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The Eigen Theory of Electromagnetic Waves 
 in Complex Media 

Shaohua Guo 
Zhejiang University of Science and Technology 

P. R. China 

1. Introduction 

Since J. C. Maxwell presented the electromagnetic field equations in 1873, the existence of 
electromagnetic waves has been verified in various medium (Kong, 1986; Monk, 2003). But 
except for Helmholtz’s equation of electromagnetic waves in isotropic media, the laws of 
propagation of electromagnetic waves in anisotropic media are not clear to us yet. For 
example, how many electromagnetic waves are there in anisotropic media? How fast can 
these electromagnetic waves propagate? Where are propagation direction and polarization 
direction of the electromagnetic waves? What are the space patterns of these waves? 
Although many research works were made in trying to deduce the equations of 
electromagnetic waves in anisotropic media based on the Maxwell’s equation (Yakhno, 2005, 
2006; Cohen, 2002; Haba, 2004), the explicit equations of electromagnetic waves in 
anisotropic media could not be obtained because the dielectric permittivity matrix and 
magnetic permeability matrix were all included in these equations, so that only local 
behaviour of electromagnetic waves, for example, in a certain plane or along a certain 
direction, can be studied. 
On the other hand, it is a natural fact that electric and magnetic fields interact with each 
other in classical electromagnetics. Therefore, even if most of material studies deal with the 
properties due to dielectric polarisation, magneitc materials are also capable of producing 
quite interesting electro-magnetic effects (Lindellm et al., 1994). From the bi-anisotropic 
point of view, magnetic materials can be treated as a subclass of magnetoelectric materials. 
The linear constitutive relations linking the electric and magnetic fields to the electric and 
magnetic displacements contain four dyadics, three of which have direct magnetic contents. 
The magnetoelectric coupling has both theoretical and practical significance in solid state 
physics and materials science. Though first predicted by Pierre Curie, magnetoeletric 
coupling was originally through to be forbidden because it violates time-reversal symmetry, 
until Laudau and Lifshitz (Laudau & Lifshitz, 1960) pointed out that time reversal is not a 
symmetry operation in some magnetic crystal. Based on this argument, Dzyaloshinskii 
(Dzyaloshinskii, 1960) predicted that magnetoelectric effect should occur in 
antiferromagnetic crystal Cr2O3, which was verified experimentally by Astrov (Astrov, 
1960). Since then the magnetoelectric coupling has been observed in single-phase materials 
where simultaneous electric and magnetic ordering coexists, and in two-phase composites 
where the participating phase are pizoelectric and piezomagnetic (Bracke & Van Vliet,1981; 
Van Run et al., 1974) . Agyei and Birman (Agyei & Birman, 1990) carried out a detailed 
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analysis of the linear magnetoelectric effect, which showed that the effect should occur not 
only in some magnetic but also in some electric crystals. Pradhan (Pradhan, 1993) showed 
that an electric charge placed in a magnetoelectric medium becomes a source of induced 
magnetic field with non-zero divergence of volume integral. Magnetoelectric effect in two-
phase composites has been analyzed by Harshe et al. ( Harshe et al., 1993), Nan (Nan, 1994) 
and Benveniste (Benveniste, 1995). Broadband transducers based on magnetoelectric effect 
have also been developed (Bracke & Van Vliet, 1981). Although the development mentioned 
above, no great progress in the theories of electromagnetic waves in bi-anisotropic media 
because of the difficulties in deal with the bi-coupling in electric field and magnetic one of 
the Maxell’s equation and the bi-anisotropic constitutive equation by classical 
electromagnetic theory.  
Recently there is a growing interest modeling and analysis of Maxwell’s equations (Lee & 
Madsen, 1990; Monk, 1992; Jin et al., 1999). However, most work is restricted to simple 
medium such as air in the free space. On the other hand, we notice that lossy and dispersive 
media are ubiquitous, for example human tissue, water, soil, snow, ice, plasma, optical 
fibers and radar-absorbing materials. Hence the study of how electromagnetic wave 
interacts with dispersive media becomes very important. Some concrete applications 
include geophysical probing and subsurface studied of the moon and other planets (Bui et 
al., 1991), High power and ultra-wide-band radar systems, in which it is necessary to model 
ultra-wide-band electromagnetic pulse propagation through plasmas (Dvorak & Dudley, 
1995), ground penetrating radar detection of buried objects in soil media (liu & Fan, 1999). 
The Debye medium plays an important role in electromagnetic wave interactions with 
biological and water-based substances (Gandhi & Furse, 1997). Until 1990, some paper on 
modeling of wave propagation in dispersive media started making their appearance in 
computational electromagnetics community. However, the published papers on modeling of 
dispersive media are exclusively restricted to the finite-difference time-domain methods and 
the finite element methods (Li & Chen, 2006; Lu et al., 2004). To our best knowledge, there 
exist only few works in the literature, which studied the theoretical model for the Maxwell’s 
equation in the complex anisotropic dispersive media, and no explicit equations of 
electromagnetic waves in anisotropic dispersive media can be obtained due to the 
limitations of classical electromagnetic theory. 
Chiral materials have been recently an interesting subject. In a chiral medium, an electric or 
magnetic excitation will produce simultaneously both electric and magnetic polarizations. 
On the other hand, the chiral medium is an object that cannot be brought into congruence 
with its mirror image by translation and rotation. Chirality is common in a variety of 
naturally occurring and man-made objects. From an operation point of view, chirality is 
introduced into the classical Maxwell equations by the Drude-Born-Fedorov relative 
constitutive relations in which the electric and magnetic fields are coupled via a new 
materials parameter (Lakhtakia, 1994; Lindell et al., 1994), the chirality parameter. These 
constitutive relations are chosen because they are symmetric under time reversality and 
duality transformations. In a homogeneous isotropic chiral medium the electromagnetic 
fields are composed of left-circularly polarized (LCP) and right- circularly polarized (RCP) 
components (Jaggard et al., 1979; Athanasiadis & Giotopoulos, 2003), which have different 
wave numbers and independent directions of propagation. Whenever an electromagnetic 
wave (LCP, RCP or a linear combination of them) is incident upon a chiral scatterer, then the 
scattered field is composed of both LCP and RCP components and therefore both LCP and 
RCP far-field patterns are derived. Hence, in the vector problem we need to specify two 
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directions of propagation and two polarizations. In recent years, chiral materials have been 
increasingly studied and there is a growing literature covering both their applications and 
the theoretical investigation of their properties. It will be noticed that the works dealing with 
wave phenomena in chiral materials have been mainly concerned with the study of time-
harmonic waves which lead to frequency domain studies (Lakhtakia et al., 1989; 
Athanasiadis et al., 2003).  
In this chapter, the idea of standard spaces is used to deal with the Maxwell’s 

electromagnetic equation (Guo, 2009, 2009, 2010, 2010, 2010). By this method, the classical 

