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1. Introduction 

The ability to assess health status, disease onset and progression, and monitor treatment 
outcome through a non-invasive method is the main aim to be achieved in health care 
promotion and delivery and research. There are three prerequisites to reach this goal: 
specific biomarkers that indicates a healthy or diseased state; a non-invasive approach to 
detect and monitor the biomarkers; and the technologies to discriminate the biomarkers. 
The early disease diagnosis is crucial for patient survival and successful prognosis of the 
disease, so that sensitive and specific methods are required for that. Among the numerous 
mankind diseases, three of them are relevant because of their worldwide incidence, 
prevalence, morbidity and mortality, namely diabetes, cardiovascular disease and cancer. 
In recent years, the demand has grown in the field of medical diagnostics for simple and 
disposable devices that also demonstrate fast response times, are user-friendly, cost-
efficient, and are suitable for mass production. Biosensor technologies offer the potential to 
fulfill these criteria through an interdisciplinary combination of approaches from 
nanotechnology, chemistry and medical science. 
The emphasis of this chapter is on the recent advances on the biosensors for diabetes, 
cardiovascular disease and cancer detection and monitoring. An overview at biorecognition 
elements and transduction technology will be presented as well as the biomarkers and 
biosensing systems currently used to detect the onset and monitor the progression of the 
selected diseases. The last part will discuss some challenges and future directions on this 
field. 

2. Biorecognition elements and transduction technology 

2.1 Biorecognition elements 

Clinical analyses are no longer carried out exclusively in the clinical chemistry laboratory. 
Measurements of analytes in biological fluids are routinely performed in various locations, 
including hospital, by caregivers in non-hospital settings and by patients at home. 
Biosensors (bioanalytical sensors) for the measurement of analytes of interest in clinical 
chemistry are ideally suited for these new applications. These factors make biosensors very 
attractive compared to contemporary chromatographic and spectroscopic techniques. 
A biosensor can be generally defined as a device that consists of a biological recognition 
system and a transducer, for signal processing, to deduce and quantity a particular analyte 
(Hall, 1990). Biosensors provide advanced platforms for biomarker analysis with the 
advantages of being easy to use, rapid and robust as well as offering multianalyte testing 
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capability; however a specific biomarker is necessary. Biomarkers are molecules that can be 
objectively measured and evaluated as indicators of normal or disease processes and 
pharmacologic responses to therapeutic intervention (Rusling et al., 2010).  
The first biosensor was reported by Clark and Lyons (1962) for glucose in blood 
measurement. They coupled the enzyme glucose oxidase to an amperometric electrode for 
PO2. The enzyme-catalyzed oxidation of glucose consumed O2 and lowered PO2 that was 
sensed, proportionally to the glucose concentration in the sample. The enzyme-based sensor 
was the first generation of biosensors and in the subsequent years a variety of biosensors for 
other clinically important substances were developed. Therefore, biosensors can be 
categorized according to the biological recognition element (enzymatic, immuno, DNA and 
whole-cell biosensors; Spichiger-Keller, 1998) or the signal transduction method 
(electrochemical, optical, thermal and mass-based biosensors; Wanekaya et al., 2008) (Fig 1). 
 

 

Fig. 1. Schematic of a biosensor (Arya et al., 2008). 

