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1. Introduction 

Alloy solidification is a two stage process, which starts by nucleation and ends by growth of 
solid phases. Subsequently, number, distribution and morphology (dendritic or non-
dendritic) of the grains are formed during the solidification. Some critical defects such as 
micro/macro segregation, micro/macro porosities and micro/macro shrinkage take place in 
the solidification stage. The micro-defects are located in the interdendritic space, which are 
micro-channels that fluid flow through them in the last stage of the solidification. Herein, 
the region in the grain growth stage is introduced as a mushy zone (or porous media), 
where the solid phase is constantly progressing; and the ability of fluid to flow into the 
mushy zone is known as permeability of interdendritic liquid.  Therefore, formation of the 
micro-defects depends on controlling of the permeability factor.  In a great number of 
studies micro/macro solidification models have been simulated based on the permeability 
factor using Darcy’s law (Ganesan & Poirier, 1990; Nandapurkar et al., 1991; Poirier, 1987; 
Worster, 1991). 
Interdendritic flow, in many CFD documents, is described using Darcy’s law, which relates 
the fluid flow rate to the pressure gradient, fluid viscosity, and permeability of the porous 
medium. To obtain an expression for the permeability as a function of the porosity of the 
porous medium, one generally considers flow through an idealized medium geometry, 
since it is impractical to solve the flow equations for the complex flow between the particles. 
Fig. 1 presents two viewpoints for investigation of the permeability in the porous media: 
metallurgical view and non-metallurgical (or common) view. 
As shown in Fig. 1a two of the most commonly used geometries for analytical models are 
capillaries (Carman, 1937; Chen et al. 1995; Williams et al., 1974) and an array of spaced 
particles. A more realistic approach will be introduced that assumes geometry of a periodic 
or random array of cylinders. Since it is not possible to solve analytically for this type of 
flow over the full range of porosities, two limiting closed form solutions are used for 
lubrication and point-particle (dilute) models in low and high porosities, respectively. 
Analysis of permeability for Stokes flow through periodic arrays of cylinders were done by 
Sangani & Acrivos (1982), Sparrow & Loefler (1959) and, Larson & Higdon (1986). 
The effect of fluid inertia on pressure drop required to drive the flow is a function of 

Reynolds number. Several authors computed the fluid flow through periodic arrays of 
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cylinders as the function of Reynolds numbers for three ranges of low, moderate, and high 

Reynolds number (Cai & Berdichevsky, 1993; Edwards et al., 1990; Eidsath et al., 1983; 

Ghaddar, 1995; Koch & Ladd, 1997; McCartney, 1994; Nagelhout et al., 1995; Sangani & Mo, 

1994; Sangani & Yao, 1988; Thom & Aplelt, 1961). Particularly noteworthy is the work of 

Koch & Ladd (1997) for modeling permeability and drag force based on Reynolds number 

using a Lattice-Boltzmann formulation. Also McCartney (1994) calculated the permeability 

in the range of low Reynolds numbers up to about 150 by Lattice Gas Cellular Automat 

(LGCA) model. 
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Fig. 1. Two categories of permeability models; a) Common permeability model; b) 
Metallurgical permeability model (solidification) 

In the field of metallurgy, however, the models mentioned above had an important 
application in the mathematical modeling of flow through arrays of dendrites during the 
solidification of mushy alloys. Fig. 1b shows a schematic category for modeling of 
permeability during solidification process. There are many investigations for 
experimental measuring of permeability by variant methods during solidification process 
(Apelian et al., 1974; Duncan et al., 1999; Murakami et al., 1984; Murakami et al., 1983; 
Nielsen et al., 2001; Poirier & Ocansey, 1993; Streat & Weinberg, 1976). However, most of 
the experimental methods had two goals; 1) an experimental goal is to measure the 
permeability of an alloy at a constant temperature and to correlate the permeability with 
microstructures quantities. In this case, it is necessary to obtain a quantitative 
stereological characterization of the solid-phase morphology. This has been achieved by 
quenching of the mushy sample during the permeability experiment and subsequent 
metallography and image analysis, which distinguish between the phases that were solid 
and liquid during the experiment. 2) Another experimental goal is to measure the 
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permeability and the temperature of an alloy during solidification/re-melting and to 
correlate the permeability with the solid fraction, which can be estimated from the 
temperature-time curves. In this case, the composition of the interdendritic liquid varies 
throughout the experiment, which complicates the experimental design, the experiment 
method, and the data analysis (Nielsen et al., 2001). 
The mathematical method includes two categories; 1) flow through a network of equiaxed 

grains, 2) flow through columnar dendrite networks with flows parallel and normal to the 

primary dendrites. 

