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1. Introduction 

The antigens are viruses, bacteria or part of, toxin or any molecules (organic or inorganic) 
that is antigenic (may induce an immunological response and can be recognized by 
antibody). The antibody is a glycoprotein which is produced in response of antigenic attack. 
Reaction between antigen and antibody by structural complementation is the base of 
immunoassay. If the immunological receptor is immobilized on a transducer for detecting a 
target analyte the device is called immunosensor. Either antibody or antigen could be 
immobilized on the transducer which converts the biological signal into electrical signal. 
The immunosensor is classified as optical, mass-sensitive or electrochemical according to the 
technique. The electrochemical immunosensor, according to the transducer, is classified as 
amperometric, potenciometric, impedimetric, condutometric.  
The cells or organs release trace levels of specific glicoprotein, enzymes and hormones into 
health patients’ serum but the concentrations increase when they are injured. It means that 
the methodology for clinical diagnosis must be sensitive and with high reproducibility and 
repeatability. The interaction between antibody and antigen is usually selective presenting 
high affinity constant (around 1015). Therefore immunosensors are being applied for 
diagnosis of various diseases states and also to improve effective drug administration.  
Studies on immunosensors like potenciometric (Tang et al., 2005), condutometric (Lu et al., 
2009), piezeletric (Ren et al., 2008, Sener et al., 2010, Pohanka et al., 2007), fiber optic (Kwon 
et al., 2002), scanning tunnelling microscopy (Lee et al., 2009) have been published for 
disease diagnosis. State of immunoassay technologies for tumor diagnosis (Wu et al., 2007) 
and environmental analysis have been reviewed recently (Farre´ et al., 2009).  
The results obtained by immunosensor must have reproducibility and repeatability in order 
to diagnose the disease or to monitor the disease treatment. Such properties are reached 
when the system is well optimized and characterized. On this chapter the amperometric and 
impedimetric devices will be focused on the preparation and characterization of the 
immunosensor in order to improve its performance. 
Usually the complex formed by the affinity reaction between the antigen-antibody is not 
electrochemically active. It is possible to monitor the reaction by amperometric technique by 
using an enzyme as tracer like classical ELISA (enzyme-linked immunesorbed assay); in this 
case instead of absorbance the current intensity is measured. The immunosensor where the 
affinity reaction is monitored by tracer is indirect and the format could be classified as 

www.intechopen.com



  
Biosensors for Health, Environment and Biosecurity 

 

184 

sandwich, competitive or indirect (Tijssen, 1985). On the other hand, the impedimetric 
immunosensor is based on impedance measurement of the electrical equivalent circuit of the 
oscillator. Consequently no label is necessary to monitor the affinity reaction. 
The kind of electrochemical transducer and technique of receptor immobilization play an 

important role on the selectivity of the immunosensor. For instance, gold screen printed 

electrode was used for Trypanosoma cruzi (T. cruzi) protein immobilization through self 

assembled monolayer (SAM) in order to diagnose Chagas disease (Ferreira et al., 2005). 

Anti-human cardiac myoglobin antibody immobilized on carbon screen printed electrode by 

passive adsorption (O’Regan, et. al, 2002) was applied as biochemical marker for acute 

myocardial infarction (myoglobin) detection; carbon screen printed electrode modified by 

multiwall carbon nanotubes (MWCNT) and gold nanoparticles was the platform to 

immobilize the antibody P. falciparum  for malaria diagnose (Sharma et al., 2008). Glassy 

carbon electrode  (GCE) was modified by Nafion for competitive detection of anti-

schistosoma japonicum antibody (Zhou et al., 2003); modified with multiwall carbon 

nanotubes integrated with microfluidic systems for quantification of prostate specific 

antigen in human serum samples (Panini et al., 2008); Fe3O4 magnetic 

nanoparticles/chitosan composite film modified GCE for ferritin determination (Wang & 

Tan, 2007); GCE functionalized Au nanoparticles for cancer cells detection (Wang & Tan, 

2007); bi-layer nano-Au and nickel hexacyanoferrates nanoparticles modified GCE for 

determination of carcinoembryonic antigen (Yuan et al., 2009). Phenylboronic acid 

conjugated thiol-mixed  monolayer on gold wire (Wang et al., 2008)  was proposed for alfa 

fetoprotein (AFP) detection; such antigen was also detected by microfluidic cell  (Maeng et 

al., 2008); gold nanowire to differentiate between lung and colon cancer  (Patil et al., 2008). 

Graphite–epoxy composite (GEC) electrodes as a platform to immobilize tissue 

transglutaminase were employed for the autoimmune disorder celiac disease (Pividori et al., 

2009), silver epoxy–graphite composite for cardiac troponins detection (Silva et al., 2010). 

Cellular products over-expressed by malignant cells have been used as tumor markers but 

one marker could not be specific to a particular tumor. In this case an array of 

immunosensor could be the solution (Wu et al., 2007).  

Electrochemical impedance spectroscopy (EIS) has been used as a technique for 

characterization of electrode surface modification but the analysis of interfacial property 

changes is useful also to monitor the biorecognition events involving antibody-antigen 

interaction for disease diagnosis. Silver electrodes for interleukin-12 correlated to the 

diagnosis of multiple sclerosis (La Belle et al., 2007); electropolymerized nanocomposite film 

containing polypyrrole, polypyrrolepropylic acid and Au nanoparticles was developed for 

Interleukin 5 which is associated with several allergic diseases (Chen et al., 2008).  Gold and 

platinum electrodes were investigated to diagonose Chagas disease (Diniz et al., 2003) as 

well as gold screen printed electrodes (Ferreira et al., 2010).  The transglutaminase was 

immobilized on gold screen printed electrode  through polyelectrolyte to diagnose celiac 

disease (Balkenhohl &Lisdat 2007);  the impedance  signal after the interaction between the 

Ag and Ab was amplified by using secondary HRP-labelled antibody; the main advantage 

of impedimetric methodologies (direct immunosensor)  was not applied.  

Most of amperometric and impedimetric immunosensors published on the literature have 

no detailed electrode surface characterization which is important for the reproducibility and 

stability of the device. 
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2. Preparation and handling of electrodes  

Conventional gold and graphite electrodes, screen-printed electrodes (SPE), electrodes 
prepared from CD-Rs (CDtrodes), gold and magnetic nanoparticles, carbon-on-metal, 
carbon nanotubes, carbon paste and others substrates have been used as support matrices 
(transducers) to immobilize biological compounds. The manner of preparation and handling 
of electrodes are very important for the stability and packing of self-assembled monolayers 
(SAM) or films and subsequent modifications steps of the analytical methodology.  
On cleaning screen-printed electrodes for sensors some recommendations, before the first 
modification step, were previously described in the literature: washing the SPE gold-
based electrode with ethanol or acetone (Ferreira et al., 2010; Navrátilová & Skaládal, 
2004; Kaláb & Skládal, 1995), or surface pretreatments for the immunosensors 
development (Escamilla-Gomez et al., 2009). Carpini et al. gave the following information 
about pretreatment of SPE gold-based electrodes: “Although mechanical or electrochemical 
cleaning of the gold surface is usually recommended, both thiol-tethered DNA probe 
immobilization and naphthol electrochemistry are not significantly affected by surface 
pretreatments. Thus, screen-printed gold electrodes were used as produced” (Carpini et al., 2004); 
Xu et al. also used as received SPE gold-based electrode for HRP immobilization (Xu et 
al., 2003). 
Recently, García-González et al. characterized different SPE-gold electrodes used for sensors 
preparation and the electrodes were used without pretreatment (García-González et al., 
2008). Escamilla-Gomez et al. used gold screen-printed electrodes (AuSPEs) pretreated with 
acid solution (H2SO4) for impedimetric immunobiosensors. AuSPES were obtained from 
different manufacturers, then various cyclic voltammograms were recorded and the 
electrodes washed with deionized water (Escamilla-Gomez et al., 2009). The SPE gold-based 
electrode, depending on the manufacturing, is not exactly a gold electrode, so the acid 
treatment used for cleaning their surfaces cannot be applied. Sometimes modifications may 
occur mainly on the surface of the reference electrode and for this reason aggressive 
medium cannot be used for cleaning this type of SPE electrodes (Ferreira et al., 2010). 
It is important to know that the SPE used in the immunosensors construction must be in 
an aluminum sealed package in which each electrode is individually isolated from the 
atmosphere, or in special boxes also protected from the atmosphere. In the case of the 
locked package of one electrode, it should only be opened just before use and the surface 
must be protected against any contamination. Obviously, if this care is not taken in 
consideration the SPE electrodes are improper to use for sensors preparation and even for 
electrochemical studies. SPE electrodes stored in aluminum sealed package or in other 
way can sometimes undergo oxidation and then they must be rejected. Another important 
factor to be considered on the SPE use for one specific study is the utilization of electrodes 
which belong to the same manufacturing batches.  Differences between batches are linear. 
It means that different batches result in different output signal by scale not by shape. If 
the response is calibrated by internal standard, such calibration will be valid for all 
batches (production in series). Using different batches absolute reproducibility of the 
immunosensors cannot be ensured. 
When conventional gold surface is used, the pretreatment procedures can be mechanical, 
chemical and electrochemical (Campuzano et al., 2002, 2006; Hoogvliet et al., 2000). The 
influence of the different surface pretreatments on the immunosensor response of a 
polycrystalline gold electrode should be studied (Carvalhal et al., 2005). Gold transducers 
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are very often used because of the facility to obtain a stable assembled layer. Thiol and 
disulphide groups quickly adsorb on gold surfaces, and over longer periods covalent bonds 
are formed (Godínez, 1999). Cysteamine (HS-CH2-CH2-NH2), for example, a thiol with a 
short chain length, has two functional groups that can be used as a bridge between the 
electrode and other kinds of layers. The stability and organization of monolayer depend on 
the length of the chains between the terminal and free groups and also on the lateral 
interactions between chains. Short chains can lead to the formation of a less stable and more 
disorganized layer (Mendes et al., 2008). SBZA (4-(methylmercapto)-benzaldehyde) can also 
be used to produce self-assembled monolayers to prepare gold surfaces for further 
modification and presents the advantage that it substitutes, for instance, cysteamine and 
glutaraldehyde since both S-H and CHO groups are present in this molecule. However, 
special care is needed with its incubation due to its high solubility in ethanol, and also the 
monolayer must be formed under refrigeration and humid atmosphere (Conoci et al., 2002). 
Many other kinds of molecules may form self-assembled monolayers to immobilize 