Substantial amounts of published work on the enzyme-based biosensors are found in the 
literature due to their medical applicability, commercial availability or ease of enzyme 
isolation and purification from different sources and also enzymes can be used in 
combination for detection of a target analyte (D'Orazio, 2003). By acting as biocatalytic 
elements, the enzymatic reaction is accompanied by the consumption or production of 
species such as CO2, NH3, H2O2, H+, O2 or by the activation/inhibition activity that can be 
detected easily by various transducers and correlate this species to the substrates. Amongst 
various enzymes, glucose oxidase, horseradish peroxidase, and alkaline phosphatase have 
been employed in most biosensor studies (Laschi et al., 2000; Wang, 2000). The detection 
limit is satisfactory or exceeded but the enzyme stability is still a problem, especially 
considering a long period of time. A major advantage of enzyme-based biosensors is the 
ability, in some cases, to modify catalytic properties or substrate specificity by genetic 
engineering. The major limitation is the lack of specificity in differentiating among 
compounds of similar classes (Buerk, 1993; 2001; D'Orazio, 2003). 
Affinity biosensors have received considerable attention in the last years, since they provide 
information about binding of antibodies to antigens, cell receptors to their ligands, 
DNA/RNA to complementary sequences of nucleic acids and functioning enzymatic 
pathways that allow the screening of gene products for metabolic functions.  
Immunosensors are based on the high selectivity of the antibody–antigen reaction. The 
specific interaction is sensed by a transducer and measurements can be obtained directly, 
in minutes, rather than the hours required for visualizing results of an ELISA test 
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(Spangler et al., 2001). Either an antigen or antibody can be immobilized onto a surface of 
support in an array format (Huang et al., 2004) and participates in a biospecific interaction 
with the other component, allowing detection and quantification of an analyte of interest 
(Stefan et al., 2000). The sensors may operate either as direct or as indirect sensors often 
referred to homogeneous and heterogeneous immunosensors, respectively. Antibodies are 
the critical part of an immunosensor to provide sensitivity and specificity. As the 
antibody–antigen complex is almost irreversible, only a single immunoassay can be 
performed (Buerk, 1993) although intensive research effort has been directed toward the 
regeneration of renewable antibody surfaces. Reproducibility is another concern, partly 
due to the antibody orientation and immobilization onto the sensor surface. 
Immunosensors are inherently more versatile than enzyme-based biosensors because 
antibodies are more selective and specific. Immunosensors are currently been used for 
infectious diseases diagnosis (Huang et al., 2004). 
DNA analysis is the most recent and most promising application of biosensors to clinical 
chemistry. DNA is well suited for biosensing because the base pairing interactions between 
complementary sequences are both specific and robust. DNA biosensors employ 
immobilized relatively short synthetic single-stranded oligodeoxynucleotides that 
hybridizes to a complementary target DNA in the sample (Palecek, 2002). Hybridization can 
be performed either in solution or on solid supports. The system can be used for repeated 
analysis since the nucleic acid ligands can be denatured to reverse binding and then 
regenerated (Ivnitski et al., 1999). However, considerable research is still needed to develop 
methods for directly targeting natural DNA present in organisms and in human blood with 
high detection sensitivity (Palecek, 2002). Accurate tests for recognizing DNA sequences, 
usually, need to multiply small amounts of DNA into readable quantities using the 
polymerase chain reaction (PCR). Some of the new gene chips are sensitive enough to 
eliminate the need for target amplification, a time-consuming process. This improvement 
has stimulated the development of DNA biosensors with a view toward rapid analysis for 
point-of-care diagnostics for infectious disease, testing cancer and genetic disease diagnosis 
and measurement of drug resistance or susceptibility, and even a whole cancer circulating 
cell can be identified (Liu et al., 2009). 
Whole-cell biosensors are based in the general metabolic status of bacteria, fungi, yeasts, 
animal or plant cells that are the recognition elements. Whole cells can easily be 
manipulated and adapted to consume and degrade new substrates. Many enzymes and co-
factors that co-exist in the cells give them the ability to consume and hence detect a large 
number of chemicals. However, this may compromise their selectivity (Ding et al., 2008).  
The sensing molecule, in general, is hold on a solid support, the matrix. Chemical properties 
of a desired support decide the method of immobilization and the operational stability of a 
biosensor. In particular, it should be resistant to a wide range of physiological pHs, 
temperature, ionic strength and chemical composition. The ability to co-immobilize more 
than one biologically active component is desirable in some cases. Conducting polymers, 
carbon nanotubes, nanoparticles, sol–gel/hydro-gels and self-assembled monolayer are 
common used to immobilize a variety of sensing molecules (Arya et al., 2008). 

2.2 Transduction technology 

The interaction of the analyte with the bioreceptor is designed to produce an effect 
measured by the transducer, which converts the information into a measurable signal. A 
variety of transducer methods have been feasible toward the development of biosensor 
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technology; however the most common methods are electrochemical, optical and 
piezoelectric (Buerk, 1993; Collings & Caruso 1997; Wang, 2000). 
Electrochemical sensors measure the electrochemical changes that occur when analytes 

interact with a sensing surface of the detecting electrode. The electrochemical assay is 

simple, reliable, has a low detection limit and a wide dynamic range due to the fact that the 

electrochemical reactions occur at the electrode–solution interfaces. Based on that and cost 

competitiveness, more than half of the biosensors, reported in the literature, are based on 

electrochemical transducers (Meadows, 1996). The electrical changes can be potentiometric 

(a change in the measured voltage between the indicator and reference electrodes), 

amperometric (a change in the measured current at a given applied voltage), or 

conductometric (a change in the ability of the sensing material to transport charge). 