Piwonka & Flemings (1966), Apelian et al. (1974), Streat & Weinberg (1976), Liu et al. (1989) 

and Murakami et al. (1984) reported the permeability in equiaxed dendritic structures. In 

these investigations, however, the microstructural length scales were not reported or they 

could not be used to estimate permeability in a solidification model designed to calculate 

macro segregation. Ganesan & Poirier (1990) and Ocansey & Poirier (1993) measured and 

reported the permeability with inverse of the specific area of the solid selected as the length 

scale in equiaxed microstructures based on Kozeny-Carman model. There are at least two 

length scales associated with equiaxed dendritic solidification: the secondary dendrite arm 

spacing (or interdendritic flow) and the grain size (or extra-dendritic flow) (de Groh et al., 

1993; Wang et al., 1995). Brown et al. (2002) developed a numerical model for the simulation 

of 3D flow through equiaxed dendrites of an Al13Cu3Si alloy and the determined the 

variation in permeability of structure as solidification progressed. The model involved the 

evolution of an equiaxed dendrite and the application of a CFD program to calculate 

permeability from Darcy’s law. 

Streat & Weinberg (1976), Poirior (1987), Ganesan & Poirier (1990), Nandapurkar et al. (1991) 

Worster (1991) reported the permeability in columnar dendritic structures for macroscopic 

scale. However, due to the very complex microstructure of the dendrites, permeability 

determination still remains a challenge. Indeed, the dendritic columnar region is 

characterized, first, by a strong anisotropy, which requires knowledge of the different 

components of the permeability tensor (Murakami et al., 1984; Murakami et al., 1983; 

Poirier, 1987) and, second, by the non-uniform macroscopic properties such as the liquid 

volume fraction, which continuously varies from unity in the melt to zero in the solid 

region. Ganesan et al. (1992) showed that the permeability for a flow parallel to primary 

dendritic arms is hardly dependent on the secondary dendrite arm spacing. In the columnar 

configuration, data in different dendritic structures have been summarized by Poirier (1987) 

and quantitative relationships for parallel and normal permeability have been derived using 

a regression analysis. In the range of liquid fraction considered (>0.66) the regressions were 

in good agreement with the classical physical models, but the extrapolation beyond the 

upper limit failed. Numerical experiments for parallel and normal flow to the primary 

dendritic arms in columnar structures with a high liquid volume fraction (>0.6) have been 

found to be more successful (Ganesan et al., 1992). Mirbagheri (2008; Mirbagheri & Khajeh, 

2008) measured and simulated interdendritic flow for mushy alloy based on permeability 

factor and modeled some micro structural factors on the mushy alloys permeability. Bhat et 

al. (1995) calculated from digitized images, the permeability for flow normal to primary 

dendrite arm using a Navier-Stokes finite element solver. 

As mentioned above, permeability for flow through transverse sections of columnar-

dendritic alloy have modeled as flows through array of circles, rhombi, cruciform and 

schematic dendrites. These models used surface area to volume ratio of the solid for 
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normalizing permeability without predicting the effect of protuberance and radius of 

dendrite for a fixed fraction of solid as well the effect of angle of dendrite radius via liquid 

streamlines. In spite of these valuable researches in this field, determination of dendritic 

structural permeability due to the complex microstructure of the dendrites still remains a 

challenge in both fields of mathematical and experimental methods. 

In this chapter, a numerical model has been introduced for determination of liquid flow 

permeability through dendritic solid phases during growth. The model includes three 

stages; first, numerical simulation of nucleation and growth of the equiaxed grains using a 

novel Cellular Automation Finite Difference (CAFD) method, and second, numerical 

simulation of micro fluid flow for interdendritic liquid alloys using Computational Fluid 

Dynamics (CFD) technique, and third, calculation of permeability based on Darcy’s law 

by the pressure and velocity results of CFD code. Finally determining and modeling the 

permeability variations versus the cooling rate and the solidification rate during growth. 