biological molecules or materials in order to develop immunosensors: fullerene-C60, 

ferrocene, ionic liquid (1-siobutyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amine) 

(Xiulan et al., 2011), electropolymerized thionine (Tang et al., 2008), lysine (Wang et al., 

2010), hydroquinone (Xuan et al., 2003), aminosilane (Parker et al., 2009). 

Biological molecules or materials can be immobilized on the SAMs or modified SAMs or, in 

some cases directly on the electrode surface. In the latest case, special attention should be 

given to the loss of activity due to some steric impediment involving electroactive sites. 

The influences of the immobilization processes on the immunossensor performance were 

evaluated with different transducers, antigens and antibodies. Considering the various steps 

involved in the immunosensor construction, very important details must be considered in 

the analytical procedure of antigen incubation. The results obtained for shorter antigen 

incubation times may be a consequence of some partial leaching of antigen due to an 

unstable self-assembled monolayer formation, while those for longer incubation times may 

indicate a possible degradation of the modified electrode surface, with loss of layer integrity. 

Therefore, a detailed study to optimize the incubation time of antigen in the development of 

biosensors is strongly recommended (Ferreira et al., 2010). 

The immobilization of antibodies on solid-phase materials has been used for the 

development of the immunosensor and different procedures were described in the 

literature. Problems associated with biological activity of the antibodies on immobilization 

have been observed in many cases (Lu et al., 1996). The interactions antigen-antibody are 

complexes by nature and the reproducible response characteristic of immunosensors 

requires that the affinity reaction is minimally disturbed by the fabrication procedure. The 

random orientation of the asymmetric macromolecules on transducers is one of the main 

reasons for such loss. Protein A, produced by Staphylococcus aureus, is a highly stable 

receptor capable of binding to the Fc fragment of immunoglobulins and the Fab binding 

sites of IgG antibody are thus oriented for immuassays reactions (Sjoquist et al., 1972; Lee et 

al., 2004). Therefore, these binding characteristics of the protein A can be used as an affinity 

surface in immunosensors construction (Campanella et al., 1999).  

Magnetic nanoparticles as substrate for biomolecules immobilization are a special 

alternative used in recent years for the construction of immunosensors (Wang & Tan, 2007; 

Tang et al., 2008). Due to their attractive properties, magnetic nanoparticles have been used 

in immunology (Ao et al., 2006), cell separation processes or purging processes (Bittencourt 
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et al., 2006; Sonti & Bose, 1995). Several applications of magnetic nanoparticles in the 

immobilization of immunoglobulines have also been reported (Pham & Sim, 2010; Smith et 

al., 2006). 

Other conditions affecting the immunosensor response characteristics must be critically 

examined: they include the purity of the reagents, incubation temperature in different steps 

of immunoassay, ionic strength and solution composition, working pH range, condition of 

the electrode surface and the oxygen content of the solution.  

3. Techniques for surface control and immunosensor characterization 

The preparation and control of the substrate surface and its modification constitute critical 

steps of the immunosensor development since they must permit the immobilization of 

biological molecule or material on the electrode surface and the interaction between the 

modified surface and the sample. The optimization of the incubation time is very critical on 

the different steps of the immunosensor development.  

A detailed characterization of the various steps involved in the immunosensor development 

can be useful for understanding the contribution of each step on the behavior of the global 

system, and for further improvement of the analytical process. So, it is strongly 

recommended that each step of the immunosensor construction be carefully evaluated using 

different electrochemical and non-electrochemical techniques.  

The interpretation of the results obtained by applying, in an adequate manner, appropriate 

experimental techniques can provide information on the distribution of structural defects, 

redox properties and the kinetics and mechanism of the monolayer formation or other 

modifications introduced on the surface, such as ions incorporation, water uptake and so on. 

The different electrochemical techniques can help understanding the electron transfer and 

mass transfer processes after each different step of immunosensor building. The non-

electrochemical ones may inform on the morphology and topography of the bare and 

modified surface, on the interaction between the modifier and the surface, on the chemical 

nature of the bonds and molecules attached on the surface and on the interaction of energy 

(special by light) with the different entities constituting the system which is being studied, 

allowing their identification and the knowledge and applications of their properties. 

3.1 Electrochemical techniques 

Electrochemical techniques are largely used by researchers of different scientific fields due 

to the fact that the equipment used is of low cost, simple, and easy to utilize and have the 

advantage of being in situ techniques, which allows monitoring the studied system in real 

time. Many different electrochemical techniques have been used to monitor the response of 

different surfaces such as gold, graphite, carbon nanotubes, gold nanowires, gold 

nanoparticles, metallic oxide nanoparticles, spin-on glass surfaces, carbon paste, which can 

be modified with different modifiers to form SAMs and composites to incorporate active 

materials and built the desired immunosensor.  Each step of this process may be carefully 

characterized using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), 

quartz crystal microbalance, chronoamperometry and amperometry, square wave 

voltammetry (SWV), differential pulse voltammetry (DPV), ellipsometry, and measurements 

of electrical resistances.  
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3.1.1 Cyclic voltammetry 

For a better understanding of cyclic voltammetry and its general applications the readers 

can refer to some text books (Noel & Vasu, 1990; Gasser Jr., 1993; Compton & Banks, 2009). 

As indicated above, cyclic voltammetry (CV) is the electrochemical technique most 

frequently used to get the first information on the nature of the electrode surface, such as its 

purity (Angerstein-Kozlowska et al., 1973), stability (Cabot et al., 1991; Benedetti et al., 1991), 

reproducibility and repeatability (Horta et al., 2009).  Sometimes CV is used for cleaning the 

electrode surface (Calvo et al., 2004); for activating (Tang et al., 2006); and for reconstructing 

the electrode surface, or to determine the electrode active surface area for small molecules 

(hydrogen, methanol, CO, ethanol, etc.), which adsorb on the electrode surface (Biegler et 

al., 1971; Godoi et al., 2009). Cyclic voltammograms obtained for large molecules can be 

used to determine the real surface area of an electrode, resulting in an area similar to the 

geometric one (Noel & Vasu, 1990). Such large molecules can be coordination and other 

inorganic compounds (ferro/ferricyanide, ferrocene/ferrocinium, etc.) and highly solvated 

ions which may stay in solution without adsorbing on the electrode surface. CV is very often 

to help establish the global mechanism of an electrochemical process occurring in solution 

(Naal et al., 1994) or occurring at a surface as nucleation (Noel & Vasu, 1990).  

