
graphene as well as CNT crystal actually has infinite size based on the definition of a lattice 
(Note:  the wave function must be normalized on a finite region of space with volume CNT 
that usually comes from periodic boundary conditions over the CNT circumference, so that 
with the definition of;  
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ik. Re

(r)   u ( )nk nk
CNT

r
V

                                       (4) 

And explicitly demonstrate the normalization for unk (r ). As we know, NFE method starts 
from a free electron gas in a CNT and treats a weak periodic crystal potential within 
perturbation theory. There is also a different approach TBM, which constructs the electronic 
eigenstates from those of the individual atoms that form the CNT, which belongs in the 
independent-electrons framework. Within TB picture, the energy bands and the band gaps 
are reminders of the discrete atoms. Contrary to the free-electron picture, TB model 
describes the electronic states starting from the limit of isolated-atom orbitals.  It is based on 
the assumption that the atomic orbitals belonging to an energy eigenvalue are good starting 
point for constructing Bloch waves. The CNT wave function in this view is usually 
expanded in the Bloch functions. But there are some assumptions: the energy level is non 
degenerate and there is no other energy level nearly. In that case, it yields to an 
approximation of the Bloch waves that emerges from the atomic wave functions.  
A more accurate approach using this idea employs Wannier functions, defined by [20]. The 
Wannier functions are localized near atomic sites, like atomic orbitals, but being defined in 
terms of Bloch functions they are accurately related to solutions based upon the CNT 
potential. Wannier functions on different atomic sites are orthogonal. The Wannier functions 
can be used to form the Schrödinger solution for the n-th energy band . The width of the 
energy bands is determined by the overlap of atomic wave functions at neighbor lattice sites 
and decreases rapidly for inner shells. As a rule, the bands, which originate from different 
levels, overlap considerably. This simple model gives good quantitative results for bands 
derived from strongly localized atomic orbitals, which decay to essentially zero on a radius 
much smaller than the next neighbor half-distance in the solid.  
The size of this matrix eigenvalue problem is clearly as large as the number of eigenstates of 
the atomic problem, i.e. infinite. It is therefore necessary to do some approximation. In 
particular, one could hope that all the off-diagonal matrix elements of the matrices could be 
neglected for some given level. This cannot work for atomic degenerate levels. Due to the 
exponential decay of the atomic wave functions at large distance, both the overlap integrals 
and the energy integrals become exponentially small for large distance R between the 
centers of the atoms. It therefore makes sense to ignore all the integrals outside some Rmax, 
which would bring in only negligible corrections to the band structure. One may obtain a 
band structure depending on a minimal number of parameters by making further rather 
radical approximations [20].  

3. CNT band structure 

According to the definition  of SWCNT (single walled carbon nano tube), the energy bands 
of a SWCNT consist of a set of one-dimensional energy dispersion relations which are cross 
sections of those of graphene. When  graphene sheet is rolled to make a CNT, K┴ is rolled 
too. So by using periodic boundary conditions in the circumference direction denoted by the 
chiral vector Ch, the wave vector associated with the Ch direction becomes quantized, while 
the wave vector associated with the direction of the translational vector T (or along the 
nanotube axis) remains continuous for a nanotube of infinite length. Since N K┴ corresponds 

to a reciprocal lattice vector, two wave vectors which differ by N K┴  are equivalent.  In this 
view, the wave vector of CNT is a continuum component along tube axis and a discrete 
value of K┴, as found before [1,2] and shown in figures 2, 3 (for details see ref. [2]).  
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 (k   K ),     

K

0, ..., N-1.    ,   k  - ,...,
T T

CNTK 
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



 

 
                                 (5) 

Therefore, the band structure of CNT can be determined via; 

 
f(K)

 
1 f(K)

E
s





 (6) 

 

 

Fig. 2. Graphene band structure. 

 

 

Fig. 3. Electronic band structure of some CNTs based on TB  model. The banding energy of π 
orbital is equal to -3.03 eV and its overlap matrix is equal to 0.129. This figure clearly show 
that CNT (15,0) is a metallic CNT. We will drive an important relation between the 
geometry of CNT and its conduction. There is an important note. There are (N/2) + 1 
degenerate levels in Zig-Zag CNT (n, 0).  