This model can be linked as a module into a commercial macro fluid flow code in order 

to predict the micro-defects such as the micro porosities, shrinkages or micro-

segregations. 

2. Computation models 

In the present work, two separate computation models of the nucleation and grain growth, 

and interdendritic liquid flow have been developed and coupled for modeling of 

permeability in mushy alloys. 

This is achieved by combining sub-models for each of these processes, i.e., computation of 

nucleation and grain growth by using the CAFD, and the micro fluid flow by using the CFD 

model for calculation of the interdendritic permeability. The governing equations are 

described in details in the next sections.  

2.1 Solid phase generation code  
The solid phase generation code, which has been developed in this investigation is based on 

the CA and KGT model (Atwood & Lee, 2000; Lee et al., 2001). In other words, the 

solidification model is non-constrained nucleation and growth. The model comprises of: 1) 

Stochastic grain density based on local under-cooling, and 2) grain growth based on local 

thermal and under-cooling (Kurz et al., 2001; Kurz et al., 1986). However, in the present 

work, for a binary alloy system (Fig. 2) in the mushy zone, it is assumed that there is no 

constitutional under-cooling during growth phenomenon. Number, distribution, and 

morphology of nuclei as well as the growth rate are controlled by only thermal under-

cooling, which is produced by Newtonian’s heat transfer in a two dimensional (2D) space. 

In this condition, at the beginning, all the liquid have the same under- cooling (i.e., the 

gradient of the under-cooling or temperature is equal to zero). As shown in Fig. 3, once 

the nucleation takes place, temperature around of the nuclei is raised, because of the 

liberation of latent heat. Therefore, the temperature gradient around of the grains is 

negative. 

After the solidification, the microstructure of the solidified alloy will consist of fully 
equiaxed grains and no columnar grains. Therefore, in this investigation, initial and 
boundary conditions for the simulation of heat transfer and liquid flow are based on the 
non-constrained solidification. 
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Fig. 2. Phase diagram of an Al-Si binary alloy system. The regions between the liquidus and 
the solidus temperatures are the mushy zone 

2.1.1 Governing equations 
i. Heat transfer equations 
In solidification process, there are two terms of heat transfer and latent heat (Hf). Interaction 
of these two terms affects the domain of thermal distribution. The heat transfer equation for 
the mushy zone may be written as: 

 ( ) s
p f

fT
C K T H

t t
ρ ρ

∂∂
= ∇ ⋅ ∇ +

∂ ∂
 (1) 

 
liq

s

liq sol

T T
f

T T

−
=

−
 (2) 

where ρ, Cp and K are the density, heat capacity and thermal conductivity, respectively; fs is 
solid fraction and Tsol, Tliq are solidus and liquidus temperature, respectively. ρHf(∂fs/∂t) is 
the heat source term, which is a function of temperature in the mushy zone, and is written 
as follows:  

 ( )( )
s s

f f

f f T
H H

t T t
ρ ρ

∂ ∂ ∂
=
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 (3) 

By differentiating Eq. 2, and substitution in Eq. 3: 

 
1

( ) ( )
s s

f f f

liq sol

f f T T
H H H

t T t T T t
ρ ρ ρ

∂ ∂ ∂ − ∂
= =

∂ ∂ ∂ − ∂
 (4) 

The fraction of solid in the mushy zone is estimated by Eq. 2. The release of latent heat 
between liquidus and solidus temperature is calculated by substituting Eq. 4 into the second 
term of Eq. 1. Therefore heat transfer equation is given by: 

Mushy zone 
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 ( )
1

( )P f
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T T t
ρ
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t
ρ
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where  eq
PC  can be considered as a quasi-specific heat given by: 

 
1

( )eq
P fP

liq sol

C C H
T T

 −
= − 

− 
 (6) 

 

 

Fig. 3. Temperature distribution around the grains 

Physical properties of the liquid and solid are assumed to be constant above Tliq and below 
Tsol, respectively. However, in the mushy zone, coefficients of heat conductivity and thermal 

capacity are presented as kmu = fLkL + fSkS, and mu l S
p L P S PC f C f C= +  (Mirbagheri & Silk, 2007). 

