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1. Introduction 

During the last century, the spatial resolution of the optical microscope reached its 
theoretical limit which is given by diffraction of light and hence close to its wavelength 
(Abbe, 1882). As a result, several techniques like electron microscopy, tunnel effect or 
Scanning Probe Microscopy (SPM), were proposed as alternatives to improve spatial 
resolution. Despite several optical techniques are beating the diffraction limit (Hell & 
Stelzer, 1992; Harke et al., 2008) in general optical microscopy resolution is considerably 
limited at the fast growing field of Nanotechnology. In fact, the optimization of electro-
optical devices sometimes requires the study of material properties below the nanometre 
scale. For that purpose, the resolution of the Transmission Electron Microscope (TEM) is 
the highest one being able to observe the atomic structure (and composition) of a vast 
number of compounds. The inconveniences of this powerful technique are related with 
the preparation of the material under study since the sample thickness must be reduced to 
100 nm. Alternatively, the Scanning Electron Microscope (SEM) is often used for 
structural characterization when atomic resolution is not mandatory. The SEM is a 
valuable tool for imaging metallic or semiconductor samples, but it results less useful for 
characterizing dielectric materials. For this reason, Atomic Force Microscopy (AFM) could 
be considered the best option for studying ferroelectric surfaces. Other than morphology, 
the measurement of physical magnitudes can be also performed by means of the AFM 
(Asenjo et al., 2006; Cefali et al., 2003; Kwak et al., 2000), which leads to another important 
advantage with respect to electron microscopes. In fact, most of the experiments 
previously performed in different fields of Material Science have been revisited at the 
nanometer scale by means of advanced SPM techniques. Given the great variety of them, 
in this chapter we focus our attention in the Near-field Optical Scanning Microscope 
(NSOM), because of during last years it has been revealed as a powerful technique for 
studying ferroelectric domains and domain walls in a non-invasive way, (Eng & 
Gutherodt, 2000; Lamela et al., 2007, 2009; Lifante et al., 2008). 
The AFM can be considered the simplest but also the most versatile scanning probe 
instrument, since most of the SPMs are developed on the basis of an AFM, as described in 
Section 2. The NSOM is one of these rather recent techniques, which allows the microscope 
user to study optical features and correlate with the topography that is being registered 
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simultaneously. Thanks to this fact, NSOM has been successfully used to characterize 
domain walls between inverted poled ferroelectric domains, to define the refractive index 
profiles of metal diffused channel waveguides or in order to identify solid phases embedded 
into ferroelectric layers (Canet-Ferrer et al., 2006a, 2006b, 2007, 2008). For a better 
understanding of the NSOM images, in Section 3 it is proposed a theoretical approach to 
explain some near-field effects typically observed on ferroelectric materials. Our formalism 
is based in the angular spectra decomposition of the near-field, which is considered to 
propagate into an effective dielectric constant media. Thanks to the magnitude of the optical 
contrast and geometry of the domain walls, using such a simple formalism we can obtain 
semi-quantitative information of the refractive index profile in ferroelectric materials.  
In section 4 we will show the experimental NSOM possibilities by means of the 
characterization of a well known ferroelectric surface: the potassium niobate (KNO). Finally, 
the experimental results are semi-quantitatively explained by means of the formalism 
described in section 3. 
 

 

Fig. 1. Summary of the classification of new microscopes. The Scanning Probe Microscopy 

can be divided in tunnel and force-probe microscopes. The AFM is the most simple of the 

last ones but it is also the base of a vast number of advanced force microscopy techniques. 

The NSOM can be considered as a force-probe microscope being the main differences with 

the AFM related with the feedback system. 

www.intechopen.com



 
Near-Field Scanning Optical Microscopy Applied to the Study of Ferroelectric Materials 25 

2. Experimental details of the AFM 

This section consists of a brief introduction to the AFM technique followed by the 

description of the commercial electronics used by experimental set-up in this work. As a 

peculiarity, we can mention that the SPM techniques were proposed many years ago, but 

they could not be developed until the 80s because of such techniques required positioning 

systems of great precision. Nowadays, thanks to existence of piezoelectric positioners and 

scanners, the tip-sample distance can be controlled with a precision in the order of the 

Angstrom. As a result, the AFM resolution is limited by other effects different from relative 

tip-sample motion precision. 