Maxwell’s equation under the geometric presentation can be transformed into the eigen 

Maxwell’s equation under the physical presentation. The former is in the form of vector and 

the latter is in the form of scalar. Through inducing the modal constitutive equations of 

complex media, such as anisotropic media, bi-anisotropic media, lossy media, dissipative 

media, and chiral media, a set of modal equations of electromagnetic waves for all of those 

media are obtained, each of which shows the existence of electromagnetic sub-waves, 

meanwhile its propagation velocity, propagation direction, polarization direction and space 

pattern can be completely determined by the modal equations.This chapter will make 

introductions of the eigen theory to reader in details. Several novel theoretical results were 

discussed in the different parts of this chapter. 

2. Standard spaces of electromagnetic media 

In anisotropic electromagnetic media, the dielectric permittivity and magnetic permeability 
are tensors instead of scalars. The constitutive relations are expressed as follows 

 ,    = ⋅ = ⋅D ε E B μ H  (1) 

Rewriting Eq.(1) in form of scalar, we have 

 ,   = =ε µi ij j i ij jD E B H  (2) 

where the dielectric permittivity matrix ε  and the magnetic permeability matrix µ  are 

usually symmetric ones, and the elements of the matrixes have a close relationship with the 

selection of reference coordinate. Suppose that if the reference coordinates is selected along 

principal axis of electrically or magnetically anisotropic media, the elements at non-diagonal 

of these matrixes turn to be zero. Therefore, equations (1) and (2) are called the constitutive 

equations of electromagnetic media under the geometric presentation. Now we intend to get 

rid of effects of geometric coordinate on the constitutive equations, and establish a set of 

coordinate-independent constitutive equations of electromagnetic media under physical 

presentation. For this purpose, we solve the following problems of eigen-value of matrixes. 

 ( ) ( ),    − −λ γI Iε φ = 0 µ ϕ = 0   (3) 

where ( )1,2,3=λi i  and ( )1,2,3=γ i i  are respectively eigen dielectric permittivity and eigen 

magnetic permeability, which are constants of coordinate-independent. ( )1,2,3=φi i  and 

( )1,2,3=ϕ i i  are respectively eigen electric vector and eigen magnetic vector, which show 

the electrically principal direction and magnetically principal direction of anisotropic media, 

and are all coordinate-dependent. We call these vectors as standard spaces. Thus, the matrix 
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of dielectric permittivity and magnetic permeability can be spectrally decomposed as 

follows 

  ,    Τ Τ= =ε ΦΛΦ µ ΨΠΨ  (4) 

where [ ]1 2 3, ,= λ λ λΛ diag  and [ ]1 2 3, ,= γ γ γΠ diag  are the matrix of eigen dielectric 

permittivity and eigen magnetic permeability, respectively. { }1 2 3, ,=Φ φ φ φ  and 

{ }1 2 3, ,=Ψ ϕ ϕ ϕ  are respectively the modal matrix of electric media and magnetic media, 

which are both orthogonal and positive definite matrixes, and satisfy T = IΦ Φ , 
T = IΨ Ψ . 

Projecting the electromagnetic physical qualities of the geometric presentation, such as the 

electric field intensity vector E , magnetic field intensity vector H , magnetic flux density 

vector B  and electric displacement vector D  into the standard spaces of the physical 

presentation, we get 

 Τ= ⋅*
D DΦ  ,  Τ= ⋅*

E EΦ     (5) 

 Τ= ⋅*
B BΨ  ,  Τ= ⋅*

H HΨ    (6) 

Rewriting Eqs.(5) and (6) in the form of scalar, we have 

 * Τ= ⋅ i = 1,2,3Dφi iD   ,  * Τ= ⋅ i = 1,2,3Eφi iE   (7) 

 * Τ= ⋅ i = 1,2,3Bϕi iB    , * Τ= ⋅ i = 1,2,3Hϕi iH    (8) 

These are the electromagnetic physical qualities under the physical presentation. 
Substituting Eq. (4) into Eq. (1) respectively, and using Eqs.(5) and (6) yield 

 * *= i = 1,2,3λi i iD E      (9) 

 * *= i = 1,2,3γi i iB H    (10) 

The above equations are just the modal constitutive equations in the form of scalar. 

3. Eigen expression of Maxwell’s equation 

The classical Maxwell’s equations in passive region can be written as 

 × = ∇H D∇ t   ,   × = −∇E B∇ t   (11) 

Now we rewrite the equations in the form of matrix as follows 

 
1 1

2 2

3 3

0

0

0

−∂ ∂     
     
∂ −∂ = ∇    

    −∂ ∂     

z y

z x t

y x

H D

H D

H D

  (12) 

or 

 [ ]{ } { }∆ = ∇tH D    (13) 
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1 1

2 2

3 3

0

0

0

−∂ ∂     
     
∂ −∂ = −∇    

    −∂ ∂     

z y

z x t

y x

E B

E B

E B

   (14) 

or   

 [ ]{ } { }∆ = −∇tE B    (15) 

where [ ]∆  is defined as the matrix of electric and magnetic operators. 