This technique may also indicate some contamination of the electrolyte used as in the case of 

a phosphate buffer solution, pH 7.4, containing the redox pair Fe(CN)6-3/Fe(CN)6-4 which 

was used to characterize the gold electrodes prepared from CDs (CDtrodes). This was 

observed in our laboratory. Fig. 1 shows the cyclic voltammograms of this system obtained 

using the same experimental conditions except that the phosphate buffer solution for 

recording the cyclic voltammogram of Fig. 1b was changed. It is clearly seen that the cyclic 

voltammogram in Fig. 1a was distorted probably by some impurity that came from the 

solution that adsorbed on the electrode surface and partially blocked it. This conclusion was 

drawn after testing all the other possibilities, such as checking cables and all electrical 

connections, cleaning the electrochemical cell and its components, recording CVs in other 

equipment, trying several CDtrodes and changing both ferro/ferricyanide salts. The 

conclusion was that phosphate salts of the buffer solution had been contaminated. 

However, it is possible that the main reasons for the large use of cyclic voltammetry is the 

simplicity of equipment, facilities to scan a large energy range and also a large potential scan 

rate (from microvolt to hundreds of megavolts per second) which can be coupled with 

changes in the temperature of the electrochemical cell to study the kinetic of chemical 

coupled reactions, and mainly its didactical presentation. But sometimes the results of CV 

are misinterpreted causing some confusing regarding the irreversibility generated by fast 

chemical coupled reaction or by slow charge transfer reaction. This confusion can be 

normally distinguished experimentally by changing the scan rate (ν) and / or the 

temperature of the system. Another common misinterpretation is related to the effect of 

ohmic drop on the anodic and cathodic peak potentials separation since the ohmic drop 

presents similar effect as a quasi-reversible process (Taconni et al., 1973). In this case it is 

important, after checking the position of the electrodes in the cell and the Luggin capillary 

position respect to the surface of the working electrode, to increase the solution conductivity 

in order to diminish the uncompensated solution resistance.  

A simple example of uncompensated resistance effect (ohmic drop effect) can be observed in 

Fig. 2 for 4 x 10-3 mol L-1 Fe(CN)64- ion in KCl aqueous solution where the concentration of 

the supporting electrolyte was 0.5 or 0.05 mol L-1 at different scan rates. Typical E/I profile 
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can be seen for the redox couple studied with anodic (Eap) and cathodic (Ecp) current peaks 

well-defined. Also, no current peaks appear in the absence of potassium ferrocyanide. The 

experimental conditions were the same except for the supporting electrolyte concentration, 

which varied. 
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Fig. 1. Cyclic voltamograms of gold CDtrode in 1.0 × 10-3 mol L-1 Fe(CN)63-/4- phosphate 
buffer solution 0.1 mol L-1, pH 7.4, at 50 mV s-1.  The CDtrode was cycled in 2.0 mol L-1 
H2SO4 solution at 50 mV s-1: (a) contaminated phosphate buffer solution; (b) cleaned 
phosphate buffer solution (Reproduced by permission of M.V. Foguel). 

The main differences between these cyclic voltammograms were the separations between 

the anodic and cathodic peaks (∆Ep) and the difference between the anodic or cathodic 

current peaks. For 0.5 mol L-1 KCl the values of ∆Ep were around 60 mV in 0.5 mol L-1 KCl 

(Fig. 2a) for all scan rates measured, while in 0.05 mol L-1 KCl, ∆Ep varied from 80 to 120 mV 

for 5 ≥ ν/mV s-1 ≥ 100 (Fig. 2b).  CVs recorded in 0.05 mol L-1 KCl aqueous solution present 

all the characteristics of an increase in the uncompensated solution resistance as ν increases: 
augment in the peak potential separation, decrease in current peaks and rounding of the 
peaks. The effect of current migration is very low for 0.05 mol L-1 KCl and completely 
negligible for 0.5 mol L-1 KCl in aqueous solution (Bard & Faulkner, 1980). In a parallel 
experiment, CVs were recorded for a solution containing 2.0 × 10-2 mol L-1 Fe(CN)63- +  2.0 × 
10-2 mol L-1 Fe(CN)64- in the absence of KCl salt. The peak potentials were separated by more 
than 150 mV at 50 mV s-1 and the peak current was lower than the current measured when 
KCl was present. It means that the sum of migration and diffusion currents was unable to 
overcome the influence of the ohmic drop, leading to a lower instead of a higher total 
current. The decrease in the peak current was caused by the solution resistance. 
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Feldberg (Feldberg, 2008) simulated the effect of uncompensated resistance on the cyclic 
voltammetric response of an electrochemically reversible surface-attached redox couple 
assuming an uniform current and potential distribution across the electrode surface. The 
similarity of the effect of voltammetric responses for a slow electrochemical reaction and the 
uncompensated resistance is evident, which may cause misinterpretation of the mechanism 
of the electrode process. It is also common to attribute the linear current peak, Ip – v½ 
relationship to diffusion, but sometimes nucleation or other processes can follow the same 
relationship (Noel & Vasu, 1990). 
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Fig. 2. Cyclic voltammograms for Pt in 4 x 10-3 mol L-1 Fe(CN)64- ion + KCl aqueous solution 
(a) 0.5 and (b) 0.05 mol L-1, at 25 oC, geometric area of the working electrode of 0.027 cm2 and 
at different scan rates. 

As seen above, the CV has been often used to characterize immunosensors and many times 
a phosphate-based buffer solution is used, which may present effect of uncompensated 
resistance due to its low conductivity, resulting in cyclic voltammograms for Fe(CN)63-

/Fe(CN)64- redox couple away from that expected for a one-electron reversible process 
under diffusion control. For this reason, phosphate buffer saline solution shows cyclic 
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voltammograms with a better definition since it shows lower effect of uncompensated 
solution resistance maintaining all other parameters and conditions constant. For instance, 
Figure 3 shows two cyclic voltammograms for screen printed electrode and gold electrode in 
1.0 × 10-2 mol L-1 Fe(CN)64-, 0.1 mol L-1 phosphate buffer solution, pH 6.9, at 50 mV s-1 and 25 
oC. The anodic and cathodic peak potential separation (∆Ep) values are higher than 59.15 
mV/n and therefore the electrode process cannot be described as one-electron charge 
transfer under diffusion control. It is well known that phosphate buffer solutions pH near 7 
and salts concentrations around 0.1 mol L-1 present no classical response expected for a 
completely reversible process. The main reasons for that are the deviation of a reversible 
process, which leads to a response of a quasi-reversible system, and the influence of ohmic 

drop. Both of them increase the (∆Ep) values. It is probable that both effects are present in 
the CVs of Fig. 3. 
 

 

Fig. 3. Cyclic voltammograms for bare (a) gold-CDtrode (Ageom. =0.071 cm2) and (b) gold 
electrode (Ageom. =0.0227 cm2) in 0.1 mol L-1 phosphate buffer solution, pH 6.9, containing 
potassium forrocynide, at 25oC.                                                                 

Cyclic voltammograms for a bare gold electrode recorded in 2.0 × 10-3 mol L-1 Fe(CN)63-/4-, 
0.1 mol L-1 phosphate buffer solutions, pH ≈ 7, at 25 mV s-1 resulted in ∆Ep = 90 mV 
(Campuzano et al., 2006), while in 2.5 × 10-3 mol L-1 Fe(CN)63-/4-, 0.01 mol L-1 phosphate 
buffer, 0.1 mol L-1 KCl, pH 7.0, at 50 mVs-1, a ∆Ep = 65 mV was measured (Pei et al., 2001). It 
is evident that the phosphate buffer saline (PBS) solution presents higher conductivity and is 
recommended whenever possible.  
When 0.5 mol L-1 NaClO4  plus 1× 10-3 mol L-1 Fe(CN)64- was used, at 100 mV s-1 a ∆Ep = 70 
mV was measured (Janeck et al., 1998). The idea that ohmic drop effect is present at lower 
concentrations of supporting electrolyte can be also inferred from the following results: 0.1 
mol L-1 NaClO4 and 0.1 mol L-1  KCl with 2 × 10-3 mol L-1 Fe(CN)63-/4-, pH 7.0, at 25 mV s-1: 