Amperometry is the electrochemical technique usually applied in commercially available 

biosensors for clinical analyses that detect redox reactions. The electrochemical platform is 

suited for enzyme-based and DNA/RNA sensors, field monitoring applications (e.g. hand-

held) and miniaturization toward the fabrication of an implantable biosensor.  

Optical transducers can be used to monitor affinity reactions and have been applied to 

quantitate antigenic species of interest in clinical chemistry and to study the kinetics and 

affinity of antigen–antibody and DNA interactions. Of particular interest have been direct 

optical transducers based on methods such as internal reflectance spectroscopy, surface 

plasmon resonance and evanescent wave sensing. Light entering an optical device is 

directed through optical fibers or planar waveguides toward a sensing surface and reflected 

back out again. The reflected light is monitored, using a detector such as a photodiode, 

revealing information about the physical events occurring at the sensing surface. The 

measured optical signals often include absorbance, fluorescence, chemiluminescence, 

surface plasmon resonance (to probe refractive index), or changes in light reflectivity. 

Optical biosensors are preferable for screening a large number of samples simultaneously; 

however, they cannot be easily miniaturized for insertion into the bloodstream. Most optical 

methods of transduction require a spectrophotometer to detect signal changes.  

Mass sensors can produce a signal based on the mass of chemicals that interact with the 

sensing film, usually a vibrating piezoelectric quartz crystal. Acoustic wave devices, made 

of piezoelectric materials, are the most common sensors, which bend when a voltage is 

applied to the crystal. Acoustic wave sensors are operated by applying an oscillating voltage 

at the resonant frequency of the crystal, and measuring the change in resonant frequency 

when the target analyte interacts with the sensing surface. Because a significant amount of 

nonspecific adsorption occurs in solutions, piezoelectric sensors have received their widest 

use in gas phase analyses. Extremely high sensitivities are possible with these devices 

detecting femtogram levels of drug vapors. Similarly to optical detection, piezoelectric 

detection requires large sophisticated instruments to monitor the signal.  

Generation of heat during a reaction can be used in a calorimetric based biosensor. Changes 
in solution temperature caused by the reaction are measured and compared to a sensor with 
no reaction to determine the analyte concentration. This approach is well suited for 
enzyme/substrate reactions that cause changes in solution temperature but not for receptor-
ligand reactions because there is no temperature change at steady-state and transient 
measurements are very difficult to make. Calorimetric microsensors have been 
manufactured for detection of cholesterol in blood serum based on the enzymatically 
produced heat of oxidation and decomposition reactions (Caygill et al., 2010). 
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3. Biosensors for diabetes applications 

3.1 Glucose as diabetes biomarker 

About 3% of the population worldwide suffers from diabetes, a leading cause of death, and 

its incidence is growing fast. Diabetes is a syndrome of disordered metabolism resulting in 

abnormally high blood sugar levels. Diabetic individuals are at a greater heart disease, 

stroke, high blood pressure, blindness, kidney failure, neurological disorders risk and other 

health related complications without diligent monitoring blood glucose concentrations. 

Through patient education, regular examinations and tighter blood glucose monitoring, 

many of these complications can be reduced significantly (Turner & Pickup, 1985; Lasker, 

1993). Optimal management of diabetes involves patients measuring and recording their 

own blood glucose levels. Under normal physiological condition, the concentration of 

fasting plasma glucose is in the range 6.1–6.9 mmolL−1, so the variation of the blood glucose 

level can indicate diabetes mellitus, besides other conditions. Consequently, quantitation of 

the glucose content is of extreme importance, as it is the main diabetes biomarker. The 

American Diabetes Association recommends that insulin-dependent type 1 diabetics self-

monitor blood glucose 3–4 times daily, while insulin-dependent type 2 diabetics monitor 

once-daily (American, 1997). However, frequent self-monitoring of glucose concentrations is 

difficult, given the time, the inconvenience and the discomfort involved with the traditional 

measurement technique. Several methods for glucose analysis have been reported. 