Substituting Eq. (1) into Eqs. (13) and (15) respectively, we have 

 [ ]{ } [ ]{ }∆ = ∇ εtH E      (16) 

 [ ]{ } [ ]{ }∆ = −∇ µtE H   (17) 

Substituting Eq. (16) into (17) or Eq. (17) into (16), yield 

 [ ]{ } [ ][ ]{ }2= −∇ µ εtH H   (18) 

 [ ]{ } [ ][ ]{ }2= −∇ µ εtE E    (19) 

where [ ] [ ][ ]= ∆ ∆  is defined as the matrix of electromagnetic operators as follows 

 [ ]

( )
( )

( )

2 2 2 2

2 2 2 2

2 2 2 2

 − ∂ + ∂ ∂ ∂
 
 = ∂ − ∂ + ∂ ∂
 
 ∂ ∂ − ∂ + ∂ 



z y xy xz

yx x z yz

zx zy x y

    (20) 

In another way, substituting Eqs. (5) and (6) into Eqs. (13) and (15), respectively, we have 

 [ ][ ]{ } [ ]{ }* *∆ = −∇Φ ΨtE B    (21) 

 [ ][ ]{ } [ ]{ }* *∆ = ∇Ψ ΦtH D   (22) 

Rewriting the above in indicial notation, we get 

 { } { }* * * 1,2,3∆ = −∇ =ϕi i t i iE B i   (23) 

 { } { }* * * 1,2,3∆ = ∇ =φi i t i iH D i   (24) 

where, *
i∆ is the electromagnetic intensity operator, and i th row of [ ][ ]* ∆ = ∆ Φ  . 

4. Electromagnetic waves in anisotropic media 

4.1 Electrically anisotropic media 

In anisotropic dielectrics, the dielectric permittivity is a tensor, while the magnetic 
permeability is a scalar. So Eqs. (18) and (19) can be written as follows 
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 [ ]{ } [ ]{ }2
0= −∇ µ εtH H    (25) 

 [ ]{ } [ ]{ }2
0= −∇ µ εtE E      (26) 

Substituting Eqs. (4) - (6) into Eqs. (25) and (26), we have 

 { } [ ]{ }* * 2 *
0

  = −∇ Λ  µtH H   (27) 

 { } [ ]{ }* * 2 *
0

  = −∇ Λ  µtE E    (28) 

where [ ] [ ][ ]T*  = Φ Φ    is defined as the eigen matrix of electromagnetic operators under 

the standard spaces. We can note from Appendix A that it is a diagonal matrix. Thus Eqs. 

(27) and (28) can be uncoupled in the form of scalar 

 * * 2 *
0 0 1,2,3+ ∇ = = µ λi i i t iH H i    (29) 

 * * 2 *
0 0 1,2,3+ ∇ = = µ λi i i t iE E i    (30) 

Eqs.(29) and (30) are the modal equations of electromagnetic waves in anisotropic 

dielectrics. 

4.2 Magnetically anisotropic media 

In anisotropic magnetics, the magnetic permeability is a tensor, while the dielectric 

permittivity is a scalar. So Eqs. (18) and (19) can be written as follows 

 [ ]{ } [ ]{ }2
0= −∇ ε µtH H    (31) 

 [ ]{ } [ ]{ }2
0= −∇ ε µtE E     (32) 

Substituting Eqs. (4) - (6) into Eqs. (31) and (32), we have 

 { } [ ]{ }* * 2 *
0

  = −∇ Π  εtH H     (33) 

 { } [ ]{ }* * 2 *
0

  = −∇ Π  εtE E     (34) 

where [ ] [ ][ ]T*  = Ψ Ψ    is defined as the eigen matrix of electromagnetic operators under 

the standard spaces. We can also note from Appendix A that it is a diagonal matrix. Thus 

Eqs. (33) and (34) can be uncoupled in the form of scalar 

 * * 2 *
0 0 1,2,3+ ∇ = = ε γi i i t iH H i    (35) 

 * * 2 *
0 0 1,2,3+ ∇ = = ε γi i i t iE E i     (36) 

Eqs.(35) and (36) are the modal equations of electromagnetic waves in anisotropic 

magnetics. 
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5. Electromagnetic waves in bi-anisotropic media 

5.1 Bi-anisotropic constitutive equations 

The constitutive equations of bi-anisotropic media are the following (Lindellm & Sihvola, 

1994; Laudau & Lifshitz, 1960) 

 = ⋅ + ⋅D E Hε ξ     (37) 

 = ⋅ + ⋅B E Hξ µ     (38) 

where ξ is the matrix of magneto-electric parameter, and a symmetric one.  

Substituting Eqs. (5) and (6) into Eqs. (37) and (38), respectively, and multiplying them with 

the transpose of modal matrix in the left, we have 

 T T T= +* *
D E HΦ Φ εΦ Φ ξΨ   (39) 

 Τ Τ Τ= +* *
B E HΨ Ψ ξΦ Ψ µΨ    (40) 

Let T T= =G Φ ξΨ Ψ ξΦ , that is a coupled magneto-electric matrix, and using Eq. (4), we 

have 

 = +* * *
D E GHΛ    (41) 

 = +* * *
B GE HΠ     (42) 

Rewriting the above in indicial notation, we get 

 * * *= + i = 1,2,3 j = 1,2,3λi i i ij jD E g H   (43) 

 * * *= + i = 1,2,3 j = 1,2,3γi i i ij jB H g E   (44) 

Eqs. (43) and (44) are just the modal constitutive equations for bi-anisotropic media.  