2.1 The AFM 
The basis of the AFM is the control of the local interaction between the microscope probe 

and the material surface. The probe, usually a silicon nano-tip, is located at the end of a 

micro-cantilever. To obtain images of the sample topography, the distance between the tip 

and the sample is kept constant by an electric feedback loop. The AFM working principle 

varies depending on the operation mode. In the case of ferroelectric surfaces the most 

used method is the “non-contact mode” due to the fact that such mode allows the 

simultaneous measurement of electrostatic interactions (Eng et al., 1998, 1999). Working in 

non-contact mode, an external oscillation is induced to the cantilever by means of a 

mechanical actuator. In our commercial AFM (Nanotec Electronica S.L.) a Schäffer-

Kirchoff® laser is mounted in the tip holder for monitoring the cantilever motion. The 

laser beam (<3mW at 659 nm wavelength) is aligned in order to be focused in the 

cantilever (see Fig. 2a) impinging the reflected light in a four-quadrant photodetector (Fig. 

2b). In this way, the cantilever oscillation can be determined by comparison between the 

signals measured in the four diodes of the detector. If the frequency of the external 

excitation is close to the resonant frequency of the cantilever (i.e. 14-300 kHz), the 

oscillation amplitude generates an analogical signal that can be measured using lock-in 

techniques (synchronous amplification). Far away of the sample surface, the dynamics of 

the cantilever-tip system can be approached to a forced (driven) harmonic oscillator. But if 

the probe is located close to the sample (in the range of 10-25 nm), the tip is exposed to the 

surface interaction and the harmonic oscillator is damped by van der Waals forces. Since 

the damping force is determined by the position of the tip with respect to the sample, the 

oscillation amplitude also depends on such distance. For this reason, the feedback control 

maintains the oscillation amplitude in order to keep constant the tip-sample distance 

during the scan. Therefore, as the feedback correction consists in a displacement of the tip 

along the Z-axis, the sample roughness is reproduced by the tip motion which is 

monitored to obtain AFM topography images. 

Nowadays, the AFM tip fabrication process has received much attention in order to obtain 

an enhancement of the microscope resolution, due to the fact that the tip size and shape 

determine the interaction forces. In addition, the tip can suffer other modifications like 

cobalt coating for MFM probes or doping for local current measurements. In this sense, 

several AFM advanced techniques can be performed using the appropriate tip in order to 

obtain electrostatic or magnetic information of the surface with an important resolution 

enhancement. We describe below the modifications introduced in our commercial AFM 

(electronics) for obtaining optical information of the sample surface. 
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Fig. 2. (a) AFM scheme. (b) four-quadrant photodetector. (c) Standard Silicon probe 
(PointProbePlus, NanosensorsTM). 

2.2 The NSOM  
The NSOM is a SPM technique whose resolution is limited by the probe parameters and which 
allows the microscope user to obtain the optical and the topography information 
simultaneously (Kawata, Ohtsu & Irie, 2000; Paeleser & Moyer, 1996). This fact makes NSOM a 
valuable tool in the study of materials at the nanometer scale by refractive index contrast, 
surface backscattering or light collection at local level. 
Our NSOM is based on a tuning-fork sensor head, whose setup (Fig. 3a) is similar to that of 
a commercial AFM working in dynamic mode, but in this case, the standard silicon probe is 
replaced by a tip shaped optical fibre (Fig. 3b). The probe is mounted on a tuning pitch-fork 
quartz sensor (AttoNSOM-III from Attocube Systems AG), which is driven at one of its 
mechanical resonances, parallel to the sample surface Fig. 3c. In a similar way than at AFM, 
this vibration is kept constant by the AFM feedback electronics in order to maintain the tip-
sample distance. The tuning fork sensor is controlled with the feedback electronics and data 
acquisition system used in our commercial AFM (Dulcinea from Nanotec S.L.). Simply the 
AFM tapping motion is substituted by the shear force oscillation of the tuning-fork quartz. 
Our NSOM is used in illumination configuration under a constant gap mode (Figure 3a) in 
order to obtain transmission images, by measuring the transmitted light using an extended 
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silicon photodetector located on the sample holder. For this purpose, the excitation light 
(laser diode) is delivered through a 2x2 fibre beam splitter using one of the coupler inputs 
(I1). One of the beam splitter outputs (O1) is connected to the fibre probe while the other 
output (O2) can be used to control the excitation power. Finally, the light reflected at the 
sample surface is guided to another photodetector thought the remaining beam splitter 
input (I2). The electrical signals (reflection and transmission) produced by both 
photodetectors are coupled to a low noise trans-impedance pre-amplifier and processed by 
the AFM image acquisition system (i.e. a digital sample processor). Even in previous works, 
the comparison of transmission and reflection images has been determinant for the 
understanding of the experimental results; in ferroelectric materials we are going to focus 
our attention on transmission images exciting the sample with 660nm wavelength. 
 