However, most of these methods involve complex procedures or are expensive in terms of 

costs. Therefore it is necessary to develop a simple, sensitive, accurate, micro-volume and 

low-cost approach for glucose analysis which is appropriate for rapid field tests and is also 

effective as an alternative to the existing methods.  

3.2 Biosensors for glucose measuring 

Glucose can be monitored by invasive and non-invasive technologies. Glucose biosensor 

was the first reported biosensor (Clark & Lyons, 1962) and after that a great number of 

different glucose biosensors were developed, including implantable sensors for measuring 

glucose in blood or tissue.  Glucose sensors are now widely available as small, minimally 

invasive devices that measure interstitial glucose levels in subcutaneous fat (Cengiz & 

Tamborlane, 2009). Requirements of a sensor for in vivo glucose monitoring include 

miniaturization of the device, long-term stability, elimination of oxygen dependency, 

convenience to the user and biocompatibility. Long-term biocompatibility has been the main 

requirement and has limited the use of in vivo glucose sensors, both subcutaneously and 

intravascular, to short periods of time. Diffusion of low-molecular-weight substances from 

the sample across the polyurethane sensor outer membrane results in loss of sensor 

sensitivity. In order to address the problem, microdialysis or ultrafiltration technology has 

been coupled with glucose biosensors. The current invasive glucose monitors commercially 

available use glucose oxidase-based electrochemical methods and the electrochemical 

sensors are inserted into the interstitial fluid space. Most sensors are reasonably accurate 

although sensor error including drift, calibration error, and delay of the interstitial sensor 

value behind the blood value are still present (Castle & Ward, 2010). The glucose biosensor 

is the most widely used example of an electrochemical biosensor which is based on a screen-

printed amperometric disposable electrode. This type of biosensor has been used widely 

throughout the world for glucose testing in the home bringing diagnosis to on site analysis. 
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Non-invasive glucose sensing is the ultimate goal of glucose monitoring and the main 

approaches being pursued for glucose sensor development are: near infrared spectroscopy, 

excreted physiological fluid (tears, sweat, urine, saliva) analysis, microcalorimetry, enzyme 

electrodes, optical sensors, sonophoresis and iontophoresis, both of which extract glucose from 

the skin (Koschwanez & Reichert, 2007; Beauharnois et al., 2006; Chu et al., 2011). Despite the 

relative ease of use, speed and minimal risk of infection involved with infrared spectroscopy, this 

technique is hindered by the low sensitivity, poor selectivity, frequently required calibrations, 

and difficulties with miniaturization. Problems surrounding direct glucose analysis through 

excreted physiological fluids include a weak correlation between excreted fluids and blood 

glucose concentrations. Exercise and diet that alter glucose concentrations in the fluids also 

produce inaccurate results (Pickup et al., 2005). The desire to create an artificial pancreas drives 

for continued research efforts in the biosensor area. Nevertheless, the drawbacks of in vivo 

biosensors must be solved before such an insulin modulating system can be achieved. 

4. Biosensors for cardiovascular diseases applications 

4.1 Cardiovascular disease biomarkers 

Cardiovascular diseases are highly preventable, yet they are major cause of death of humans 

over the world. One of the most important reasons of the increasing incidences of 

cardiovascular diseases and cardiac arrest is hypercholesterolemia, i.e. increased 

concentration of cholesterol in blood (Franco et al., 2011). Hence estimation of cholesterol 

level in blood is important in clinical applications. The early evaluation of patients with 

symptoms that indicates an acute coronary syndrome is of great clinical relevance. 

Biomarkers have become increasingly important in this setting to supplement 

electrocardiographic findings and patient history because one or both can be misleading. 

Cardiac troponin is the only marker used routinely nowadays in this setting because it is 

specific from the myocardial tissue, easily detected, and useful for therapeutic decision 

making. Determination of the level of other non-myocardial tissue-specific markers might 

also be helpful, such as myeloperoxidase, copeptin, growth differentiation factor 15 and C-

reactive protein (CRP). CRP, which reflects different aspects of the development of 

atherosclerosis or acute ischemia, is one of the plasma proteins known as acute-phase 

proteins and its levels rise dramatically during inflammatory processes occurring in the 

body. This increment is due to a rise in the plasma concentration of IL-6, which is produced 

predominantly by macrophages as well as adipocytes. CRP can rise as high as 1000-fold 

with inflammation. CRP was found to be the only marker of inflammation that 

independently predicts the risk of a heart attack.  