5.2 Eigen equations of electromagnetic waves in bi-anisotropic media 

Substituting Eqs. (43) and (44) into Eqs. (23) and (24), respectively, we have 

 { } { }( )* * * *∆ = −∇ +ϕ γi i t i i i ij jE H g E     (45) 

 { } { }( )* * * *∆ = ∇ +φ λi i t i i i ij jH E g H    (46) 

From them, we can get 

 { } { }( ) { } { }( ) { }{ }* * * 2 *∆ − ∇ ∆ + ∇ = −∇φ δ ϕ δ ϕ φ λ γ
T T

i t i ij ij i t i ij ij i t i i i i ig g E E   (47) 

 { } { }( ) { } { }( ) { }{ }* * * 2 *∆ + ∇ ∆ − ∇ = −∇ϕ δ φ δ φ ϕ γ λ
T T

i t i ij ij i t i ij ij i t i i i i ig g H H   (48) 

The above can also be written as the standard form of waves 
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 { } { } { }( ) { } { }( )* * * * 2 2 * 0 1,2,3+ ∇ ∆ ⋅ − + ∇ ⋅ − = = ϕ φ φ ϕ λ γ
T T

i i t i ii i t i i ii iE g E g E i  (49) 

 { } { } { }( ) { } { }( )* * * * 2 2 * 0 1,2,3+ ∇ ∆ ⋅ − + ∇ ⋅ − = = ϕ φ φ ϕ λ γ
T T

i i t i ii i t i i ii iH g H g H i   (50) 

where, { } { }* * *= ∆ ⋅ ∆
T

i i i is the electromagnetic operator. Eqs.(49) and (50) are just  equations 

of electric field and magnetic field for bi-anisotropic media.   

5.3 Applications 
5.3.1 Bi-isotropic media 

The constitutive equations of bi-isotropic media are the following 

 

0 0 0 0

0 0 0 0

0 0 0 0

   
   = ⋅ + ⋅   
      

ε ξ

ε ξ

ε ξ

D E H     (51) 

 

0 0 0 0

0 0 0 0

0 0 0 0

   
   = ⋅ + ⋅   
      

ξ µ

ξ µ

ξ µ

B E H    (52) 

The eigen values and eigen vectors of those matrix are the following 

 [ ], ,= ε ε εΛ diag  ,   [ ], ,= µ µ µΠ diag    (53) 

 

1 0 0

0 1 0

0 0 1

 
 =  
  

Φ = Ψ    (54) 

We can see from the above equations that there is only one eigen-space in isotropic medium, 

which is a triple-degenerate one, and the space structure is the following 

 ( ) [ ]3

1 1 2 3, ,= φ φ φW W      (55) 

 [ ]* *
1 1

3
1,1,1

3
= =φ ϕ

T
   (56) 

Then the eigen-qualities and eigen-operators of bi-isotropic medium are respectively shown 

as belows 

 ( )*T

2 3

*
1 1 1

3

3
= ⋅ E +E +EE =φE     (57) 

 ( )* 2 2 2
1 = − ∂ + ∂ + ∂ x y z , 11 = ξg    (58) 

So, the equation of electromagnetic wave in bi-isotropic medium becomes 
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 ( ) ( )2 2 2 * 2 2 *
1 1∂ + ∂ + ∂ = − ∂µε ξx y z tE E     (59) 

the velocity of electromagnetic wave is 

 ( )1

2

1
=

−µε ξ
c    (60) 

5.3.2 Dzyaloshinskii’s bi-anisotropic media 

Dzyaloshinskii’s constitutive equations of bi-anisotropic media are the following 

 

0 0 0 0

0 0 0 0

0 0 0 0

   
   = ⋅ + ⋅   
      

ε ξ

ε ξ

ε ξ

D E H

z z

   (61) 

 

0 0 0 0

0 0 0 0

0 0 0 0

   
   = ⋅ + ⋅   
      

ξ µ

ξ µ

ξ µ

B E H

z z

   (62) 

The eigen values and eigen vectors of those matrix are the following 

 [ ], ,= ε ε εΛ zdiag  ,  [ ], ,= µ µ µΠ zdiag    (63) 

 

1 0 0

0 1 0

0 0 1

 
 =  
  

Φ = Ψ    (64) 

We can see from the above equations that there are two eigen-spaces in Dzyaloshinskii’s bi-
anisotropic medium, in which one is a binary-degenerate one, the space structure is the 
following  

 ( ) [ ] [ ]2 1
1 1 2 2 3,= ⊕φ φ φW W W   (65) 

Then the eigen-qualities and eigen-operators of Dzyaloshinskii’s bi-anisotropic medium are 
respectively shown as belows 

 T

3

*
2 2= ⋅ EE =φE  ,  ( ) ( )

T
T * T *

2 2

* 2 2
1 2 2 1 2= − − = +E EE Eφ φE E E   (66) 

 ( )* 2 2 2 2
1 2 2= − ∂ + ∂ + ∂ − ∂ x y z xy , ( )* 2 2

2 = − ∂ + ∂ x y ,  11 22,= =ξ ξzg g  (67) 

So, the equations of electromagnetic wave in Dzyaloshinskii’s bi-anisotropic medium 
become 

 ( ) ( )2 2 2 2 2 2 2 2 2 2
1 2 1 22 2∂ + ∂ + ∂ − ∂ + = − ∂ +µε ξx y z xy tE E E E   (68) 

 ( ) ( )2 2 2 2
3 3∂ + ∂ = − ∂µ ε ξx y z z z tE E    (69) 
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the velocities of electromagnetic wave are 

 ( )1

2

1
=

−µε ξ
c    (70) 

 ( )2

2

1
=

−µ ε ξz z z

c     (71) 

It is seen both from bi-isotropic media and Dzyaloshinskii’s bi-anisotropic medium that the 

electromagnetic waves in bi-anisotropic medium will go faster duo to the bi-coupling 

between electric field and magnetic one.  