 

 

Fig. 3. (a) NSOM illumination scheme, pictured taken from (Canet-Ferrer et al., 2007). (b) 
NSOM probe prepared in our lab: aluminium coated tip. (c) The NSOM probe mounted on 
one of the arms of a tuning fork. 
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Fig. 4. Different kinds of near-field optical signals. All of them could be measured in 
illumination configuration. 

3 Theoretical approach 

3.1 2D model for NSOM optical transmission 
Optical images acquired by NSOM can be treated by means of theoretical calculations in 

order to extract all the information they contain, but unfortunately, there is not a friendly 

analytical expression to describe transmitted signal under near-field conditions through a 

sample whose surface usually exhibits a random roughness. In this sense, the task of 

reproducing a refractive index profile of surface and sub-surface objects from optical 

transmission contrasts requires a great calculation effort to obtain accurate results. In 

addition, the surface characteristics of ferroelectric materials present other difficulties to 

perform quantitative analysis of the optical contrasts since some parameters are not exactly 

known, as the density of doping atoms, diffusion mechanism or strain maps. Fortunately, 

sometimes it is enough discriminating the domain structure for achieving valuable 

information for the optimization of the material applications. In this sense, NSOM 

transmission images can be easily interpreted if we take the next considerations in a 2D-

model: (i) the sample is considered a flat surface composed by two different layers whose 

thicknesses would depend on the sample characteristics; (ii) an effective refractive index is 

considered at the upper-layer depending on the tip position (i.e. at each pixel of the image), 

while the second layer present an homogeneous refractive index; and (iii) the 

electromagnetic field distribution in the plane of the probe aperture is approached to a 

Gaussian spatial distribution with a standard deviation σ ~ 80 nm (i.e., approximately the 

tip aperture diameter), as illustrated in Fig. 5(a). Taking into account these considerations 

the light transmission contrasts can be simulated as follows. 
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Fig. 5. (a) Near-field probe close to the feedback range. The optical intensity on the aperture 
plane is approached to a Gaussian field distribution. (b) Scheme of the main interfaces 
considered in our 2D simulation. Working at constant gap mode the tip is maintained at a 

distance, d, of a few nanometers. The upper layer is considered as a flat film (2λ thickness) 
with an average refractive index, neff(x, y), which depends on the position. Below the 
channel upper-layer (at a far-field distance), we find the homogeneous media (the pictures 
are not at a correct scale in all dimensions). (c) 2D representation of the near-field probe (80 
nm) in feedback range close to a scatter object larger than the wavelength. The relative 
position of the propagating light cone and the sphere immersed in the upper layer depends 
on their optical convolution. Therefore, a different effective refractive index neff is expected 
for each pixel of the NSOM tip scan. Figure taken from (Canet-Ferrer et al., 2008). 

Firstly, the electromagnetic field distribution coming from the optical probe is decomposed 
into its angular spectrum. 
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The excitation light is developed into a linear combination of plane-waves simplifying the 

calculations since the transmission for each component can be treated separately (Nieto-

Vesperinas, 2006). Such decomposition consists of a 2D-Fourier transform of the 

propagating and evanescent plane waves: 
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where kx is the projection of the wavenumber along the X axis and β= kz is the  

wavenumber corresponding to the propagation direction, see Fig. 5a. First, the plane-waves 

propagate in free space from the tip to the sample surface (i.e. a typical air gap of  