4.2 Biosensors in cardiovascular disease  

Biosensors for cholesterol measurement comprise the majority of the published articles in 

the field of cardiovascular diseases. In the fabrication of cholesterol biosensor for the 

estimation of free cholesterol and total cholesterol, mainly cholesterol oxidase (ChOx) and 

cholesterol esterase (ChEt) have been employed as the sensing elements (Arya et al., 2008) 

(Fig. 2). Electrochemical transducers have been effectively utilized for the estimation of 

cholesterol in the system (Charpentier & Murr, 1995; Singh et al., 2006; Zhou et al., 2006; 

Arya et al., 2007). Based on number and reliability of optical methods, a variety of optical 

transducers have been employed for cholesterol sensing, namely monitoring: luminescence, 
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change in color of dye, fluorescence and others (Arya et al., 2008). Other cardiovascular 

disease biomarkers are also quantified. CRP measurement rely mainly on immunosensing 

technologies with optical, electrochemical and acoustic transducers besides approaches to 

simultaneous analytes measurement (Albrecht et al., 2008; Heyduk et al., 2008; McBride & 

Cooper, 2008; Niotis et al., 2010; Qureshi et al., 2010a,b; Sheu et al., 2010; Zhou et al., 2010). 

Silva et al. (2010) incorporated streptavidin polystyrene microspheres to the electrode 

surface of SPEs in order to increase the analytical response of the cardiac troponin T and 

Park et al. (2009) used an assay based on virus nanoparticles for troponin I highly sensitive 

and selective diagnostic, a protein marker for a higher risk of acute myocardial infarction.  

Early and accurate diagnosis of cardiovascular disease is crucial to save many lives, 

especially for the patients suffering the heart attack. Accurate and fast quantification of 

cardiac muscle specific biomarkers in the blood enables accurate diagnosis and prognosis 

and timely treatment of the patients. It is apparent that increasing incidences of 

cardiovascular diseases and cardiac arrest in contemporary society denote the necessity of 

the availability of cholesterol and other biomarkers biosensors. However, only a few have 

been successfully launched in the market. One of the reasons lays in the optimization of 

critical parameters, such as enzyme stabilization, quality control and instrumentation 

design. The efforts directed toward the development of cardiovascular disease biosensors 

have resulted in the commercialization of a few cholesterol biosensors. A better 

comprehension of the bioreagents immobilization and technological advances in the 

microelectronics are likely to speed up commercialization of the much needed biosensors for 

cardiovascular diseases. 

 
 

 
 

Fig. 2. Pathway of cholesterol oxidase enzyme reaction (Arya et al., 2008). 
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5. Biosensors for cancer applications 

5.1 Cancer biomarkers 

Cancer is the leading cause of death in economically developed countries and the second 
leading cause of death in developing countries. This disease continues to increase globally 
largely because of the aging and growth of the world population alongside an increasing 
adoption of cancer-causing behaviors, particularly smoking. Breast cancer is the most 
frequently diagnosed cancer and the leading cause of cancer death among females and lung 
cancer is the leading cancer site in males. Breast cancer is now also the leading cause of 
cancer death among females in economically developing countries, a shift from the previous 
decade during which the most common cause of cancer death was cervical cancer (Jemal et 
al., 2011). Solid cancers are a leading cause of morbidity and mortality worldwide, primarily 
due to the failure of effective clinical detection and treatment of metastatic disease in distant 
sites (Chambers et al., 2002; Pantel & Brakenhoff, 2004). Cancer can be caused by a range of 
factors, both genetic and environmental. Chemical, physical and biological factors such as 
the exposure to carcinogenic chemicals, radiation, bacterial (e.g. stomach cancer), viral 
infections (e.g. cervical cancer) and toxins (aflatoxin; e.g. liver cancer) can lead to cancer 
development (Vineis et al., 2010). As the causes of cancer are so diverse, clinical testing is 
also very complex. The multi-factorial changes (genetic and epigenetic) can cause the onset 
of the disease and the formation of cancer cells. However, no single gene is universally 
altered during this process, but a set of them that brings difficulties to the correct disease 
diagnosis. All the changes which take place, in the tumors from different locations (organ), 
as well within tumors from the same location, can be so variable and overlapping that it is 
difficult to select a specific change or marker for the diagnosis of specific cancers. Therefore, 
a range of biomarkers can potentially be analyzed for disease diagnosis. These biomarkers 
or molecular signatures can be produced either by the tumor itself or by the body in 
response to the presence of cancer (Robert, 2010).  Several cancer biomarkers are listed in 
Table 1. 
The analysis of biomarkers in body fluids such as blood, urine and others is one of the 
methods applied in the detection of the disease. Multi-marker profiles, both presence and 
concentration level, can be essential for the diagnosis of early disease onset. These methods 
should provide information to assist clinicians in making successful treatment decisions and 
increasing patient survival rate (Tothill, 2009). A range of biomarkers have been identified 
with different types of cancers. These include DNA modifications, RNA, proteins (enzymes 
and glycoproteins), hormones and related molecules, molecules of the immune system, 
oncogenes and other modified molecules. Several biomarkers are current being studied, 
including genes and proteins; however few of them have routine cancer clinical testing 
importance because of their complexity. The development of protein based biomarkers for 
biosensors use in cancer diagnosis is more attractive than genetic markers due to protein 
abundance, recovery and cost effective technique for the development of point-of-care 
devices (Li et al., 2010). 