∆Ep = 140 mV and 150 mV, respectively (Campuzano et al. 2006). However, recently Cho et 
al. (Cho et al., 2008) measured a ∆Ep = 100 mV for 2.5 × 10-3 mol L-1 Fe(CN)63-/4-, 0.5 mol L-1 
KCl at 50 mV s-1. When CVs were recorded for different screen printed gold electrodes (SPE) 
in 1 × 10-3 mol L-1 Fe(CN)63- ion + 0.1 mol L-1 H2SO4 aqueous solution at 100 mV/ s ∆Ep = 62 
to 76 mV and at 2000 mV s-1 ∆Ep = 78 to 231 mV were obtained, suggesting some influence 
of SPEs, mainly at higher potential scan rates (García-González et al., 2008). It is important 
to note that the conductivity of the sulfuric acid solution is higher than phosphate buffer 
and 0.1 mol L-1 KCl or NaClO4 resulting in a lower ∆Ep value.    
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When an electrode is modified with self-assembled monolayer, or other modifiers, a barrier 
may be formed on the electrode surface, which in some extension hinders the charge 
transfer reaction. So, this effect can be studied by analyzing the changes in the 
electrochemical response of a reversible or quasi-reversible redox reaction of some 
electroactive species present in solution.  Cyclic voltammetry of electroactive species such as 
Fe(NC)63-/4-, ferrocinium/ferrocene, and others which can be used as markers, is a valuable 
and convenient tool for monitoring the barrier effect of the modified electrode, since the 
electron transfer between the electrode and species in solution must occur by tunneling 
either through the barrier or through the defects in the barrier. The tunneling electron 
transfer is expected to occur when the surface is completely covered by the modifier and an 
electron transfer via pinholes when it occurs at the defects of the modifier layer, situation 
where the microelectrode approach could be used. Having in mind a barrier effect, the 
surface coverage can be estimated from CVs resulting in a semi-quantitative analysis of this 
effect. So, in general, slight distortions on CVs compared to the bare electrode are expected 
when the modifiers produce a low surface coverage, which means that the access to the 
electroactive species from the solution to the electrode occurs without significant 
impediment. A great distortion on CVs suggests a strong barrier effect, limiting the access of 
the electrode surface by the markers present in the solution. Based on these ideas the surface 
coverage could be estimated from cyclic voltammograms assuming linear diffusion to bare 
areas by the equation (Janeck et al., 1998): 

 θCV = 1- (Ip,mod/Ip,bare)                                               (1) 

where Ip,mod and Ip,bare represent the peak currents for the marker on the modified and bare 
electrodes, respectively. Different factors influence the cyclic voltammetric response: surface 
roughness, dominance of radial diffusion near each defect site (Janeck et al., 1998), the 
presence of positive or negative charge on the modifier can electrostatically interact with the 
marker increasing or decreasing the interaction strength, i.e., facilitating or making the 
charge transfer more difficult, or influence the lateral interaction by repulsion between the 
modifiers species (Calvo et al., 2004; Doblhofer et al., 1992; Ferreira et al., 2009). On a surface 

coverage, θ ≤ 0.98 at intermediates scan rates can give peak current intensity almost the 

same as the one obtained for a bare electrode, and a θ = 0.9945 may show only 30% of 
decreasing in the peak current (Sabatani & Rubinstein, 1987).  
Attention must be paid in using equation (1) to estimate the surface coverage, and generally, 

its values are lower than those obtained by other techniques including electrochemical 

impedance spectroscopy. Amatore et al. (Amatore et al., 1983) demonstrated that equation 

(1) is inappropriate for describing the fractional coverage of electrode surface due to the 

dominance of radial diffusion near each pinhole or defect site, and also the charge transfer 

reaction occurs without significant impediment. For instance, when cysteamine (CYS) and 

CYS and glutaraldehyde (GA) are used to form SAMs on gold-based electrodes, the surface 

coverage is low, around 0.10 for CYS-SPE and 0.35 for GA-CYS-SPE, and the charge transfer 

reaction involving the marker occurs similarly as in the bare electrode, with very low 

impediment (Ferreira et al., 2009).  In this case tunneling of electron through the film can be 

ruled out (Porter et al., 1987) and probably the electroactive species reached the electrode 

through the large SAM free space of the electrode surface. 

However, in the immunosensor characterization, CV was used to choose the better working 
potential for amperometric analysis (Stefan & Aboul-Enein, 2002; Zhou et al., 2003) and also 
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to detect the presence of SAM and other modifiers on the electrode surface. CV was also 
used to evaluate if the SAM of hydroquinone on the gold electrode acted as a mediator of 
the redox reaction with pyruvate in phosphate buffer saline (PBS) solution, pH 7.4. Anodic 
and cathodic peak currents depending on the pyruvate solution concentration were 
observed after 5 min of dropping pyruvate solution on the pyruvate oxidase-adsorbed 
nylon membrane placed on the top of a gold electrode. The result allowed to conclude that 
SAM of hydroquinone acted as a good electron mediator for charge transport between 
pyruvate oxidase-adsorbed nylon membrane and the gold electrode (Xuan et al., 2003). It is 
easy to denote the presence of the SAM, for instance, on gold electrode since it can be 
oxidized to form gold oxides which are reduced to metallic gold again. A fresh gold 
electrode was evaluated before and after thiol deposition by means of a triangular potential 
scanning (Tlili et al., 2004) and it was observed that the oxidation reaction was reduced and 
no cathodic current peak was observed after the SAM formation of thiol. The stability of o-
quinone produced on glassy carbon electrode modified with single-walled carbon 
nanotubes was confirmed by CV (Panini et al., 2008). Calvo et al. (Calvo et al., 2004) 
synthesized the redox polymer Os(byp)2ClPyCH2NH poly(allylamine) (PAH-Os) and 
deposited on the thiolated (SAM of sodium 3-mercapto-1-propanesulfonate) gold electrode 
forming a bilayer, which was modified with antibiotin IgG and a supramolecular structure 
was constructed layer-by-layer. This structure responded catalytically to the presence of 
hydrogen peroxide when HRP is attached to PAH-Os/IgG multilayer. The cyclic 
voltammetry was used to confirm the presence of osmium in the PAH-Os/IgG multilayer 
self-assembled structure on gold and evaluate the electrode process involving the redox 
Os(III)/Os(II) pair in the presence and absence of hydrogen.  
Cyclic voltammetry can also be used to increase the performance of the electrode surface, as 

in the case of highly oriented antibody on gold nanoparticle surface, which has its activity 

strongly influenced by the surface properties of the transducer (Lu et al., 1995). In this case, 

the existence of multiple states of adsorbed proteins involving multipoint hydrophobic, 

electrostatic, and hydrogen bond was assumed for the different surfaces and protein 

interactions caused by the unfolding of adsorbed proteins. It means that the surface can be 

treated in such way in order to change its activity. The influence of a 

chemical/electrochemical treatment of nanoparticles of gold/thionine-modified carbon 

paste interface can also be verified using repetitive cyclic voltammetry, which allows 

observing the evolution of the electrode surfaces along the potential excursion. Repetitive 

cyclic voltammograms of gold-thionine-carbon paste electrode in acetic/acetate buffer 

solution, pH 7.0 behaved in a completely different way when recorded before and after 

electrode treatment with 10%HNO3 + 2.5%K2Cr2O7 for 90 s and applying +1.5 V/SCE. The 

oxidation and reduction peaks decrease or disappear as the number of cycles increases for 

the electrode without treatment probably due to the removal of the hydrophilic gold 

nanoparticles and thionine molecules from the electrode. The authors also reported that the 

solution gradually passed from transparent to opaque. On the contrary, for the treated 

electrode the cyclic voltammograms improved with the number of cycles, probably because 

of the thionine molecules could be firmly attached to carbon surface via –Co-NH- structure. 

It is also possible that some electropolymerization occurs, constructing a third-generation 

network which could give higher stability to the thionine. The treatment also modified the 

carbon particles which underwent oxidation to form –COOH groups which can react with –

NH2 of thionine to form new –CO-NH- groups. Gold nanoparticles synthesized on 
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multiwall carbon nanotube screen printed electrodes were also evaluated using cyclic 

voltammetry before and after modifications having Fe(CN)63-/4- as redox probe (Sharma et 

al., 2008). The MWCNTs were treated with acid solution to produce COOH-MWCNT/SPE 

and these MWCNTs were mixed in a Nafion solution. The influence Nafion 

concentrations deposited on bare SPE was studied in the presence of the redox probe. The 

greatest anodic peak current was obtained with 0.1 % Nafion solution, which was chosen 

for further experiments. Higher concentrations, mainly 1% of Nafion, blocked the electrode 

surface.  A series of unmodified and modified SPE with gold nanoparticles (Nano-Au/SPE), 

MWCNTs (MWCNT/SPE), or gold nanoparticles plus MWCNTs (Nano-

Au/MWCNTs/SPE) were studied in 1 × 10-3 mol L-1 Fe(CN)63-/4-, 0.1 mol L-1 KCl at 50 mV s-

1. All modified electrodes showed a peak current higher than the bare one, which was 

attributed to the increase of the effective electrode surface area.  This result is interesting 

because the active area increased, but in general, the modification of the electrode leads to a 

decrease in the anodic or cathodic peak current of the redox probe, except when some 

catalytic or immunosensor reaction occurs.  