10 nm under feedback conditions, represented by the distance “d” in Fig. 5b). At this point, 

reflection at the surface (and later at rest of interfaces) is considered according to  

condition (i) and beneath it, the plane-wave components propagate through an 

inhomogeneous medium (the sample upper-layer). As an approach, the light  

transmission can be calculated by an effective medium approximation (condition ii),  

due to the variations in the refractive index during the light propagation. The  

transmission of each plane-wave at the sample surface is determined through the  

boundary conditions of Maxwell equations between two dielectric media (Hecht E. &  

Zajac, 1997): 
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Let notice that, if a suitable reference plane is chosen for the angular spectrum 

decomposition, the transmission for each incident plane wave, Ei(β), would correspond to 

the Fresnel coefficient at the incidence angle 

 θi = Arcsin( kx /nair k0) (4) 

which is related with the β-wavenumber by 

 βi2 = nair k02 - kx2 (5) 

while the angle of the transmitted wave can be directly obtained from the Snell’s law (Hecht 
E. & Zajac, 1997) 
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Once the light traverses the upper-layer it suffers a second reflection (and refraction) at the 

interface with the homogeneous refractive index material. Expressions like (3)-(6) can be 

deduced again to determine the transmission coefficients through the second layer, but, in this 

case, the incidence angle corresponds to the inclination of waves in the effective media (θeff), 
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Before reaching the photodetector in transmission configuration, the light arrives at the 

substrate-air interface which introduces a last transmission coefficient: 
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Notice that in this interface the plane-waves arriving with an incidence angle larger than the 

critical one for total internal reflection (θtir) will not contribute to the optical signal. At the 

same time, the finite dimensions of the detector must be also taken into account since the 

numerical aperture (NA) of the photodiode could also introduce another limiting angle. 

Having both facts into account, it is defined the cut-off wave-number, βc = NA k0, like the 

maximum wave-vector of the propagated light, which is equivalent to a maximum receiving 

angle θc by the relation βc2= ni k0(1-sin2θcut) (Hecht B. et al., 1998), limited by either the 

detector or total internal reflections. As a result, the expression for the light arriving to the 

detector can be written as: 
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β
β β β β

−
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(9)

 

It is worth noting that during the wave-front propagation the Gaussian beam coming 

from the NSOM suffer a great divergence. Therefore, if the upper-layer is extended 

beyond the near-field (e.g., upper-layer up to 2λ thick) the electromagnetic field 

distribution at the interface with the second layer is considerably extended. In these 

conditions the second layer can be considered as a homogeneous media with a constant 

refractive index, satisfying condition (ii). On one hand, the precision estimating the values 

for the thickness of layers are not critical for the semi-quantitative discussion aimed in 

this work since such parameter mainly affects the phase of the propagating fields. 

Nevertheless, it is necessary to point out that the real thickness of each layer must be had 

into account in certain cases, like in very thin films (thickness << λ) or stratified media 

(with possible optical resonances) for which multiple reflections are expected to 

contribute significantly to the transmitted field. In those cases, it is recommended to 

calculate the transmission coefficients having into account the phase component (Chilwell 

& Hodgkinson, 1984; Yeh, Yariv & Hong, 1977). On the other hand, samples which consist 

of a photonic device (like waveguides, beam splitters, optical filters, amplifiers, etc) 

would requires the decomposition of the sample profile in multiple layers with the aim to 

distinguish between the different interfaces delimiting the device geometry. For instance, 

in Ref. (Canet-Ferrer et al., 2008) we simulated the refractive index contrast produced by 

solid phases present on the surface of a channel waveguide in lithium niobate. In that 

case, the presence of the waveguide was considered by introducing an additional layer. 

3.2 Effective media approach 
It is necessary to point out that according to condition (ii) the effective refractive index is 

going to depend on the upper-layer local composition. Therefore, a different refractive index 

must be considered at each measuring point (at each pixel of the transmission image). 