Furthermore, density of State (DOS) of a one dimensional lattice with a lattice vector T and 
for one level is given by [2] 
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Figure 4 Shows DOS of some CNT’s. As we see in this figure semiconducting Zig-Zag 
CNT’s have not any density of state at the Fermi level but armchair CNT’s have a little 
density of state at Fermi level. If we focused to the armchair CNTs at around Fermi level, we 
find that the DOS has not treat as a constant value and treat as a parabola curvature. 
 

 

Fig. 4. This figure compares density of state of a Zig-Zag CNT via as an armchair CNT. As 
you see the Zig-Zag CNT has not any DOS near the Fermi level. 

4. Augmented Plane Wave (APW) method 

Slater introduced the APW method in 1937. Shortly after that researchers have used it for 
determining the electronic band structure of the rocksalt lattice structure. Although APW 
method is a sound one for calculating the band structure in metals, it has a great deal in the 
past few years.  In this method the influence of potentials from non – nearest neighbors is 
taken into account. 
As one can see in a schematic view in figure 5, the effective crystal potential is constant in 
most of the open spaces between the cores. Therefore, we can begin by assuming such a 
potential, which is referred to as the muffin-tin potential (because the potential is constant 
there). The potential is that of a free ion at the core, and  a plane wave outside the core. 
Inside  the  core  the  function  is  atom-like,  and  is  found  by  solving  the  appropriate 
free-atom  Schrödinger  equation.  Also,  the  atomic  function is  chosen  such  that  it  joins 
continuously  to  the plane wave at  the surface of  the sphere forming  the core;  this  is  the 
boundary condition. The  wave function   does  not  have  the  Bloch  form,  but  this  can  be  
remedied  by  forming  the  linear combination.  
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Fig. 5. The potential and wave function in the APW method. 

From the point of APW  method view, the overlap of the wave functions centered, on the six 

contact sites cannot be neglected, indicating that the atomic levels should be essentially 

altered in a CNT. We thus assume that the bound levels of the atomic Hamiltonian are not 

well localized, meaning the wave function is not small when r  (like the core radius ) exceeds 

a distance of the order of the lattice constant. 
Therefore, we have to consider a many body system. The  Schrödinger  equation  for  a  

many-electron  system  can  be  reduced  to  the  effective  one-particle problem for  an  

electron  in  a  self-consistent  field. Thus: 

 
2

k k k (-  U(r)) ( )  E ( )
2m

r r 
   (9) 

where  U(r)  is  the  crystal  self-consistent  potential,  and ψk  and  Ek  are  the  wave  

function  and  the  eigenvalue  of  the  electron  energy  in  k-state,  correspondingly.  

One  of  the  main  consequences  of  basis  function  over completeness  is  their  linear  

dependence.  This means 

 
mG

k G G
G 0

 TPW    0C


  (10) 

If  |Gm| → 0, CG will indicate the  numerical  coefficients. Moreover, if CG ≠ 0, the  

transformed  plane  wave  (OPW, APW)  is  denoted  by  the  symbol |TPWk+G > ,  the  wave  

vector  k  belongs  to  the  first  Brillouin  zone,  and G  are  reciprocal  lattice  vectors.  In  the 

method  of  linearized  augmented  plane  waves  (LAPW)  the  linear dependence of the 

basis  set |APWk+G >  is manifested for R0 Gmax ≥ 9, which corresponds  to  accounting for 

70-80  basis  functions  in APW, where R0  is a muffin tin  sphere radius.  The OPW  linear 

dependence begins to  be manifested  if the  number  of basis  functions  is more  than  100 in  