Gold nanoparticles and agar-agar solution deposited on graphite SPE generates Nano-
gold/SPE and they can be evaluated by cyclic voltammetry performed in a thionine solution 
as redox probe (Zhao et al., 2007). For instance, in acetate buffer solution the CV behavior of 
thionine showed that the pair of current peaks decreased and shifted in a negative direction 
as the pH increased from 4 to 7, indicating that H+ favored the redox reaction of thionine. To 
demonstrate the stability of the SPE nine parallel tests were done at pH 5.5 and the anodic 

potential for thionine was 0.796 ± 0.042 V/Ag|AgCl|KCl (KCl concentration not 

mentioned), and the peak current was 0.276 ± 0.003 µA, showing good reproducibility. The 
enzymatic catalysis, which indicates that the system works, was clearly demonstrated when 
H2O2 was added to the thionine solution since the cathodic peak greatly increased and the 
anodic one disappeared. However, the cathodic current greatly diminished when the 

immunoreaction (Vibrio parahaemolyticus, VP + anti-VP → immunocomplex) was permitted 
to occur. A similar study was also developed with immunologically-sensitive elements for 
prostate-specific antigen (PSA) detection using a self-assembled phenylboronic acid 
monolayer on gold (Liu et al., 2008), and CV together with photometry was applied to detect 
the formation of imunocomplexes of HRP-conjugated anti-PSA and its antigen.  
An interesting application of cyclic voltammetry to characterize immunosensors was 
recently reported (Parker et al., 2009) for aflotoxin M1 detection using an array of 35 

microsquares gold electrodes with 20 µm × 20 µm dimensions and edge-to-edge spacing of 

200 µm, which avoids overlapping diffusion layers between neighboring microelectrodes in 
the array. The marker was 1.0 × 10-3 mol L-1 ferrocene monocarboxylic acid in 0.01 mol L-1 
PBS solution at 5 mV s-1, and a sigmoid response characteristic of steady-state CVs as 
expected for microelectrodes with a sufficient separation between two adjacent electrodes 
was obtained. The microelectrode interspacing was made of silicon nitride modified with 
aminosilane and cross-linked with 1,4-phenylene diisothiocyanate to give a larger modified 
area and to reduce the effect of surface modification on the electrode surface 
(microelectrodes). It leads to a signal less attenuated by the immobilized reagents. 
Afterwards, DNA was incubated and it was thought that only the surface covered with 
silicon nitride modified by aminosilane and 1,4phenylene diisothiocyanate had been 
modified with DNA. However, when microsquare platinum electrodes were used the 
current diminished in comparison to the bare electrode, suggesting that some silane 
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attached to platinum surface allowing DNA interaction; this reduced the active area for 
Fe(CN)63-/4- reaction. When microsquares of gold were used the current was the same for 
both bare and DNA-modified electrodes, suggesting that the modification procedure has not 
significantly covered the gold surface. Certain shielding of Fe(CN)63-/4- reaction can be due 
to the physical coverage of the electrode by DNA and electrostatic repulsion between the 
negatively charged redox couple ions and the DNA phosphate backbone. 
Lately, many other studies were developed using gold nanoparticles attached on a modified 
glassy carbon electrode, which is normally treated by applying a potential perturbation to 
produce hydroxyl groups on the surface, and cyclic voltammetry was used to characterize 
the changes caused by the different surface treatment and modification steps up to the 
construction of the immunosensor (Yuan et al., 2009; Lai et al., 2009).  
In these cases as in many others, in general, cyclic voltammetry was used to identify the 
presence of modifiers on the surface by analyzing the response of a redox couple on the 
distortions of the CVs such as separation of peak potentials and blocking of the current. 

Rarely, cyclic voltammetry was used to estimate the surface coverage, θ, values in 
immunosensors characterization, which were also compared with those estimated from EIS 

studies (Ferreira et al., 2009).  From CV studies, the values of θ for CYS-SPE, GA-CYS-SPE, 
Tc85 protein-GA-CYS-SPE were 0.10, 0.35 and 0.84, respectively, while from EIS they were 
0.32, 0.34 and 0.99, respectively.  

3.1.2 Electrochemical impedance spectroscopy  

Electrochemical impedance spectroscopy is a very useful technique to study almost all 

phenomena occurring at an interface since it can explore a large frequency range covering a 

vast interval of time constant values. It allows to separate different processes such as 

capacitive, charge transfer, mass transfer, adsorption/desorption, and so on. For this reason, 

EIS is a powerful tool for investigating the mechanisms of electrochemical reactions, 

measuring transport properties of materials, measuring dielectric properties of materials, 

exploring properties of porous electrodes, investigating passive surfaces, investigating 

modified electrodes and, more recently, it has often been used to monitor the properties of 

SAMs, mainly in the presence of a redox couple in the electrolyte solution. It is important to 

note that the studies in the absence of a redox couple in the working solution are also of 

great significance to understand the stability, the electrical and physicochemical properties 

of the modified surface, but are rarely performed in the immunosensors field. The 

possibilities of using EIS are shown in Fig. 4. 

Even considering that EIS is a powerful tool for studying many phenomena, as in the case of 

other electrochemical techniques, it does not allow the identification of chemical species. For 

this reason, many non-electrochemical techniques must be used to understand the global 

process operating on the interface which is being studied.  

Where does the power of the EIS technique come from? It is a linear technique and as 

consequence the results are directly interpreted based on the Linear Systems Theory; if an 

infinite frequency range is explored, the impedance or admittance contains all of the 

information that can be obtained from the system by linear electrical perturbation/response 

techniques; the experimental efficiency is extraordinarily high, it means that a high quantity 

of information is transferred to the observer compared to the quantity produced by the 

experiment; the validity of the data is readily determined using integral transform 

techniques that are independent of the physical processes involved. So, what is the main 
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problem of using impedance? In general, the major problem resides in the models and 

mathematics involved in the data interpretation (MacDonald, 2006).  

To review the fundamentals and to get more details and applications of impedance 
electrochemical spectroscopy some text books are recommended (Orazem & Tribollet, 2008; 
Macdonald, 1987; Gabrielli, 1980). 
   

 

Fig. 4. Some systems that can be studied using EIS. 

A great advantage of using EIS is that due to the small amplitude of the sine wave (current 

or potential) applied to perturb the system respect to its equilibrium or steady state, a 

sinusoidal perturbation of certain frequency results in a sinusoidal response with the same 

frequency, although the amplitudes of the entry and exit signals may be different and may 

present a phase shift. If the perturbation is appropriate the response can be analyzed using 

the theory of electrical circuits, which can be represented by a proper arrangement of 

resistors, capacitors and inductors, assuming a linear system. These equivalent electrical 

circuits (EEC) are models developed to explain the electrochemical impedance data and they 

must obey at least two conditions (Bonora et al., 1996): all elements of the EEC must have a 

clear physical meaning and associated to a property of the system which should be able to 
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produce that electrical response; the EEC must be as simple as possible and generate 

impedance spectra which are different from the experimental one only by a small defined 