Figure 2(c) illustrates how the local refractive index could be estimated in a general case. It is 

based on the effective medium theory (EMT), which during last years has been successfully 

applied to ferroelectric materials (Sherman et al., 2006). The effective dielectric constant εeff 

(and therefore the refractive index) for a N-dimensional material (in our case we limit the 

model to N=2) comprising inclusions of other material with permittivity ε’ and a filling 

factor p with respect to the host medium (in our case the upper-layer) with a permittivity εup 

is given by (Bruggeman, 1935): 
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At each pixel we consider the area corresponding to the light cone cross-section limited by 
the detector and, consequently, the filling factor is determined with respect to such area, as 
indicated in figure 2c (i.e. the isosceles triangle determined by βc). As a result, the estimation 
of the refractive index when scanning the surface of the upper layer by the NSOM tip is 
based on the convolution between the propagating light cone and the objects producing 
optical contrast. Assuming that both the hidden object and the host matrix are 
homogeneous, the effective refractive index profile becomes proportional to the spatial 
convolution along the scan direction of the cone of light and the scatter depicted in Fig. 5c. 
Therefore the optical contrast can be directly interpreted by means of geometrical 
considerations (Canet-Ferrer et al., 2008). Unfortunately, dielectric profile usually presents a 
Gaussian shape at the ferroelectric domain walls and consequently the effective dielectric 
constant cannot be determined by means of Eq. 10. In that case the refractive index at the 
upper layer pixels must be evaluated by means of 
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Where ε(x,z) represents the dielectric constant as a function of the position and S is the 
surface defined by the light cone. Eq. 11 can be easily evaluated for the scanning situation 
depicted in Fig. 6. But in this case the index profile is not a bivaluated function; therefore the 
effective refractive index and the optical contrast would not be directly related by the 
respective spatial convolution. Having this fact into account, in the next section we are 
going to propose and alternative way to extract information from transmission images. 
 

 

Fig. 6. At the top, it is depicted the NSOM tip in two different points: i) the domain wall and 
ii) the center of a wide ferroelectic domain. It is also marked the evaluation area as 
shadowed triangles.  At the bottom, the refractive index profile is represented. 
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4. Characterization of the domain walls in potassium niobate. 

In this section we are going to study the refractive index profile induced by ferroelectric 
domains in a potassium niobate (KNbO3) bulk sample performed by means of NSOM. The 
potassium niobate KNbO3 (KNO) belongs to the group of perovskite-type ferroelectric 
materials, like the Barium Titanate. At room temperature, the KNO has an orthorhombic 
crystal structure with space group Amm2 and presents natural periodic ferroelectric 
domains with 180º spontaneous polarization (Topolov, 2003). Extensive theoretical and 
experimental studies have been performed on this material since the discovery of its 
ferroelectricity (Matthias, 1949), due to its outstanding electro-optical, non-linear optical 
and photorefractive properties (Duan et al., 2001; King-Smith & Vanderbilt, 1994 ; 
Postnikov et al., 1993; Zonik et al., 1993). In the last decade, the KNO has received much 
attention due to the relation existing between the piezoelectric properties and the domain 
structures. However, many of these properties are not well understood at the nanometer 
scale. From the technological point of view some ferroelectric crystals, as KNO, form 
natural periodic and quasi-periodic domain structures. The motion of such domain wall 
plays a key role in the macroscopic response. For this reason, a variety of experimental 
techniques such as polarizing optical microscopy, anomalous dispersion of X-rays, Atomic 
Force Microscopy (AFM), Scanning Electron Microscopy (SEM) and Transmission 
Electron Microscopy (TEM), have been used to study the electrostatic properties of the 
KNO domains (Bluhm, Schwarz & Wiesendanger, 1998; Luthi et al., 1993; Yang et al., 
1999). From the different techniques employed in the domain structure characterization, 
the Electrostatic Force Microscopy (EFM) and Piezoelectric Force Microscopy (PFM) have 
been turned into useful practices (Labardi, Likodimos & Allegrini, 2000), since such 
techniques are based in the electrostatic interaction between the AFM tip and the surface 
polarization. But unfortunately both methods present important limitations working with 
bulk materials due the huge external electric field required for inducing the mentioned 
interaction. As an alternative, the NSOM has been used to demonstrate how the optical 
characterization of the ferroelectric domains is able to offer useful information even 
working with bulk materials. 
The advantage of our NSOM consists of the possibility of acquiring the images with 
nanometric resolution, containing the optical information and the topographical features, 
simultaneously. In the present sample, our probes reached a resolution better than 100 nm 
on the lateral directions and around 1-3 nm in height (in topography). About the optical 
images, it can be distinguished two main components contributing to the near-field signal: 
i) surface scattering and ii) evanescent waves transformed in propagating waves in the 
presence of a refractive index enhancement (Wang & Siqueiros, 1999). In the first case, the 
scattering is more important as the light source is closer to the surface; thus scattered 
waves mainly contain information about the interaction of the tip with the surface 
roughness. On the other hand, information of the local refractive index (effective 
refractive index estimated by means of Eq. 11 for the upper layer) is manly contained in 
the evanescent waves arriving to the detector. Depending on the ratio between both 
contributions the transmission signal could contain topographical features merged with 
the optical contrasts (Hecht et al., 1997).  
In a previous work the scattering contribution was demonstrated to be considerably 
reduced by using a visible light source as excitation (Canet-Ferrer et al., 2007). In addition, 
the topography contribution can be even negligible in KNO due to the huge refractive index 
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contrast in this material. For example, Fig. 7 shows two NSOM images (topography and 
transmission) acquired simultaneously. The topography image (Fig. 7a) shows a certain 
roughness forming elongated structures with a depth of around 5-7 nm (Fig. 7b) that we 
attribute to the sample polishing process. In contrast, the transmission image (Fig. 7c) is 
mainly composed by wider optical modulations (Fig. 7d) orientated on a different direction 
(with respect to surface features), and thus the optical contrasts cannot be correlated with 
topography details. For a better comparison, the profiles extracted from Figs. 7a and 7c 
(marked with a grey line) are depicted in Figs. 7b and 7d. It can be changes in the 
transmitted light larger than 30-35 mV over an average absolute value for the transmission 
intensity around 2 V. Assuming that the observed optical modulations are produced by the 
refractive index contrast at the domain walls, the resulting optical contrast would be in the 
order of predictions and measurements in pervoskite-type materials (Otto et al., 2004; Chaib, 
Otto & Eng, 2002a; Chaib et al., 2002b). 
 