5.2 Biosensors in cancer disease 

Existing methods of screening for cancer are heavily based on cell morphology using 
staining and microscopy which are invasive techniques. Furthermore, tissue removal can 
miss cancer cells at the early onset of the disease. Biosensor-based detection becomes 
practical and advantageous for cancer clinical testing, since it is faster, more user-friendly, 
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less expensive and less technically demanding than microarray or proteomic analyses. 
However, significant technical development is still needed, particularly for protein based 
biosensors. For cancer diagnosis multi-array sensors would be beneficial for multi-marker 
analysis. A range of molecular recognition molecules have been used for biomarker 
detection, being antibodies the most widely used. More recently, synthetic (artificial) 
molecular recognition elements such as nanomaterials, aptamers, phage display peptides, 
binding proteins and synthetic peptides as well as metal oxides materials have been 
fabricated as affinity materials and used for analyte detection and analysis (Sadik et al., 
2009; Khati, 2010). Antibodies (monoclonal and polyclonal) have been applied in cancer 
diagnostics tests targeting cancer cells and biomarkers. Polyclonal antibodies can be raised 
against any biomarker or cells and with the introduction of high throughput techniques, 
applying these molecules in sensors has been successful. The use of monoclonal antibodies 
however, results in more specific tests. The drawbacks include that monoclonal antibodies 
are more difficult to maintain and can be more expensive than polyclonal antibodies (Huang 
et al., 2010). Replacing natural biomolecules with artificial receptors or biomimics has 
therefore become an attractive area of research in recent years. The advantages of using 
these molecules are that they are robust, more stable, less expensive to produce and can be 
modified easily to aid immobilization on the sensor surface as well as adding labels as the 
maker for detection (Liu et al., 2007). Those molecules can be synthesized after a selection 
from combinatorial libraries with higher specificity and sensitivity when compared to the 
antibody molecule. 
 