(10) .  
Although both APW and OPW, as two modern methods of band calculations, use 
combinations of atomic functions and plane waves, they cannot yet yield to exact results. In 
fact in the APW method, the wavefunction in general has discontinuous derivatives on the 
boundary between the interstitial and atomic regions. It means that we have to consider 
variational method in stead of Schrödinger equation. In this method, the augmenting 
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function corresponds to the exact muffin-tin potential eigenstates of eigenenergy. Because of 
this energy dependence of the augmenting function the eigenvalue problem will be non-
linear in energy and has to be solved iteratively. This is, however, computationally very 
costly.  
In addition, any eigenstate of a different eigenenergy will be poorly described without 
adapting. Hence, we need to linearized versions of the APW method with modifying the 
basis functions which gain extra flexibility to cover a larger energy region around their 
linearization energy. In this view, the linear combinations of energy-independent APW as a 
trial function and muffin-tin orbitals are inserted in the one-electron Hamiltonian. Then the 
secular equations are therefore eigenvalue equations, linear in energy in that the energy 
bands depend on the potential in the spheres through potential parameters which describe 
the energy dependence of the logarithmic derivatives. Keep in mind that the energy-
independent APW inside the sphere is linear combination of an exact solution, which 
matches continuously and differentiable onto the plane-wave part in the interstitial region.  

5. Orthogonalized Plane Waves (OPW) method 

OPW method, as a simplified version of the pseudo potential method [17],  has  been  used  
for  the calculation of  the  electronic  band  structure  of  almost  all  types  of  solids with 
neglecting nonlocal effects.  It has been especially determining the band structure of 
materials with covalent binding where the potential cannot be approximated by the 
conventional muffintin construction. Indeed, OPW method is  rather  practical  and  time-
saving  from  the computational  point  of  view  since  it leads  to an  eigenvalue  problem  
involving matrix  elements  which  do  not  depend  on  the  eigenvalues,  as  in other  
methods  of  band  theory.  In contrast to above methods, in OPW method,  the  
eigensolutions  can  be found  easily  by  conventional  methods  of  linear  algebra . 
However, sometimes it cannot be used for calculating of nano scale materials due  to  the  
structure  of  the secular  problem  arising  in  the  OPW  formalism which  can  be related  to 
a Born-series  expansion,  and  it  is  known  in scattering  theory  that  resonances  cannot  
be  appropriately  accounted  for  in any  order  of  such  an expansion.  
Two main approaches based on expansion  have been used: (i) basis set and  (ii) trial wave 
function. Pseudo potential methods or OPW method use plane waves or modified plane 
waves as the basis set. The TBM are based on the second concept. There are also approaches 
which combine both delocalized and localized functions. In this approach the atomic-like 
functions are squeezed by an additional attractive potential. The extention of the basis 
functions is tuned by a parameter that can be found self-consistently [49]. The problem of 
APW and OPW methods for a CNT structure is an abundance of multi- center integrals, 
which must be performed to arrive at a reasonable accuracy of band structure calculations 
due to existence of a great number of neighbours within a given distance. To avoid these 
difficulties, we have tried to introduce an alternative method (see next section).  
In our method we consider a lot of plane waves in the basis to decrease the spatial extent of 
localized valence orbitals in CNT. We could take a method far beyond usual pseudo 
potentials and improve our plane-wave basis set. The results show a good converged Bloch 
function for both valence electrons and excited states using a relatively small number of 
plane waves.  
Two separated  core orbital contributions and plane wave contributions, which are not 
OPWs  at the outset have been involved in this approach, so that in the basis set three types 
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of functions are used: true core orbitals, squeezed local valence orbitals and plane waves.  If 
a larger number of plane waves are included in the band structure calculations,  there is  
usually the reason for the over-completeness breakdown of OPW expansions. The local 
basis function (both core and valence) can be constructed from radial functions, which are 
solutions of the radial Schrödinger equation. Our approach provides a full interpolation 
between the APW and OPW approaches adopting pseudo-potential features [18]. 
It is clear that there is an intense overlapping between electron wave functions of CNT when 
carbon atoms come close to each other, whilst in OPW method, each electron are imagined 
as a nearly free electron. Obviously, the above assumptions cannot explain behavior of the 
electron when carbon atoms come together like d-layer electrons. 