quantity. The error must be low, not periodical or regular as a function of the frequency.   
However, one needs to know that the electrochemical systems are not linear systems, and 
their response can only approximate of a linear system if, for instance, an enough small 
perturbation in relation to the equilibrium or steady state is applied to the system. On the 
other hand, a very small perturbation produces, generally, only a very small response 
signal, which can be affected by the noise, with a low signal-to-noise ratio. Thus, some 
requirements must be followed or observed to have a trustful impedance experiment such 
as linearity, stability and causality (Orazem & Tribollet, 2008, Gabrielli, 1980). It is possible 
that more than one EEC fits well to the experimental data and the choice by one of them 
must be based on the knowledge of the physical and physical-chemical phenomena 
occurring at the interface and on experiments under other conditions.  
The obedience to the linearity principle depends on the amplitude of the sine wave, which 
is governed by the compromise between the desire to minimize the nonlinear response by 
using small amplitude, and to minimize noise by using a large amplitude perturbation. 
Therefore, choose the appropriate amplitude value of the sine wave perturbation is 
always very important to guarantee the best response of the system at each frequency 
applied and that the system is still exhibiting a linear behavior, which must be 
experimentally demonstrated. Note that all equipment gave the amplitude of the potential 
sine wave as rms (root mean square) that is defined as: amplitude rms (mV) = amplitude 
(mV) × (√2)-1.  To evaluate if the system is or not in a linear regime one can record several 
impedance diagrams applying different amplitudes keeping all other parameters 
constant. Afterwards the modulus of impedance (|Z|) values are obtained from the 
impedance diagrams at certain frequencies (choose one or more frequency values but it is 
very important to examine the low frequency region since this region is more susceptible 
to a non-linearly response).  The |Z|/|Z| ratio values measured at certain frequency 
(denominator obtained at 5 mV (rms)) are plotted against the amplitude (rms). Fig. 5 
shows the |Z|/|Z| ratio values vs. amplitude plot for a carbon paste electrode in 0.1 mol 
L-1 phosphate buffer saline (PBS) solution pH 7.4 containing 1 × 10-3  mol L-1 Fe(CN)63-/4- 
ions. This figure clearly indicates that the system responds non-linearly for amplitude 
(rms) higher than 10 mV at the frequency of 50 mHz. 
The stability means that the system should be stable at least during the time course of the 
experiment. It should be important at the end of an EIS experiment reproduces it beginning 
the impedance recording from the low to the high frequency, just the opposite that the 
experiment is normally performed. The causality is another important aspect in 
electrochemical impedance measurement: it means that no variation in the system can be 
observed before applying the perturbation. Also, the measured impedance must be finite. 
If one compares a simulating with an experimental data set the interpretation of 
experimental results are rarely simple and further attention is needed. The difficulty may 
arise from the formation of adsorbed intermediates, which can lead to an adsorption 
pseudo-capacitance, two separately or partially overlapped semicircles can be shown 
meaning that the reaction can be more complex than the model; surface heterogeneities are 
equal to different charge transfer resistances, and also capacitances in a smaller extension; a 
range of time constants near each other can be a result of differences in the charge transfer 
kinetic from site to site, producing overlapping of time constants; and surface roughness. All 
these factors led to a depression of the semicircle causing its center to be below the real 
impedance axis (Gileadi, 1993; Jorcin et al., 2006) and then a constant phase 
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Fig. 5. Modulus of impedance (|Z|) vs. amplitude (rms) for a carbon paste electrode in 0.1 
mol L-1 phosphate buffer solution pH 7.4 containing 1 × 10-3 mol L-1 Fe(CN)63-/4- ions at 25oC 
and 50 mHz. 

element (CPE) substitutes a capacitor in EECs (Barsoukov &  Macdonald, 2005). For the case 
that a CPE is parallel with a charge transfer resistance (RCT) to form a “classical” semicircle, 
the following equation allows to calculate the capacitance value (Hsu & Mansfeld, 2001): 

 C=CPE(ωmax)n-1=Yo(ωmax)n-1 (2) 

In this equation Yo is the canstant phase element parameter, ωmax represents the frequency at 

which the imaginary component reaches a maximum value and n is the exponent. Figure 6 

shows the simulation of an EEC with a CPE parallel with a charge transfer resistance with 

different values of n. The results demonstrated that the depression of the semicircle 

increases as the n values increase.  

Other complications come from the experiment such as non-uniform current distribution 

caused by the geometry of the cell as a whole or by an excessive approximation of the 

Luggin capillary of the reference to the working electrode in an effort to minimize the ohmic 

drop; solution creeping in the crevice formed between the working electrode and its non-

conducting holder; changes occurring on the surface during measurement, for instance, 

corrosion of the working electrode (Gileadi, 1993). It is very important to note that the 

equations for EIS are based on the assumption that the surface is invariant during the 

frequency sweeping. It is worse if one scans up to very low frequencies.    

All researchers using electrochemical techniques and mainly EIS must be careful and adopt 

very simple but very important cautions: use shielded cables and cables as short as possible; 

put the measuring system (electrochemical cell and equipment) in a Faraday cage; connect 

|
Z

|
/|

Z
|

a
m

p
l.

 =
 5

 m
V

(r
m

s)
 

www.intechopen.com



 
Preparation and Characterization of Immunosensors for Disease Diagnosis   

 

199 

the electrical systems to a stabilized voltage; use no-break and excellent ground with wires 

separated from the electricity cables; do not connect to the stabilized electricity line 

equipment which can cause noise; avoid working near equipment with significant magnetic 

field; avoid using a plug located near distribution electricity lines; check switch on and off 

and other electric switches, electric contacts of electronic plates, cables and alligators clips 

(sometimes nickel or silver deposition or even metallic welding is recommended); be 

attentive with other sources of noise like electronic ballast for fluorescent lamp, radio waves, 

etc.; choose appropriate noise filters; test the potentiostat/galvanostat with a dummy cell 

(this test does not work for open circuit measurements because of filters only work when the 

equipment is on, meaning that some potential or current is applied, not at open circuit 

potential); check if the Luggin capillary is not blocked and so on. 
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Fig. 6. Simulating impedance diagrams for the ECC showed in the figure for RCT = 10.000 Ω, 

CPE = 1 × 10-5 µF cm-2 sn-1 and different n values. 

An important aspect to be considered in impedance measurement is the working/counter 

electrodes areas ratio. Considering that both working and auxiliary electrodes are connected 

in series the capacitance measured of the cell corresponds to the sum of the inverse of both 

capacitances (C) (Orazem & Tribollet, 2008). The impedance of the cell is given by Zcell = ZWE 

+ ZCE where ZWE is the impedance of the working electrode and ZCE is the counter electrode 

one. As both electrodes are good electrical conductors the real part of impedance is 

negligible and the imaginary part is 1/jωC where ω is the frequency and j is equal √-1. 
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However, if the area of the counter electrode is 20 times (or more) greater than the working 

electrode its capacitance is much higher than the capacitance of the working electrode. 

Therefore, the term 1/jωCCE is much lower, and the capacitance of the electrochemical cell 

can be considered as that of the working electrode. Also, the impedance measured is 

normally not influenced by the one of the reference electrode due to the following facts: a) in 

terms of resistance or impedance the contribution of the reference is negligible since the 

entering impedance of the potentiostat is generally equal or greater than 1012 Ω, which is 

much higher than the impedance of the reference; b) in terms of capacitance the contribution 

of the reference can also be neglected considering the very low current passes through the 

reference and a Pt wire connected to the reference via a 0.1 µF non electrolytic capacitor can 

also be used. 

These very simple recommendations which seem naïve are mainly for people who are being 
introduced in electrochemical techniques especially in electrochemical impedance 
spectroscopy as it is very sensitive to the experimental arrangement.  
For each frequency applied only one impedance value is given in the impedance diagram 
for the system and it is recommended to read 10 to 12 points/decade which should be 
obtained for a less stable system using a low integration time and for more stable systems a 
higher integration time. The experimental points of a impedance diagram cannot be 
connected each other. The integration time means the necessary time to read each point of 
the impedance diagram with the precision chosen. This time is inserted in EIS acquisition 
software in different ways depending on the instrument. Therefore, each point in the 
impedance diagram represents a mean value of a certain numbers of reading and when the 
instrument cannot read an impedance value at the applied frequency with the precision 
established by the operator a dispersed point is obtained or the time required is too long to 
get a point in the impedance diagram. At low frequencies it is more common observe 
dispersed points due to the long time of measuring.     
The impedance measurement represents the response of all components of the system: 
instrument of measuring, electrochemical cell and connection cables. In this case the limits 
of the instrument mainly at extreme frequencies or impedance must be considered. The 
response of an ideal electrochemical cell consisting of resistors and capacitors can be 
evaluated in an Accuracy Contour plot (Gamry Instruments, 2006) where the following 
parameters are established: the maximum measurable impedance, the lowest measurable 
capacitance, the maximum measurable frequency, the low impedance at high frequencies 
and the lowest measurable impedance. The impedance of an electrochemical cell can also be 
measured with some accuracy using this type of plot if the data are collected following the 
EIS theory: linear stationary system without current fluctuation and using an appropriate 
electrochemical cell.  
The maximum impedance that the equipment can measure with accuracy at low frequencies 
is limited by the current fluctuation in the cell, fluctuation in the current measuring by the 
instrument and internal resistance. Under this condition the current values measured are 
very low, for instance, for an impedance of 1012 and 10 mVrms the current will be 10-14 A, and 
the noise can significantly influence the measuring, making it important to use of a Faraday 
cage. This inconvenience can partially be removed by increasing the perturbation amplitude 
which is limited by the linearity of the system. 
The capacitance of the instrument is important for systems like semiconductors, dielectrics 
and organic coatings (paintings) deposited on metallic substrates. For coatings the 
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capacitance decreases as its thickness increases, situation in which the capacitance of the 
instrument can be important.  
In general the maximum frequency is limited by the slow response of the components of the 
potentiostat, its instability, and the slow response of the reference electrode, which can be 
solved coupling a platinum wire (fast response) to the reference by a non-electrolytic 
capacitor. The capacitance of this capacitor must be chosen according to the system which is 
being studied. Systems with low impedance values (batteries and fuel cells) are normally 
studied at high frequencies where an inductive signal can be obtained. This inductive signal 
may originate from a physical chemistry process or can be an artifact caused by the 
inductance of the cell cables. 
In the case of low frequencies and low impedances the measurement can be limited by the 
ability of the potentiostat in allowing the passage of high currents (an amplitude of 10 mVrms 

with an impedance of 0.01 Ω generates a current of 1 A).  
Experimental and simulated data are frequently represented in different formats such as 

complex plane (Nyquist) plot (Z” vs. Z’ where Z” is the imaginary and Z’ the real 

impedance), complex plane admittance plot (-Y” vs. Y’ where Y” represents the imaginary 

part of admittance and Y’ the real part), complex plane capacitance plot (C” vs. C’ where C” 

represents the imaginary part of capacitance and C’ the real part), Bode impedance modulus 

vs. frequency (log |Z| vs. log (f /Hz)) and Bode phase angle vs. frequency (-θ or -φ vs. log (f 

/Hz)). All complex plane plots must be isometrically represented. Sometimes it is 

convenient to subtract from the real part of impedance data the solution resistance before 

plotting the complex plane plots or normalize all complex plane plots to the same values of 

solution resistance. If the complex plane plots at high frequency show very different values 

a correction of the Bode phase plot is also recommended. This correction must result in the 

same values for both real and imaginary values at high frequency (choose a frequency in a 

stable region). 