Breast 
ER,PR, HER2, CA15-3, CA125, CA27.29, CEA 

BRCA1, BRCA2, MUC-1, CEA, NY-BR-1, ING-
1 

Bladder 
BAT, FDP, NMP22, HA-Hase, BLCA-4, CYFRA 

21-1 

Cervix 
P53, Bcl-2, Brn-3a, MCM, SCC-Ag, TPA, 

CYFRA 21-1, VEGF, M-CSF 

Colon HNPCC, FAP, CEA, CA19-9, CA24-2, p53 

Esophagus SCC 

Leukemia Chromosomal aberrations 

Liver AFP, CEA 

Lung 
NY-ESO-1, CEA, CA19-9, SCC, CYFRA21-1, 

NSE 

Melanoma Tyrosinase, NY-ESO-1 

Ovarian CA125, AFP, hCG, p53, CEA 

Pancreas CA19-9, CEA, MIC-1 

Prostate PSA, PAP 

Solid tumors 
Circulating tumour cells in biological fluids, 

expression of targeted growth factor receptors

Stomach CA72-4, CEA, CA19-9 

Table 1. Cancer biomaker 
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For cancer biomarkers analysis, bioaffinity based electrochemical biosensors are usually 
applied to detect gene mutations of biomarkers and protein biomarkers. Electrochemical 
affinity sensors based on antibodies offer great selectivity and sensitivity for early cancer 
diagnosis and these include amperometric, potentiometric and impedimetric/conductivity 
devices. Amperometric and potentiometric transducers have been the most commonly used, 
but much attention in recent years has been devoted to impedance based transducers since 
they are classified as label-free detection sensors. However, much of the technology is still at 
the research stage (Lin & Ju, 2005; Wang, 2006). Besides based on antibodies, electrochemical 
devices have been developed based on DNA hybridization and used for cancer gene 
mutation detection. In this type of device a single stranded DNA sequence is immobilized 
on the electrode surface where DNA hybridization takes place (Ahmed, 2008). ELISA based 
assays conducted on the electrode surface are the most frequently used techniques for 
cancer protein markers analysis, such as CEA. In this method the antibody (or antigen) is 
labeled with an enzyme such as horseradish peroxidase (HRP), or alkaline phosphatase (AP) 
and these will then catalyze an added substrate to produce an electroactive species which 
can then be detected on an electrochemical transducer. Electrochemical detection of rare 
circulating tumor cells has the potential to provide clinicians with a standalone system to 
detect and monitor changes in cell numbers throughout therapy, conveniently and 
frequently for efficient cancer treatment (Chung et al., 2011). 
Many commercially available platforms use fluorescence labels as the detection system. 
However, the instruments used for signal readout are usually expensive and are more 
suitable for laboratory settings. As an example the Affymetrix gene chip (Affymetrix Inc., 
Santa Clara, USA) can be used for screening cancer and cancer gene identification. Other 
biosensor platforms such as grating couplers, resonant mirrors and surface plasmon based 
systems have also been used for cancer biomarkers diagnosis. These are classified as label-
free and real-time affinity reaction detection systems. Different SPR based biosensors have 
been developed for cancer markers detection based on the above optical systems (Tothill, 
2009). Recently, microcantilever based sensors have also been applied for early-stage 
diagnosis of hepatocellular carcinoma (Liu et al., 2009b). 
In spite of the achieved development in cancer biosensing, the point-of-care testing is not yet 
available. In order to achieve this goal challenges must be overcome such as: development 
of reproducible biomarker assays; improvement in recognition ligands; development of 
multi-channel biosensors; advances in sample preparation; device miniaturization and 
integration; development of more sensitive transducers; microfluidics integration; advanced 
manufacturing techniques and cost reduction (Rasooly & Jacobson, 2006). 