6. Electromagnetic waves in lossy media 

6.1 The constitutive equation of lossy media 

The constitutive equation of lossy media is the following 

 = ⋅ ⋅
t

σ τ
τ

E
D E +ε

d
d

d
   (72) 

It is equivalent to the following differential constitutive equation 

 = ⋅ ⋅  σD E + Eε    (73) 

Let 

 e = ⋅D Eε  ,  d = ⋅ σD E  (74) 

Eq.(73) can be written as 

 e d=  D D + D      (75) 

or 

 { } [ ] [ ]( ){ }∇ = ∇ +ε σt tD E    (76) 

Using Eq.(5), the above becomes 

 { } [ ] [ ][ ] [ ] [ ][ ]( ){ }* *∇ = ∇ +Φ ε Φ Φ σ Φ
T T

t tD E    (77) 

According to Appendix B and Eq.(77), we have 

 { } [ ] [ ]( ){ }* *∇ = ∇ +Λ Γt tD E    (78) 

Rewriting the above in indicial notation, we get 

 ( )* *∇ = ∇ +λ ηt i i t i iD E    (79) 

Eq.(79) is just the modal constitutive equations for lossy media. 
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6.2 Eigen equations of electromagnetic waves in lossy media 

Substituting Eqs. (10) and (79) into Eqs. (23) and (24), respectively, we have 

 { } { }* * * 1,2,3∆ = −∇ =ϕ γi i t i i iE H i    (80) 

 { } { }( )* * * 1,2,3∆ = ∇ + =φ λ ηi i i i t i iH E i    (81) 

From them, we can get 

 * * * * 0 1,2,3+ ∇ + ∇ = = ξ γ λ ξ γ ηi i tt i i i i t i i i iE E E i   (82) 

 * * * * 0 1,2,3+ ∇ + ∇ = = ξ γ λ ξ γ ηi i tt i i i i t i i i iH H H i    (83) 

where { } { }* *= ⋅ξ φ ϕ
T

i i i . Eqs.(82) and (83) are just equations of electric field and magnetic field 

for bi-anisotropic media. 

6.3 Applications 

In this section, we discuss the propagation laws of electromagnetic waves in an isotropic 
lossy medium. The material tensors in Eqs.(1) and (72) are represented by the following 
matrices 

 
11

11

11

0 0 
 0 0 
 0 0 

ε

ε

ε

ε = , 
11

11

11

0 0

0 0

0 0

 
 =  
  

µ

µ

µ

µ , 
11

11

11

0 0

0 0

0 0

 
 =  
  

σ

σ

σ

σ  (84) 

The eigen values and eigen vectors of those matrix are the following 

 [ ]11 11 11, ,= ε ε εΛ diag , [ ]11 11 11, ,= µ µ µΠ diag , [ ]11 11 11, ,= σ σ σΓ diag  (85) 

 

1 0 0

0 1 0

0 0 1

 
 = = =  
  

Φ Ψ Θ   (86) 

We can see from the above equations that there is only one eigen-space in an isotropic lossy 
medium, which is a triple-degenerate one, and the space structure is the following.   

 ( ) [ ]3

1 1 2 3, ,=W φ φ φmag W  , ( ) [ ]3

1 1 2 3, ,=W ϕ ϕ ϕele W    (87) 

where, { }*
1

3
1,1,1

3
=φ

T
, { }*

1

3
1,1,1

3
=ϕ

T
, 1 1=ξ . 

Then the eigen-qualities and eigen-operators of an isotropic lossy media are respectively 
shown as follows 

 ( )*
1 1 2 3

3

3
= + +E E E E    (88) 
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 ( )*
1 1 2 3

3

3
= + +H H H H    (89) 

 ( )* 2 2 2
1

1

3
 = − ∂ + ∂ + ∂  x y z    (90) 

So, the equation of electromagnetic wave in lossy media becomes 
 

 ( )2 2 2 * 2 * *
1 1 12 2

1 1
∂ + ∂ + ∂ = ∂ + ∂

τx y z t tE E E
c

   (91) 

Rewriting it in the component form, we have 
 

 ( )2 2 2 2
1 1 12 2

1 1
∂ + ∂ + ∂ = ∂ + ∂

τx y z t tE E E
c

   (92) 

 

 ( )2 2 2 2
2 2 22 2

1 1
∂ + ∂ + ∂ = ∂ + ∂

τx y z t tE E E
c

  (93) 

 

 ( )2 2 2 2
3 3 32 2

1 1
∂ + ∂ + ∂ = ∂ + ∂

τx y z t tE E E
c

   (94) 

 

where, c is the velocity of electromagnetic wave, τ is the lossy coefficient of electromagnetic 

wave 

 
11 11 11 11

1 1
,   c τ

µ ε µ σ
= =  (95) 

Now, we discuss the the propagation laws of a plane electromagnetic wave in x-axis. In this 

time, Eq. (92) becomes 

 2
1 1 12 2 2

1 1∂
= ∂ + ∂

∂ τt tE E E
x c

   (96) 

Let the solution of Eq. (96) is as follows 
 

 ( )1 exp=  −  ωE A i kx t    (97) 

Substituting the above into Eq. (96), we have 
 

 
2

2

2 2
= +

ω ω

τ
k i

c
    (98) 

From Eq.(96), we can get 

 1 2= +k k ik     (99) 
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where 

1
1 2

4 2

2 4

1

1 1

2

 
  + +   =  

 
 
  

ω τω

c

k
c

,  

1
1 2

4 2

2 4

2

1 1

2

 
  − + +   =  

 
 
  

ω τω

c

k
c

. 

Then, the solutions of electromagnetic waves are the following 

 ( ) ( )1 12

1

− −−= ⋅ = ⋅ω ωi k x t i k x tk xE Ae e A e   (100) 

It is an attenuated sub-waves. 

7. Electromagnetic waves in dispersive media 

7.1 The constitutive equation of dispersive media 

The general constitutive equations of dispersive media are the following 

 1 2= ⋅ ⋅ + ⋅ +  D E + E Eε ε ε     (101) 

 1 2= ⋅ ⋅ + ⋅ +  B H + H Hµ µ µ      (102) 

where ( ), 1,2,= ε i i  and ( ), 1,2,= µi i are the higher order dielectric permittivity matrix 

and the magnetic permeability matrix respectively, and all symmtric ones.  
Substituting Eqs. (5) and (6) into Eqs. (101) and (102), respectively, and multiplying them 
with the transpose of modal matrix in the left, we have 

 * *
1 2= + +  D E + E EΦ εΦ Φ ε Φ Φ ε ΦT T T    (103) 

 *
1 2= + +  B H + H HΨ µΨ Ψ µ Ψ Ψ µ ΨT T T   (104) 

It can be proved that there exist same standard spaces for various order electric and 
magnetic fields in the condition close to the thermodynamic equilibrium. Then, we have 

 ( ) ( )1 2* * * *= + + +  λ λ λi i i i i i iD E E E    (105) 

 ( ) ( )1 2* * * *= + + +  γ γ γi i i i i i iB H H H   (106) 

Eqs. (105) and (106) are just the modal constitutive equations for the general dispersive 
media.  