Regarding immunosensors, the study of the electrochemical impedance response of each 

step of the electrode modifications, which can be related to the nature of the different 

surfaces generated, may inform about the charge transport through the layers, surface 

coverage, and on the influence of antigen or antibody incubation time on the layer stability, 

mainly distinguishing physical and chemical interactions. EIS can also be used to develop 

impedimetric sensors. 

For the major part of the studies in which the EIS technique was used to characterize each 

step of an electrode modification Fe(CN)63-/4- redox couple was employed as a marker and 

the data were qualitatively analyzed (Xiulan et al. 2011; Wang & Tan, 2007; Yuan et al., 2009; 

Wang et al., 2008; Liang et al., 2008). In the Nyquist plot a semicircle at high or middle 

frequencies followed by a straight line at lower frequencies were frequently observed. The 

semicircle was attributed to the redox process involving the oxidation and reduction of the 

marker and the straight line was related to the diffusion-limited process of the species in 

solution. The amplitude of the semicircle corresponds to the charge transfer resistance (RCT) 

of the marker oxidation and reduction, the real impedance at highest frequency corresponds 

to the solution resistance, and the capacitance of the electrical double layer can be obtained 

from the frequency value at the maximum of the semicircle or from the value of the CPE. 

The values of the elements of the ECC are obtained by fitting the experimental data with an 

appropriate EEC which generally corresponds to the Randles circuit where a CPE 

substitutes the ideal element. The values of RCT generally increased with the modification 
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steps since the access of marker species to the electrode surface became more difficult and 

the semicircle overlapped the straight line which may disappear depending on how the 

electrode surface has been blocked. The values of EEC elements obtained in the simulation 

must be compared with those previously reported for the same or similar systems (Ferreira 

et al., 2009).   

In some cases the stepwise process of the immunosensor construction was studied by EIS 
(Yuan et al., 2009)] and the real impedance measured in Fe(CN)63-/4- redox couple PBS 
solution (pH 7.0)  was higher for the bare glassy carbon electrode than for the electrode 
modified with gold nanoparticles due to the increase in the active area of the electrode. In 
the next step the electrode was modified with nickel hexacianoferrate the charge transfer 
resistance increased due to the partial blocking of the electrode surface. However, the RCT 
value decreased again when gold nanoparticles were incorporated to this modified 
electrode. The decrease of RCT can be related to the increase of the conductivity of the 
system. When more modifications with organic molecules were performed the RCT increased 
as expected.  
Recently, more detailed studies on the surface modification using EIS with (Ferreira et al., 
2009) and without (Ferreira et al., 2010) a redox marker (Fe(CN)63-/4- in the solution were 
performed. In the first study diffusion coefficients of the marker, RCT and Cdl values were 
obtained and compared with data of literature for the bare gold-based SPE. The values of 
apparent RCT and surface coverage of SPE with CYS, CYS-GA and CYS-GA-Tc85 protein 

were determined based on a treatment of impedance previously developed for θ values 
lower (Gueshi et al., 1978; Matsuda et al., 1979) and higher (Finklea et al., 1993) than 0.9. The 
modified electrode was interpreted as a perforated layer with the transfer reaction occurring 
at the uncovered regions of the electrode surface which represent defects on the SAM. The 
changes observed in the cyclic voltammograms and complex plane plots were analyzed 
considering that the defects are disc-like shapes uniformly distributed over the surface. 
Therefore the modified electrodes could behave as microarray electrodes with the redox 

species diffusing to the bottom of the pinholes to undergo charge transfer reaction. For θ > 
0.9 the equations for the impedance were derived for microarray electrodes based on the 

nonlinear diffusion (Amatore et al., 1983) and from the real faradaic impedance, Z’f vs. ω-1/2 

and the appropriate equations RCT and σ (Warburg coefficient) can be obtained when ω→0. 
The faradaic impedance can be obtained by subtracting the solution resistance from the real 

part of impedance values (Janeck et al., 1998). The σ value is used to obtain the diffusion 
coefficient value using equation (3):  

 σ=√2 RT/(n2F2CA√D)  (3) 

where R, T and F have their usual meaning, C is the concentration of redox species, A is the 
geometric area of the electrode, n the number of electrons transferred per molecule or ion, D 
the diffusion coefficient. From the intersection of the lines at high and low frequency 
domains the nearest spacing between pinholes can be estimated, and then the values of ra 
(mean radii of active area, i.e. pinholes) and rb (mean radii of inactive area, space between 
neighbor pinholes). From impedance data the surface coverage were estimated to be around 

0.32 for CYS-SPE, 0.34 for GACYS-SPE, and 0.99 for Tc85 protein-GA-CYS-SPE. For θ = 0.32, 
the radii of individual active regions, and of surrounding inactive regions, were estimated to 

be 17 and 22 µm, respectively, for both CYS-SPE and GA-CYS-SPE. For the Tc85 protein-GA-

CYS-SPE system (θ = 0.99) the estimated radii of pinholes (ra) and inactive areas (rb) were 10 
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and 98 µm, respectively, and the distance between two adjacent pinholes, 2rb, was 196 µm. 
These distances are important to allow and facilitate immunoreactions to occur, and can also 
be regulated by producing SAMs with molecules of different chain length. 
In the second study, electrochemical impedance spectroscopy was used to investigate each 
step of the procedure employed to modify a screen-printed electrode in pH 6.9 phosphate 
buffer in the absence of a marker in the solution (Ferreira et al., 2010). The SPE was modified 
with self-assembled monolayers of CYS followed by GA. Afterwards, the T. cruzi antigenic 
protein Tc85 was immobilized for 2 to 18 hours and bovine serum albumin, BSA, was used 
to avoid non-specific reactions. The complex plane plots were much more complicated to 
analyze when compared to the electrodes subjected to the same modification having a redox 
marker in the working solution. Different EECs have been used to fit the complex plane 
plots depending on the step of modification. It was demonstrated that phosphate ions 
adsorb on the electrode surface and the presence of oxygen altered the response of the bare 
one when compared to the one obtained in its absence. The real impedance values for each 
step of modification were much higher than those obtained in the presence of the redox 
marker and increased after each step of surface modification. The modulus of impedance 
obtained at 10 mHz from the log |Z| vs. log f (not shown) increased in the following order: 

bare SPE (32 kΩ cm2) < SPE-CYS (48 kΩ cm2) < SPE-CYS–GA (53 kΩ cm2) << SPE-CYS–GA-

Tc85 protein (105 kΩ cm2) << SPE-CYS–GA-Tc85 protein blocked with BSA (575 kΩ cm2). A 
very significant result that originated from this investigation using EIS was the influence of 
the incubation time on the stability of the GA-CYS-SPE incubated with Tc85 protein. The 
impedance response was extremely dependent of the incubation time. The best incubation 
time of the Tc85 protein was 6-8 hours. 