In a case that the alloy composition has no solidification range (i.e., ΔT0 = Tliq – Tsol = 0), such 
as eutectic composition, the right hand side in Eq. 4 approaches infinity and as a result, a 
virtual solidification range of 0.1-1 °C is assumed. 
ii. Nucleation equations 
When the temperature falls below the liquidus temperature, nucleation begins. In this 
condition the number of nuclei at each temperature and time are calculated from Eq. 7, as 
follows: 

 
( )

2

2
exp

m liq
s total

liq

C T
N N

T T T

 
 =
 − 

 (7) 

After determining the number of nuclei in each time step, by assigning a random 
distribution function, nuclei are distributed in the liquid domain. In the next step, the latent 
heat of solidification is calculated to adjust the temperature. 
iii. Growth equations 
The final stage of solidification process is the growth simulation. As mentioned before, once 
a negative temperature gradient is present in liquid adjacent to the grains, equiaxed grains 
grow as shown in Fig 3. The direction of primary arms of the equiaxed dendrites depend on 
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crystal structure. Here, a B.C.C. crystal structure is assumed, in which each equiaxed 
dendrite has four perpendicular primary arms in 2D space, where they can grow in 48 
crystalline directions (An et al., 2000). In order to simulate the morphology of the growth, a 
simple shape was used for grains based on Eq. 8 in polar coordinates. 

 * *
0(4( )) 0 1 ; ( )

d
d d d d

d

P
r R P Cos if R h R R P

R
θ θ= + + < < < = +  (8) 

Fig. 4 shows a “cloverleaf” morphology for a dendrite section created based on Eq. 8, where 
Pd is perturbation, Rd radius of spherical nuclei prior to perturbation, and θ angle between 
primary arm direction and stream line. 
 

 

Fig. 4. Shape of a nucleus at the beginning of the growth 

A function (Eq. 9) needs to be defined for the dendrites radius growth rate (dr), which is 
added to the surface of existing grains in each time step of solidification stage. 

 ;
2

s
new old

df
r r dr dr

rπ
= + =


 (9) 

Finally, results of nucleation and growth simulation at each dfs, is used in the CFD code to 
calculate the permeability in domain. 

2.1.2 CA-FD model 
i. CA-FD model 
The finite difference approximation of heat transfer equation is: 

 ( ) ( ){ }1
, ,
n n

i j i jT T t UTX VTY DQX DQY+ = − ∆ + + +  (10) 

where UTX, DTXL, DTXR and DQX are defined as followed: 

{ }1, ,0.5 (1 ) ( ) (1 ) ( )i j i jUTX U DTXL U DTXRα α−= + + −  

, 1,i j i jT T
DTXL

x

−−
=

∆
     

1, ,i j i jT T
DTXR

x

+ −
=

∆
     

QXR QXL
DQX

C xρ Ρ

−
=

∆
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The terms of VTY and DQY are found in a similar way to UTX and DQX, respectively. If 
cells (i, j) and (i+1, j) are liquid: 

1, ,
n n

i j i j
R

T T
QXR k

x

+ −
= −

∆
, 

, 1,
n n

i j i j
l
T T

QXL k
x

−−
= −

∆
` 

KR and KL are thermal conductivity and found through the following equations: 

1

, 1,

1 1
0.5R

i j i j

K
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−

+

 
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 
, 1

, 1,

1 1
0.5L

i j i j

K
k k

−

−

 
= +  
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If cell (i, j, k) contains a mixture of solid and liquid metal, the thermal conductivity of this 
cell is: 

, , ,
,

, i j i j i j
i j

i j S L LS
k F k F k= + , , , 1i j i jS LF F+ =  

,

,
i j

i j s
L

l s

T T
F

T T

−
=

−
; s lT T T≤ ≤  

In the freezing range the specific heat and liquid fraction of the mushy metal is found 
through the following equation: 

 
fLS

p

l s

H
C

T T

∆
=

−
; s lT T T   (11) 