6. A new method 

One approach to overcoming these impending barriers involves finding on evaluating the 
potential of CNTs as the basis of a future nanoelectroncs technology. Single-walled CNT 
(SWCNTs) are materials with unique properties. They have several millimeters in length 
and are strongly bonded covalent materials. Because of their extremely small diameter, the 
OPW method should be modified and completed with TB method, with considering the 
overlapping of wave function of electrons. The procedure is to augment the basis set of 
present method by including wave functions which are OPWs between nuclei of carbon 
atoms but represent modified Bloch waves near the nuclei. It means that by scaling the CNT 
dimension, the carbon atoms come close to each other and change the band energy. Thus, by 
using Ritz variational method, we have modified the band energy. 
Nothing said up to now has exploited any properties of the potential U( r) other than its 
periodicity, and, for convenience, inversion symmetry. If we pay somewhat closer attention 
to the form of U, recognizing that it will be made up of a sum of atomic potentials centered 
at the positions of the carbon atoms, then we can draw some further conclusions that are 
important in studying. 
There is the other view, known the electron correlations. In fact, the existence of a unique 
density function which yields the exact ground state energy may not cause the possibility of 
reducing the many – electron problem to the one – electron one. This is due to at least the 
Coulomb interaction among electrons, in where at weaker electron correlations, it can 
involve a self – consistent potential which depends on electron density. In fact, the 
correlation effects near to carbon cores in where the strong intrasite Coulomb repulsion may 
lead to splitting of one – electron bands into many – electron subbands meaning TBM is 
inapplicable. 
On one bands, nearest neighbor carbon atoms may share and/or transport electrons so that 
electrons become localized at carbon sites. In a such a situation of CNT, we need to modify 
the eigen functions and introduce a correction term by expressing them in terms of many – 
electron and/or overlapping functions of the atomic problem. It depends on many electron 
quantum numbers, s, L occurs in the full Hartree – Fock approximation [8]. 
Let us have a somewhat closer look at the band structures. The constructions reported so far, 
imply that there is just an electron as a localized particle (and completely free electron) if 
there are sufficiently many Bloch waves available. This is not necessarily the case in nano 
structures due to localization of electron with building a localized wave packet from the 
Bloch waves. It leads the sharply peaked character of the weight function and the spatial 
extension of such an electron wave packet which can be larger than the lattice constant. 
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In the Ritz method, the minimizing element in the n-th approximation is sought in the linear 
hull of the first n coordinate elements. The Ritz ansatz function is a linear combination of N 

orbitals. Based on linear combination of atomic orbital (LCAO) approximation,  ( )r is 

 
j

 (r)  ( )j r    
(11) 

The eigenvalues and eigenvectors can be found with finding a solution of the Ritz method. It 

is widely applied when solving eigenvalue problems, boundary value problems and OPW 

equations in general. The trial wave function will always give an expectation value larger 

than the ground energy (or at least, equal to it). It is known to be orthogonal to the ground 

state. 

Further development of the OPW method led to the idea of introducing a weak pseudo 

potential which permits (unlike the real crystal potential) the use of perturbation theory. 

Because of strong core level potential within it, it may be represented in the form of a new 

Schrödinger equation where the non-local energy-dependent pseudo potential operator W is 

defined by 

 R W  V(r)  V   (12) 

Although OPW method with pseudo potential principle a possibility to eliminate the 

difficulty pointed before, it is rather complicated and goes far beyond the original concept of 

the CNT band – structure methods due to requiring exact diagonalization of a matrix of the 

pseudo potential idea – applicability methods may not provide as a rule sufficiently 

satisfactory description of CNT. 

To overcome of these difficulties, KKR method has been used. The advantage of the KKR 

method in comparison with the APW one is the decoupling of structural and atomic factors. 

For the same lattice potentials, the KKR and APW methods yield usually close results. 

However, the main difficulty of the KKR method is the energy dependence of the structural 

constants. 

In the general APW, KKR and LCMTO (MT: Mofin Tin) methods, the matrix elements are 

functions of energy. Therefore, at calculating eigenvalues one has to compute the 

determinants in each point of k-space for large number values of E (of order of 100) which 

costs much time.  