The total real impedance was very low (around 2 kΩ cm2) for 2 and 4 h of incubation. A 

small capacitive semi-circle, followed by an incomplete capacitive arc was observed for 2 h, 

while an inductive loop was observed for 4 h at low frequencies. The real impedance 

increased considerably (from around 2 kΩ cm2 to more than 120 kΩ cm2) for 6 and 8 h of 

incubation and for 15 and 18 h incubation the real impedance decreased drastically. For 18 h 

of incubation an inductive loop was clearly observed, followed by a capacitive arc at lower 

frequencies. Bode phase plots showed three time constants for curves obtained for 2, 4 and 

18 hours of protein incubation while  two time constants for curves were recorded after 6, 8 

and 15 hours. The interpretation of impedance data was based on physical and chemical 

adsorption, degradation of the layer at high and middle frequencies and charge transfer 

reaction involving mainly the reduction of oxygen at low frequencies. In the absence of a 

redox maker in an aerated phosphate buffer solution, these time constants were interpreted 

based on physical and chemical adsorption and degradation of the layer at high and middle 

frequencies, and charge transfer reaction involving mainly the reduction of oxygen at low 

frequencies (Ferreira et al., 2010). In conclusion, it was demonstrated that the 

electrochemical impedance spectroscopy is a powerful tool to evaluate the different stages 

and the integrity of the surface modifications and to optimize the incubation time of protein 

in the development of immunosensors.  

By plotting the differences in RCT values of a redox probe for a modified electrode before 

and after the assay procedure as a function of the antigen or antibody concentration an 

impedimetric immunosensor can be developed (Balkenhohl, T. & Lisdat, 2007; Barton et  al., 

2008; Vig, et al., 2009; Xiulan, et al., 2011). Navrátilová and Skládal (Navrátilová & Skládal, 

2004) demonstrated the possibility of monitoring the immunoreaction of 
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dichlorophenoxyacetic acid herbicide (acid 2,4-D) on SPEs modified with SAMs at a fixed 

frequency. EIS were also used to study the regeneration of the immunosensor (Liu et al., 

2008;Xiulan et al., 2011) by comparing the impedance diagrams and parameters obtained for 

immnusensors and after removing the antigen or antibody from the surface and following 

the next steps of immunosensor construction and analysis using the same protocol as before.  

In general, the first regeneration causes insignificant changes in the immunosensor 

response, but second and further regenerations diminished the immunosensor efficiency. 

3.1.3 Other electrochemical techniques 

Quartz crystal microbalance (QCM), ellipsometry, chronoamperometry, amperometry, 
square wave voltammetry (SWV), diferential pulse voltametry (DPV) and measurements of 
electrical resistance or conductance have also been used to study the characterization and 
the assay immunosensors. 
The QMC technique has received special attention in the latest years and is based on the 

application of an antibody coating or an enzyme on a quartz crystal resonator with a 

cleaning gold surface which will capture a specific pathogen. The capture of the target 

pathogen increases the mass or viscosity of the environment of the gold surface changing 

the frequency resonance of the crystal. The impedance of the oscillating quartz crystal 

exposed to different concentrations of Salmonella was measured (Kim et al., 2003). An 

antibody-coated paramagnetic microspheres captured the Salmonella cells and the complex 

was magnetically moved to the sensing crystal and then captured by immobilized 

antibodies. The magnetic force was useful to enhance the response of the sensor. Many other 

studies were developed using the QMC technique to confirm the deposition of biological 

molecules on self-assembled superstructures and immunosensor assay (Shen et al., 2001; 

Calvo et al., 2004; Tlili et al., 2004; Mutlu et al., 2008; Boujday et al., 2009). A deep discussion 

on the use of QMC technique on the step-by-step immunosensor characterization and on 

immunosensor assay can be found in another specific chapter in this book.  
In the immunosensors field the ellipsometry technique is generally used to characterize and 
understand antibody Langmuir-Blodgett films  immobilized on immunoassay surfaces and 
determine the mean thickness of the films (Tengvall et al., 1998; Preininger et al., 2000; 
Nagare & Mukherji, 2009). 
Chronoamperometry and amperometry techniques were largely used to measure the 
current  and catalytic current generated by applying certain potentials and time during the 
immunosensors construction and immnunosensors assay (Martins et al., 2003; Ferreira et al., 
2005; Zacco et al., 2006; Panini et al., 2008; Pividori et al., 2009). 
Square wave voltammetry (SWV) and differential pulse voltammetry (DPV) as analysis 
techniques are much more sensitive than cyclic voltammetry and amperometry mainly due 
to the elimination of the background current during the experiment course and for this 
reason they are frequently used in immunosesors assay (Arias et al., 1996; Wang & Tan, 
2007; Tang & Xia, 2008; Yang et al., 2009). 
The measurements of electrical resistances or conductance (Tang & Xia, 2008; Maeng et al., 
2008) have also been used to characterize immunosensors and in immunosensors assay. In 
the first case less labor and expensive and shorter time consuming immunosensor than 
conventional one was developed and in the second case a biosensor system that can be used 
for simultaneous screening of multiple pathogens in a sample was fabricated and 
characterized. 
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3.2 Non-electrochemical techniques 

Surfaces modified with SAMs and by the different steps of immunosensors construction 
have also been characterized using infrared-based techniques including diffuse-reflectance 
infrared Fourier transform spectroscopy (DRIFTS), Fourier transform infrared spectroscopy 
(FTIR) and Fourier transform infrared attenuated total reflectance spectroscopy (FTIR-ATR). 
Infrared-based techniques have successfully been used in many surfaces characterization as 
adjunct to more well-known spectroscopic methods and are often useful where traditional 
techniques fail. Transducers modified with SAMs and biological molecules exhibit the 
conditions required for analysis, otherwise the molecules are diluted with non-absorbing 
powder such as KBr (Tengvall et al, 1998; Pradier et al., 2002).  
Others techniques have been used as X-ray photoelectron spectroscopy (XPS) (Yam et al., 
2001), Auger electron spectroscopy (AES) (Yang et al., 2009; Huang & Lee, 2008), contact 
angle measurements (Martins et al, 2003), surface plasmon resonance (Sigal et al., 1998; Silin 
et al., 1997), radiolabelling (Tidwell et al., 1997) for immunosensors characterization.  
Atomic force microscopy (AFM) has been utilized to analyze the presence of the biological 
layer on the transducer and to obtain information on the surface morphology of the 
biological element of the sensor (topography images) or to immobilize the antigen or 
antibody-coated cantilever as immunosensor transducer, (Takahara et al., 2002; Ferreira et 
al., 2006; Grogan et al., 2002; Ferreira & Yamanaka, 2006). 
The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were 
also used (Gan et al., 2010; Lu et al., 2010) since they can inform about the morphology of the 
unmodified and modified surfaces and on the nature of the nanoparticles used to construct 
the first step of an immunosensor or added after the end of some specific step to enhance the 
immunosensor response.  
Enzyme-linked immunosorbent assay (ELISA) is a classical method employed in the 
optimization of the methodology to determine the presence of an immobilized active 
antibody or antigen and to monitor the lifetime and stability of the immobilized biological 
molecule and is also used to characterize the steps of immunosensors construction. The 
spectrophotometric method is used to detect the products of a reaction involving antigen 
and antibody with enzyme-linked and is essentially important to consider the principle of 
ELISA methodology on the surface transducer (Grogan et al., 2002; Ferreira et al., 2005). 

4. Concluding remarks 

The immobilization of antibodies on solid-phase materials has been used for the 
development of the immunosensor and different procedures were described in the 
literature. The potentiality of the methodology for disease diagnosis could be transformed 
into tools for clinical laboratories if the device would be repetitive, reproducible and 
sensible enough to distinguish the health from the sick person. The stable immobilization of 
biological compound on the transducer surface and then the surface characterization 
through electrochemical and non-electrochemical techniques will improve the real 
application of such devices. 
Several electrochemical techniques such as potentiometry, amperometry, differential pulse 
voltammetry, square wave voltammetry, quartz crystal microbalance and electrochemical 
impedance have been used to determine the performance of the immunosensors and for 
analytical applications. However, it was also demonstrated in this chapter that some of these 
techniques such as cyclic votammetry and mainly electrochemical impedance based on the 
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microelectrodes theory can be used to have a better idea about the surface coverage and also 
to estimate the size of pinholes and the mean distance between two adjacent pinholes. This 
distance is important to allow and facilitate the immunoreactions, and can also be regulate 
by producing SAMs with molecules of different chain length. It was also suggested that 
electrochemical impedance can satisfactorily be used to choose the best incubation time of 
each step of immunosensor construction. EIS may also help to a better understand the 
changes in the electrochemical response of each step of the immunosensor construction in 
the absence and presence of a marker since it is a high sensitivity technique and allows 
separating the contribution of the solution resistance from the other processes occurring at 
the electrode and solution interface.   
The tendency in the immunosensor development seems indicate studies involving 
microfluidics, immunoarrays, transducers modified with nanoparticles, nanotubes and 
nanocones to produce devices with high sensitivity and able to be used for simultaneous 
screening of multiple pathogens. 
The challenge is to develop immunosensor with a good performance to allow the point-of-
care testing (POCT) it means a clinical results conveniently and immediately to the 
physician. 
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