where Ts, Tl are solidus and liquidus temperatures respectively. In finite difference form, Cp 
is calculated as follows: 
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It should be noted that iteration is required here, because not only does Ti,j depends on Cp, 
but also Cp depends on Ti,j. 
ii. Direction of crystalline growth 
For a solidifying cell, as the solid fraction within the cell becomes greater than zero, the local 
temperature of the particles is obtained using the phase diagram and the under-cooling is 
calculated accordingly. In each solidifying cell, the change in solid fraction is primarily 
determined by KGT model (Kurz et al., 1986), which calculates the maximum growth rate 
based on a given under-cooling at near absolute stability limit. The solid fraction is further 
corrected by diffusion-controlled growth once the solid fraction reaches a critical value; it 
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can grow into its neighboring liquid cells, providing the cells are under-cooled. Where the 
solid fraction of cells approaches unity, the cell is considered as fully solidified and the grain 
growth ends. A captured liquid cell by a growing neighboring cell is assigned the same 
grain orientation as its growing neighbor (Lee et al., 2001). Fig.5 shows the CA-FD algorithm 
of heat transfer during nucleation and growth 

2.2 Inter-dendritic liquid flow code 
2.2.1 Governing equations 
i. Fluid flow equations 
The Navier-Stokes and continuity equations are used to simulate flow of the interdendritic 
liquid through the network of dendritic solids. The Navier-Stokes equation for the 
incompressible liquid is given by the following equation (Bahat et al., 1995): 

 
2

L L
DV

P g V
Dt

ρ ρ µ= −∇ + + ∇

 
 (13) 

Also, the mass continuity equation for the incompressible liquid is as follows: 

 ( ). 0V
t

ρ
ρ

∂
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∂


 (14) 

It is often desirable to reproduce large scale physical experiments in scaled-down and more 
manageable laboratory settings. Information on the flow is contained in the parameters 
which characterize it, such as dynamic viscosity, velocity and density. If these parameters 
are combined in a suitable way to yield dimensionless quantities, then these enable one to 
make the desired statements relating the flows on the large and small scales. By introducing 
the following dimensionless variables (Griebel et al., 1998): 
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Navier-Stokes equation can be rewritten as the dimensionless form: 

 
21

Re

DV
P g V

Dt
= −∇ + + ∇

 
 (15) 

Thus by solving Eqs. 16a, 16b and 16c, one can get the, velocity and pressure fields for an 
incompressible viscous fluid: 
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Fig. 5. CA-FD algorithm of heat transfer during nucleation and growth 
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Equation 15 can be written as two independent equations based on projection model as 
follows: 

 
2 *( ) 1

. ;
Re

V
V V V V V V

t

δ
δ

∂
+ ∇ = ∇ = −

∂

     
 (17a) 

 
( )

0
V

P
t

δ∂
+ ∇ =

∂


 (17b) 

Equation 17a is independent of pressure and by using the Poisson’s equation (Eq. 18) the 
Navier-Stokes equation is solved implicitly.  

 
2 *1

.P V
t

∇ = ∇
∆

 (18) 

After solution of the Navier-Stokes equations, the pressure and velocity fields can be 
calculated to obtain the permeability of the mushy zone in each growth sequence. 
ii. Permeability equations 
Permeability is a measure of the ability of a porous material to transmit fluids. Darcy's law is 
a simple proportional relationship between the instantaneous discharge rate through a 
porous medium (V), the viscosity of the fluid (μ) and the pressure drop over a given 
distance. The law was formulated by Henry Darcy based on the results of experiments on 
the flow of water through beds of sand (Darcy, 1856). 

 
K

V P
µ

= − ∇  (19) 

where, K is permeability. The problem with this law is that it is not valid at high Reynolds 
number. As the velocity increases, inertia effects appear, which complicates the calculation 
of permeability. To overcome this weakness, several corrections have been applied to the 
Darcy’s law by various researchers. In this investigation, the effective Darcy’s law equation 
was used for calculation of permeability (Eq. 19). 

 

l

K
V P

fµ
= − ∇  (19) 

2.2.2 Numerical solution of the fluid flow governing equations 
The main purpose of the permeability simulation in the solidification process is calculating 
the velocity profile for inter-dendritic space during equiaxed grains growth. Therefore, 
governing equations are solved by FDM. The numerical solution method can be considered 
in four steps: i) Meshing of the system, ii) Converting differential equations to finite 
difference approximation, iii) Solution of the finite difference approximations of momentum 
in order to calculate velocity profile, and iv) Calculation of permeability of the mushy zone 
by adding Darcy’s law in each growth sequences. 
i. Meshing 
The computational domain is divided into a number of cells with ΔX, ΔY dimensions, and 
all cell dimensions are equal for all calculations. Curved boundaries of system are 
approximated by stepped boundaries. For example, if the solid phase fraction occupies more 
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than 0.9 volume of a cell, the cell is considered to be a complete solid cell. As shown in Fig. 
6, domain is discretized as a staggered grid, i.e. the scalar and the vector variables are 
located at the centre and sides of the computational cell, respectively. 
 