 

Fig. 7. Topography image (a) and profile along the blue line (b) of a KNO surface. Idem for 
transmission image in (c) and (d). 

The next step consists of deducing a relation between the measured optical contrast and 
the refractive index. On the one hand, close to the domain wall the effective dielectric 
constant at the upper-layer is better estimated by means of Eq. 11. On the other hand, the 
relation between the optical contrast and the effective refractive index is rather 
complicate. For this reason, it would be more helpful to establish simple relations between 
the refractive index and the transmission of plane waves composing the Gaussian 

excitation beam. For example, the optical contrast (∆T(0)) produced by the normal 

incidence component (β=0) as a function of the refractive index change in different points 

of the upper layer (∆n) can be expressed as follows: 
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being T(0) the transmittance of the mentioned plane wave and n the refractive index of the 
material at the point of incidence. However, not all the plane waves in the angle range 

defined by [-βc, βc] will contribute to the optical contrast with the same intensity. In fact, 
almost 85% of the electromagnetic field intensity is contained at the low inclination 

waves, being the normal incidence (β=0) the main amplitude component. In order to 
illustrate this fact, in Fig. 8 it is shown the transmittance of a material (with refractive 
index 2.2 at the second layer) as a function of the upper-layer effective refractive index. 
The calculation is performed by considering that transmitted light is measured through an 

extended detector (high NA), which means that βc is limited by θtir. Calculated curves 
stand for the entire Gaussian excitation field (red line) and for only the contribution of 
normal incidence plane wave (blue line). As above suggested, the transmittance of the 
electromagnetic field distribution is noticeably influenced by the normal incidence 
component. It is also worth mentioning that the transmittance change can be 
approximated by a linear behaviour for relatively small index contrast, being the slope of 
both curves quite similar in such case. Consequently, even if the approximation of a point-

like light source by a planar wave could seem rough, very close values of (∆T/∆n) are 
expected in both cases. 
 

 

Fig. 8. Transmittance calculated the entire Gaussian beam (red line) and its normal incidence 
component (blue line) through a two layer sample as a function of the upper-layer effective 
refractive index. The thickness of each layer is selected according to the real KNO sample 

dimensions: 2λ for the upper-layer, 1mm for the second layer. 