In the present work, according to Andersen theorem [2], we expand the radial wave 

functions at some energy value to linear terms in E, in which, both Hamiltonian and 

matrices do not depend on energy. We can get more accuracy by amount of higher – order 

terms in the expansion. Using this idea, we will be able to improve considerably the 

accuracy of CNT – band energy and achieve very good results. 

In this case we deform new wave function based on OPW and TB methods, in that the  

carbon atoms  cores  are  placed  in  the  crystal  lattice  sites  R.  There are localized electrons 

and the lattice sites.  Henceforth, the  core  electron  wave  functions  can be assumed  to  be  

approximately  equal  to  the  corresponding Hartree-Fock  functions  of  a  free  atom,  that  

is, 

 Cr HF
i i( ) ( )r R r R      (13) 
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where  I =  n, I, m  is  a  set  of quantum  numbers which characterize bound  electron  states.  
HF
i ( )r R     are  localized to  such  an extent  and  the  overlap of  HF

i ( )r R   centered  in  

different  sites should be  ignored, which leads: 

 *
i ( ) ( ) ( )i iir R r R dr R R          (14) 

On the other hand, for N unit cells in CNTs, u(ki; r) can be written by the following expression: 

 n  . R
nlm n

1
( , )   (  - R )

N
iik

i
j

u k r e r   (15) 

where Rn is the distance between two nearest neighbor carbon atoms. It yields new 

orthogonalized coefficients. We consider a correction term as Lij ; 

 ij i j ij ijM    (k  . k  - E)   L   (16) 

By using separable variables method, the atomic wave functions,  ( )nlm r , split into a set of 

radial Rnl(r), azimuth angle part  ( )m    and associated Legendre equation Plm(x), with x = 

cos ө. After doing some calculations on solving the above equation, the electronic band 

energy is determined by the following equation; 

 det H - EP 0  (17) 

Where 

 

OPW
is

is

H H
 H  

H

ij

ssH

 
 
 
 

 (18) 

And 

 

OPW
is

is

P P
 P  

P

ij

ssP

 
 
 
 

 (19) 

Finally, the overlapping wave functions of SWCNTs is demonstrated by H and P matrices, 

 3
is i s q sq 

0

H  ( )  u ( , ) d  -  a  bq
q

r H k r r E


    (20) 

 3
ss' i s s' sq s'q 

0

H  ( ) u ( , ) H u ( , ) d  -  b  bq
q

r k r k r r E


    (21) 

And  

 3
is i s q sq 

0

P  ( ) u ( , ) d  -  C b
q

r k r r


    (22) 

 3
ss' i s s' sq s'q 

0

P  ( ) u ( , )  u ( , ) d  -  b  b
q

r k r k r r


    (23) 
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Where  

 . 3
sq s n

0

b  ( )  (  R ) d   nik R
q

q

e r r r


      (24) 

We found a reliable matrix which can describe the CNT electron behavior  with doing  the 
series of calculations based on the Ritz variational, OPW and TB methods. In this method, 
there is no limitation on crystalline potential of CNT structure, so it can be suggested for 
evaluating the electronic band energy of SWCNTs.  
Therefore, the wave functions, which enter the Slater integrals, are based on self – consistent 
way from the corresponding integro – differential equations. It means the one – electron 
Hamiltonian of  CNT in the many – electron representations, should take into account the 
electron transfer owing to matrix elements of electrostatic interaction, which will be more 
complicated in solving the CNT –atomic problem. Moreover, the general Hartree  - Fock 
approximation may give us the radial one  - electron wave functions which depend explicitly 
on atomic term, whilst these wave functions can not be factorized  into one  - electron ones, or, 
the interaction of different carbon electron on the other sites is sometimes required.  
Thus we cannot describe unlocalized electron states in CNTs within above methods. In 
contrast to TBM, the strength of CNT potential can determine the widths of gaps rather than 
of electron bands ( as addressed in TBM). 
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