7.2 Eigen equations of electromagnetic waves in dispersive media 

Substituting Eqs. (105) and (106) into Eqs. (23) and (24), respectively,  we have 

 { } { } ( ) ( )( )1 2* * * * *∆ = −∇ + + +  ϕ γ γ γi i t i i i i i i iE H H H    (107) 
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 { } { } ( ) ( )( )1 2* * * * *∆ = ∇ + + +  φ λ λ λi i t i i i i i i iH E E E   (108) 

From them, we can get 

 ( ) ( )( ) ( ) ( ) ( ) ( )( )1 1 2 1 1 2* * * * *1
0+ ∇ + + ∇ + + + ∇ + = γ λ γ λ γ λ γ λ γ λ γ λ

ξ i i i i tt i i i i i ttt i i i i i i i tttt i

i

E E E E     (109) 

 ( ) ( )( ) ( ) ( ) ( ) ( )( )1 1 2 1 1 2* * * * *1
0+ ∇ + + ∇ + + + ∇ + = γ λ γ λ γ λ γ λ γ λ γ λ

ξ i i i i tt i i i i i ttt i i i i i i i tttt i

i

H H H H  (110) 

Eqs.(109) and (110) are just equations of electric field and magnetic field for general 
dispersive media.   

7.3 Applications 

In this section, we discuss the propagation laws of electromagnetic waves in an one-order 

dispersive medium. The material tensors in Eqs.(101) and (102) are represented by the 

following matrices 

 
11

11

11

0 0 
 0 0 
 0 0 

ε

ε

ε

ε = , 
11

11

11

0 0

0 0

0 0

 
 =  
  

µ

µ

µ

µ , 1

11

11

11

′ 0 0 
 ′0 0 
 ′0 0 

ε

ε

ε

ε = , 
11

1 11

11

0 0

0 0

0 0

′ 
 ′=  
 ′ 

µ

µ

µ

µ  (111) 

The eigen values and eigen vectors of those matrix are the following 

 [ ]11 11 11, ,= ε ε εΛ diag , [ ]1 11 11 11, ,′ ′ ′= ε ε εΛ diag   (112) 

 [ ]11 11 11, ,= µ µ µΠ diag , [ ]1 11 11 11, ,′ ′ ′= µ µ µΠ diag   (113) 

 

1 0 0

0 1 0

0 0 1

 
 = =  
  

Φ Ψ    (114) 

We can see from the above equations that there is only one eigen-space in isotropic one-

order dispersive medium, which is a triple-degenerate one, and the space structure is the 

following  

 ( ) [ ]3

1 1 2 3, ,mag W=W φ φ φ , ( ) [ ]3

1 1 2 3, ,ele W=W ϕ ϕ ϕ   (115) 

where, { }*
1

3
1,1,1

3
=φ

T
, { }*

1

3
1,1,1

3
=ϕ

T
, 1 1=ξ . Thus the eigen-qualities and eigen-

operators of isotropic one-order dispersive medium are known as same as Eqs. (88) – (90). 
The equations of electromagnetic wave in one-order dispersive medium become 

 ( ) ( ) ( )( )1 12 2 2 * * *
1 1 11 11 11 11 12

1
∂ + ∂ + ∂ = ∇ + + ∇µ ε µ εx y z tt tttE E E

c
  (116) 
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 ( ) ( ) ( )( )1 12 2 2 * * *
1 1 11 11 11 11 12

1
∂ + ∂ + ∂ = ∇ + + ∇µ ε µ εx y z tt tttH H H

c
   (117) 

in which c is the velocity of electromagnetic wave 

 
11 11

1
=

µ ε
c   (118) 

Now, we discuss the propagation laws of a plane electromagnetic wave in x-axis. In this 

time, Eq.(116) becomes 

 ( ) ( )( )1 1

1 1 11 11 11 11 12 2

1∂
= ∇ + + ∇

∂
µ ε µ εtt tttE E E

x c
  (119) 

Let 

 ( )1 exp=  −  ωE A i kx t    (120) 

Substituting the above into Eq.(119), we have 

 ( ) ( )( )
2

1 12 3
11 11 11 112

= − +
ω

ω µ ε µ εk i
c

  (121) 

From the above, we can get 

 1 2= +k k ik    (122) 

where 

( ) ( )( )
1

1 2
2 21 14 2

11 11 11 11

1

1 1

2

 
  + + + 

   =  
 
  

µ ε µ ε ω
ω

c
k

c
, 

( ) ( )( )
1

1 2
2 21 14 2

11 11 11 11

2

1 1

2

 
  − + + + 

   =  
 
  

µ ε µ ε ω
ω

c
k

c
. 

Then, the solutions of electromagnetic waves are 

 ( ) ( )1 12

1

− −−= ⋅ = ⋅
ω ωi k x t i k x tk xE Ae e A e   (123) 

It is an attenuated sub-waves. 

8. Electromagnetic waves in chiral media 

8.1 The constitutive equation of chiral media 

The constitutive equations of chiral media are the following 

 = ⋅ ⋅∇D E - Hε χ t    (124) 

 = ⋅ ∇ + ⋅B E Hχ µt   (125) 
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where χ is the matrix of chirality parameter, and a symmtric one.  
Substituting Eqs. (5) and (6) into Eqs. (124) and (125), respectively, and multiplying them 
with the transpose of modal matrix in the left, we have 

 * * *= ∇D E - HΦ εΦ Φ χΨT T
t   (126) 

 * * *= ∇ +B E HΨ χΦ Ψ µΨT T
t     (127) 

Let T=Γ Ψ χΦ , that is a coupled chiral matrix, and using Eq. (4) , we have 

 * * *= ∇D E - HΛ Γ T
t   (128) 

 * * *= ∇ +B E HΓ ΠT
t     (129) 

For most chiral, [ ]1 2 3, ,= ς ς ςΓ diag . Then we have 

 * * *= − ∇λ ςi i i i t iD E H     (130) 

 * * *= ∇ +ς γi i t i i iB E H    (131) 

Eqs.(130) and (131) are just the modal constitutive equations for anisotropic chiral media.  