6. Conclusion 

A precise diagnostic for a disease is essential for a successful treatment and recovery of 
patients suffering from it. Diagnostics methods must be simple, sensitive and able to detect 
multiple biomarkers that exist at low concentrations in biological fluids. Biosensors can 
fulfill these requirements. However, biosensor devices need to be further developed and 
improved to face these new challenges to allow, for example, multiplex analysis of several 
biomarkers where arrays of sensors need to be developed on the same chip.  
Biosensors are firmly established for application in clinical chemical analysis. Biosensors for 
measurement of blood metabolites such as glucose, lactate, urea and creatinine, using both 
electrochemical and optical modes of transduction, are commercially developed and used 
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routinely in the laboratory, in point-of-care settings and, in the case of glucose, for self-
testing. While immunosensors have difficulty competing with traditional immunoassay 
based mainly on sensitivity requirements, they hold promise for testing where some 
sensitivity can be sacrificed for improved ease of use and faster time to result, such as in 
near-patient testing for cardiac and cancer markers. Although biosensors are used for 
several clinical applications, few biosensors have been developed for cardiovascular and 
cancer-related clinical testing. Development of molecular tools, both genomic and 
proteomic, to profile tumors and produce molecular signatures, based on genetic and 
epigenetic signatures, changes in gene expression and protein profiles and protein 
posttranslational modifications has opened new opportunities for utilizing biosensors in 
cancer testing. Harnessing the potential of biosensors is challenging because of cancer’s 
complexity and diversity. Successful development of biosensor-based cancer testing will 
require continued development and validation of biomarkers and development of ligands 
for those biomarkers, as well as continued development of sample preparation methods and 
multi-channel biosensors able to analyze many cancer markers simultaneously. The use of 
biosensors for cancer clinical testing may increase assay speed and flexibility, enable multi-
target analyses and automation and reduced costs of diagnostic testing. Biosensors have the 
potential to deliver molecular testing to the community health care setting and to 
underserved populations. Cancer biomarkers identified from basic and clinical research, and 
from genomic and proteomic analyses must be validated. Ligands and probes for these 
markers can then be combined with detectors to produce biosensors for cancer-related 
clinical testing. Point-of-care cancer testing requires integration and automation of the 
technology as well as development of appropriate sample preparation methods (Rasooly & 
Jacobson, 2006).  
A clear direction for future work in biosensor research is in molecular diagnostics. 
Improving the sensitivity of DNA biosensors for a single-molecule detection in an 
unamplified sample is an important goal to achieve. This goal will require enhancing the 
signal-to-noise rate, improving the signal produced by the biochemical reaction or 
increasing the sensitivity of the transducer while reducing background noise. Ultrasensitive 
transducer technologies will be required. Some recent examples of transduction modes with 
enhanced sensitivity include microcantilevers for the detection of mass changes upon 
detection of a binding event and quartz crystal microbalances capable of monitoring 
formation and rupturing of chemical bonds by sensing acoustic emissions. The latter has 
demonstrated sensitivity to detect a single virus particle. Increasing the arrays amplitude for 
more complete and rapid DNA sequencing information is another area of focus, and 
improvements in this area may ultimately be limited by resolution of the detection 
transducer. DNA chips are being incorporated into total analysis systems, including 
microfluidics and the biosensor on a single structure. These systems should include, in the 
future, no need for sample preparation, a user-friendly handling system, chemical analysis 
and signal acquisition capabilities. Central to development of lab-on-a-chip analysis system 
will be the homogeneous sensing formats and microfabrication technologies for DNA 
analysis. One recent step towards a homogeneous assay has been the development of 
synthetic polymeric probes that emit fluorescence only after the hybridization to native 
DNA targets, allowing monitoring of hybridization in real time without the need for 
separation steps. Further development and improvement of nanotechnologies will be 
needed to produce nanoscale devices, with expanded sizes of arrays using reduced sample 
volume. The future of such devices for rapid determination of a disease could be especially 
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used for point-of-care application. However, cost and quality control of these devices must 
be strictly adjusted for the accurate devices to gain popular acceptance. Homogeneous assay 
formats, removing the need for sample preparation and amplification steps and mass 
fabrication will be important to lowering cost. 
Molecular biology will play a central role in the future of biosensor development, for 
example, to improve biocomponent stability, and for the development of aptamers. The 
highly reproducible synthetic approach and ease of immobilization of aptamers hold great 
promise for the custom design of future biosensors for molecular diagnostics (D’Orazio, 
2003). Future innovation in biosensor technology to include biomarkers patterns, software 
and microfluidics can make these devices of high potential for health applications. The 
concept of using nanomaterials in the development of sensors for biomarkers diagnosis will 
make these devices highly sensitive and more applicable for point-of-care early diagnosis. 
Early diagnosis will aid in the increase in the survival rate of patients and successful 
development of biosensors for disease diagnosis and monitoring will require appropriate 
funding to move the technology from research through to the realization of commercial 
products. 
Biosensor research and development over the past decades have demonstrated that it is still 
a relatively young technology. The rationale behind the slow and limited technology 
transfer could be attributed to cost considerations and some key technical barriers. Many of 
the more recent major advances had to await miniaturization technologies that are just 
becoming available through research in the electronic and optical solid state circuit 
industries. Analytical chemistry has changed considerably, driven by automation, 
miniaturization, and system integration with high throughput for multiple tasks. Such 
requirements pose a great challenge in biosensor technology which is often designed to 
detect one single or a few target analytes. Successful biosensors must be versatile to support 
interchangeable biorecognition elements, and in addition miniaturization must be feasible to 
allow automation for parallel sensing with ease of operation at a competitive cost. The 
future is very bright for biosensors. These advancements will, however, require a concerted 
multi-disciplinary approach for the sensor systems to successfully make the very big jump 
from the research and development laboratory to the market place. Combination of several 
new techniques, derived from physical chemistry, molecular biology, biochemistry, thick 
and thin film physics, materials science and electronics with the necessary expertise has 
revealed the promise for development of viable clinical useful biosensor. 
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