Thanks to this fact, transmission images can be converted into refractive index images by 
means of a simple expression: 
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where now T is the averaged optical signal of a transmission image and ∆T is the 

experimental optical contrast between two different pixels. The details of the calculation 

(normalization, numerical aperture effects, tip-sample distances, etc) and its limitations 

(related with the domain size) are out of the scope of the present work. However, Eq. 13 

represents a very simple and semi-quantitative expression to account for local refractive 

index contrasts in a given material, applicable if the component β=0 dominates the 

transmittance. As an  example, Fig. 9a shows a transmission image acquired under similar 

conditions to Fig. 7b, but in another zone of the sample. From Fig. 9a we generate the 

corresponding refractive index image (Fig. 9b) by applying Eq. 13. We can associate optical 

variations of around 14 mV (with respect to an average background signal of 2V) with 

refractive index contrasts of around 3% (with respect to the KNO bulk refractive index nsl= 

2.2) by comparing a given profile line in both images (Figs. 9c and 9d). Quantitatively, such 

a contrast is large as compared to reported values in other ferroelectric materials (Canet-

Ferrer et al., 2006; Lamela et al., 2009; Han et al., 2009). On the other hand, it is in agreement 

with respect to the theoretical predictions in Ref. (Chaib et al., 2002b). 

 

 

Fig. 9. Transmission (a) and the corresponding refractive index contrast image (c) of the 
KNO surface. They are accompanied by the corresponding profiles (b) and (d), respectively. 

Finally the refractive index images can be used for studying the periodicity and width of the 

domains by means of averaging the profiles extracted from many images. After comparing 

several zones of the sample surface, it is observed certain dependence of the optical contrast 

on the domain width. The results are plotted in Fig. 10a like a scatter cloud where, despite 

the dispersion in the experimental data, it is observed a clear tendency to increase the 

refractive index contrast with the size of the domains. A priori this result could seem 

contradictory, since it is supposed that the larger domains could easily relax the strain at the 

www.intechopen.com



 
Near-Field Scanning Optical Microscopy Applied to the Study of Ferroelectric Materials 37 

interfaces. In fact, Chaib et al. calculated the refractive index contrast for different domain 

sizes and showing how such contrast become smaller for walls belonging larger domains, 

contrary to our observations. Consequently we can conclude there is another effect related 

with the domain size influencing the optical contrast measurement. This effect could be 

explained attending to the expected refractive index profiles at the domain walls (Fig. 6). For 

this purpose, the refractive index images have been fitted to Gaussians profiles, one for each 

domain wall. As a result we can conclude that in our sample the domain walls are not 

separated enough to observe a fully developed refractive index contrast, as illustrated in Fig. 

10b. At the top panel two separated domain walls (red horizontal line) leads to a maximum 

optical contrast (blue vertical arrow). At the bottom panel of Fig. 10b, the measured contrast 

(and width) is highly reduced when the domain walls get closer. The optical contrasts are 

thus underestimated in this case as previously reported (Han et al., 2009). 

 

 

Fig. 10. (a) Optical contrast as a function of the domain size; (b) effect of proximity between 
the domain walls on the optical contrast. 

5. Conclusions 

The AFM main properties have been described with the aim to approach the reader to the 

SPM microscopes. The characteristics of a commercial AFM electronics have been 

specified since it is the basis of our NSOM. The NSOM illumination configuration has 

been described in order to study ferroelectric materials. Even if EFM and PFM are the 

most used techniques to observe electrostatic effects in ferroelectric thin films, NSOM 

characterization can offer information on the refractive index changes at the domain 

structure. In the near-field images we observe a clear optical contrast at the domain walls 

which an average value is around 2% in transmission. These contrasts appear with 

negligible effect of the topographic features and presenting certain dependence on the 

separation between domain walls. Thanks to the refractive index contrast images, the 

average separation between domain walls is found to be around 1.5 µm. Finally, it is 

worth noting the fact that NSOM imaging provides the possibility of characterizing bulk 

samples, which are inaccessible by EFM or PFM, without a special preparation of the 

surface (chemical selective etching, for example), as done to observe periodic domain 

structures by standard optical microscopy. 
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