8.2 Eigen equations of electromagnetic waves in chiral media 

Substituting Eqs. (130) and (131) into Eqs. (23) and (24), respectively, we have 

 { } { }( )* * * * 1,2,3∆ = −∇ ∇ + =ϕ ς γi i t i i t i i iE E H i   (132) 

 { } { }( )* * * * 1,2,3∆ = ∇ − ∇ =φ λ ςi i t i i i i t iH E H i   (133) 

From them, we can get 

 ( )* * 2 * * *2 0 1,2,3+ ∇ + ∂ + ∇ = = ξ ς ς ξ λ γi i i i tttt i i i i i i tt iE E E i   (134) 

 ( )* * 2 * * *2 0 1,2,3+ ∇ + ∂ + ∇ = = ξ ς ς ξ λ γi i i i tttt i i i i i i tt iH H H i    (135) 

where { } { } 1= ⋅ =ξ φ ϕ
T

i i i , { } { }*∂ = ∆ ⋅ ϕ
T

i i i . Eqs.(134) and (135) are just equations of electric 

field and magnetic field for chiral media. 

8.3 Applications 

In this section, we discuss the propagation laws of electromagnetic waves in an isotropic 
chiral medium. The material tensors in Eqs.(124) and (125) are represented by the following 
matrices 

 
11

11

11

0 0 
 0 0 
 0 0 

ε

ε

ε

ε = , 
11

11

11

0 0

0 0

0 0

 
 =  
  

µ

µ

µ

µ , 
11

11

11

0 0

0 0

0 0

 
 =  
  

χ

χ

χ

χ   (136) 
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The eigen values and eigen vectors of those matrix are the following 

 [ ]11 11 11, ,= ε ε εΛ diag , [ ]11 11 11, ,= µ µ µΠ diag , [ ]11 11 11, ,= χ χ χΓ diag  (137) 

 

1 0 0

0 1 0

0 0 1

 
 = =  
  

Φ Ψ   (138) 

We can see from the above equations that there is only one eigen-space in isotropic medium, 

which is a triple-degenerate one, and the space structure is the following 

 ( ) [ ]3

1 1 2 3, ,mag W=W φ φ φ ,  ( ) [ ]3

1 1 2 3, ,ele W=W ϕ ϕ ϕ    (139) 

where, { }*
1

3
1,1,1

3
=φ

T
, { }*

1

3
1,1,1

3
=ϕ

T
, 1 1=ξ . 

Then the eigen-qualities and eigen-operators of isotropic chiral medium are respectively 

shown as follows 

 ( )*
1 1 2 3

3

3
= + +E E E E ,   ( )*

1 1 2 3

3

3
= + +H H H H   (140) 

 ( )* 2 2 2
1

1

3
 = − ∂ + ∂ + ∂  x y z ,  ( )*

1

3

3
∂ = ∂ + ∂ + ∂x y z    (141) 

So, the equations of electromagnetic wave in isotropic chiral medium become 

 ( ) ( )2 2 2 * 2 * *
1 11 1 11 12

1
2 3
 

∂ + ∂ + ∂ = ∇ + ∂ + ∂ + ∂ + ∇  
χ χx y z tttt x y z ttE E E

c
  (142) 

 ( ) ( )2 2 2 * 2 * *
1 11 1 11 12

1
2 3
 

∂ + ∂ + ∂ = ∇ + ∂ + ∂ + ∂ + ∇  
χ χx y z tttt x y z ttH H H

c
  (143) 

where, c is the velocity of electromagnetic wave 

 
11 11

1
=

µ ε
c    (144) 

Now, we discuss the propagation laws of a plane electromagnetic wave in x-axis. In this 

time, Eq.(142) becomes 

 2
1 11 1 11 12 2

1
2 3

∂ ∂ 
= ∇ + + ∇ ∂ ∂ 

χ χtttt ttE E E
x x c

  (145) 

Let 

 ( )1 exp=  −  ωE A i kx t    (146) 
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Substituting the above into Eq.(145), we have 

 2 2 2 4
11 112

1
2 3

 
= + − 
 

χ ω χ ωk i k
c

   (147) 

or 

 ( )2 2 2 2 2
11 11 11 112 3 0− + − =χ ω χ ω µ ε ωk i k   (148) 

1. when 2 11 11
2
11

0− <
µ ε

ω
χ

 

By Eq.(148), we have 

 ( )2
1 1 1 11 3 ′ ′′= + = + + χ ωk k ik i x iy     (149) 

 ( )2
2 2 2 11 3 ′ ′′= + = − + χ ωk k ik i x iy    (150) 

From them, we can get 

 2
1 11
′ = −χ ωk y , ( ) 2

1 113′′ = + χ ωk x     (151) 

 2
2 11
′ = χ ωk y , ( ) 2

2 113′′ = − χ ωk x     (152) 

where, 

1
2 2

211 11
2
11

4

2
3 9

2

  
 − 
  = + + 
 
  

µ ε
ω

χ

ω
x ,

1
2 2

211 11
2
11

4

2
3 9

2

  
 − 
  = − + + 
 
  

µ ε
ω

χ

ω
y . 

Then, the solution of electromagnetic waves is the following 

 ( ) ( )1 21 2

1 1 2

′ ′− −′′ ′′− −= ⋅ + ⋅
ω ωi k x t i k x tk x k xE A e e A e e   (153) 

It is composed of two attenuated sub-waves. 

2. when 2 11 11
2
11

0− >
µ ε

ω
χ

 

By Eq.(148), we have 

 2 2 11 11
1 1 1 11 2 2

11

1
3 3

  
 ′ ′′= + = + + − 
   

µ ε
χ ω ω

ω χ
k k ik i   (154) 

 2 2 11 11
2 2 2 11 2 2

11

1
3 3

  
 ′ ′′= + = − + − 
   

µ ε
χ ω ω

ω χ
k k ik i   (155) 
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where 

 1 0′ =k , 2 2 11 11
1 11 2 2

11

1
3 3

  
 ′′ = + + − 
   

µ ε
χ ω ω

ω χ
k   (156) 

 2 2 11 11
2 11 2 2

11

1
3 3

  
 ′ = − + − − 
   

µ ε
χ ω ω

ω χ
k , 2 0′′ =k   (157) 

Then, the solution of electromagnetic waves is the following 

 ( )21

1 1 2

′ −′′− −= + ωω i k x tk x i tE A e e A e   (158) 

It is seen that there only exists an electromagnetic sub-wave in opposite direction. 

3. when 2 11 11
2
11

0− =
µ ε

ω
χ

 

By Eq.(148), we have 

 2
112 3′ ′′= + = χ ωk k ik i    (159) 

where 

 0′ =k , 2
112 3′′ = χ ωk   (160) 

Then, the solution of electromagnetic waves is the following 

 ′′− −= ⋅ ωk x i tE Ae e   (161) 

No electromagnetic sub-waves exist now. 

9. Conclusion 

In this chapter, we construct the standard spaces under the physical presentation by solving 

the eigen-value problem of the matrixes of dielectric permittivity and magnetic 

permeability, in which we get the eigen dielectric permittivity and eigen magnetic 

permeability, and the corresponding eigen vectors. The former are coordinate-independent 

and the latter are coordinate-dependent. Because the eigen vectors show the principal 

directions of electromagnetic media, they can be used as the standard spaces. Based on the 

spaces, we get the modal equations of electromagnetic waves for anisotropic media, bi-

anisotropic media, dispersive medium and chiral medium, respectively, by converting the 

classical Maxwell’s vector equation to the eigen Maxwell’s scalar equation, each of which 

shows the existence of an electromagnetic sub-wave, and its propagation velocity, 

propagation direction, polarization direction and space pattern are completely determined 

in the equations. Several novel results are obtained for anisotropic media. For example, 

there is only one kind of electromagnetic wave in isotropic crystal, which is identical with 

the classical result; there are two kinds of electromagnetic waves in uniaxial crystal; three 

kinds of electromagnetic waves in biaxial crystal and three kinds of distorted 
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electromagnetic waves in monoclinic crystal. Also for bi-anisotropic media, there exist two 

electromagnetic waves in Dzyaloshinskii’s bi-anisotropic media, and the electromagnetic 

waves in bi-anisotropic medium will go faster duo to the bi-coupling between electric field 

and magnetic one. For isotropic dispersive medium, the electromagnetic wave is an 

attenuated sub-waves. And for chiral medium, there exist different propagating states of 

electromagnetivc waves in different frequency band, for example, in low frequency band, 

the electromagnetic waves are composed of two attenuated sub-waves, in high frequency 

band, there only exists an electromagnetic sub-wave in opposite direction, and in the critical 

point, no electromagnetic can propagate. All of these new theoretical results need to be 

proved by experiments in the future.  

10. Appendix A: Proof of the eigenmode of electromagnetic operator matrix 

The Maxwell’s equation of anisotropic dielectrics is the following 

 [ ]{ } [ ]{ }2
0= −∇ µ εtH H   (A1) 

Using the representation transform relationship Eq. (6), we have 

 [ ][ ]{ } [ ][ ]{ }* 2 *
0Φ = −∇ Φ µ εtH H   (A2) 

Substituting the spectral decomposition matrix of dielectric permittivity Eq. (4) into above, 

we have 

 [ ][ ]{ } [ ][ ]{ }* 2 *
0Φ = −∇ Φ Λ µtH H   (A3) 

Comparing the both sides of above equation, we can get 

 [ ][ ] [ ][ ]2
0Φ = −∇ Φ Λ µt   (A4) 

Multiplying the both sides of above with the transpose of modal matrix in the left, we 
have 

 [ ] [ ][ ] [ ]T 2
0Φ Φ = −∇ Λ µt    (A5) 

It is seen that the right side above is a diagonal matrix, which shows that the 

electromagnetic operators matrix can also be spectrally decomposed in standard spaces, 

then we get 

 [ ]* 2
0

  = −∇ Λ  µt    (A6) 

Rewriting above in the form of scalar, we have 

 * 2
0= −∇ µ λi t i    (A7) 

11. Appendix B: Spectrally decomposition of lossy matrix 

The Helmholtz’s free energy of electromagnetic system with lossy property is the following 
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  ( ) ( ) ( )1 11 1
, ,

2 2

− −= = − − +d d dψ ψ D B D D D D D B Bε µ    (B1) 

Differentiating the above with lossy variable, and using Eq.(1), we have 

 ( ) 1−∂
= − = − =

∂

ψ
R D D E

D
εd

d
    (B2) 

According to the Onsager’s principle, for the process of closing to equilibrium, the rate of 
lossy variable is proportion to the driving force, that is 

 0
∂

+ =
∂

ψ
β

d
j

ijd
i

dD

D dt
    (B3) 

where, =β βij ji  is the general friction coefficient. Rewritting the above in matrix form, we 

have 

 { } [ ]{ }=  dR B D   (B4) 

Projecting the lossy electric displacement vector D  into the standard spaces of the physical 

presentation, we get 

 { } { }= ϕdD a   (B5) 

Using Eq.(B2), we have 

 { } { }= ω ϕR a    (B6) 

Substituting Eqs. (B5) and (B6) into Eq. (B4), the condition of non-zero solution to α is the 

following 

 [ ] [ ]( ){ } 0− =ω ϕB I   (B7) 

It is seen that the general friction coefficient matrix can also be spectrally decomposed in 
standard spaces, so we have 

 [ ] [ ][ ][ ]= Φ Ω Φ
T

B    (B8) 

Comparing Eq. (B4) with Eq. (74), it is known that we can also spectrally decompose the 
lossy matrix in standard spaces 

 [ ] [ ] [ ][ ]=σ Φ Γ Φ
T

  (B9) 

where, [ ]1
1 2 3, ,− = η η ηΓ = Ω diag . 
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