 

Fig. 6. Schematic of a staggered mesh and location of vector and scalar variables 

The diffusive terms of the momentum equation is discretized using central differencing. The 
discretization of the convective terms of momentum equation has been done using the 
donor-cell scheme (Mirbagheri et al., 2003)  
ii. Finite difference approximations 
The finite difference approximation of momentum equations are: 
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1, , 1, , 1 , , 1

2 2
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i j i j i j i j i j i jU U U U U U
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x y

+ − + − − + − +
= +  ∆ ∆ 

 

Other terms of the flux and the viscosity in x and y directions such as FUY, FVX, FVY, and 
VISY are obtained in a similar way as FUX and VISX terms, respectively. The finite 
difference approximation of Poisson’s equation (Eq. 23) is 

 
1 1 1 1 1 1
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x y t x yδ δ δ δ δ

+ + + + + +
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+ = +  
 

 (23) 

iii. Solving and computing procedures 
Various methods are available to adjust the pressure term in the Navier-Stokes equation 
(Hong, 2004; Versteeg & Malalasekra, 1995). Methods like SMAC (Amsden & Harlow, 1970) 
and SOLA (Hirt et al., 1975) use an explicit scheme to solve the pressure adjustment equation, 
which is based on divergence of pressure in each computational cell. The computational time 
are relatively long in these methods and are seldom used today due their low performance. 
Instead, other methods such as projection method are used to adjust the pressure term and 
compute new velocities that satisfy the continuity equation. Semi-implicit methods such as 
SIMPLE, SIMPLER and PISO are also frequently used (Versteeg & Malalasekra, 1995). 
To solve the governing equations of fluid flow in a mushy zone for binary alloys, a new CFD 
code has been developed based on fundamentals presented by (Griebel, 2011). Therefore, to 
correct the pressures calculated from the Navier-Stokes momentum equation, the Chorin’s 
projection method is used, and the resulting Poisson’s equation is solved using Successive 
Over-Relaxation (SOR) iterative method. 
Projection method uses an auxiliary velocity V* to obtain a Poisson’s equation for pressure. 
This equation can be solved using any solution algorithm such as the SOR or Gauss-Seidel 
methods. The momentum and continuity equations in time derivative form are: 

 

1
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 1 0nV +∇ =  (25) 

The superscripts (n) and (n+1) denote old and new time level, respectively. In projection 
method Vn+1 domain is calculated at each new time step. Using the auxiliary velocity, the 
momentum equation can be split to two independent equations with Eq. 26 with no 
pressure term and Eq. 27 with pressure term. 
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The divergence of Eq. 26 takes the form: 
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Continuity equation (Eq. 25), requires that 1nV +∇  to be zero, thus 

 
2 1 *1

.nP V
t

+∇ = ∇
∆

 (29) 

The overall solution process is using Eq. 26 to obtain V*, then to solving the Poisson’s 
equation (Eq. 29) to find the adjusted pressure values and finally solving Eq. 27 to obtain 
Vn+1. Fig. 7 describes the algorithm used in the present code. 
iv. Calculation of permeability 
After obtaining the pressure and velocity fields, which is called herein as the temporary 
permeability subroutine, and using Darcy’s law, coefficient of temporary permeability is 
calculated for domain in each solid fraction and their changes are saved until the end of 
solidification. This subroutine is showed at the lower part of the flowchart in Fig 7. 

2.3 Validation of the present CFD code 
The developed CFD code was validated by comparing the pressure gradient for an equiaxed 
grain with the Fluent code at the same initial and boundary condition. Fig. 8 shows four 
pressure fields adjacent to a single dendrite at solid fractions of 0.02, 0.08, 0.19, and 0.34, for 
and Al-6%wt.Si alloy. Fig. 9 shows comparison of the pressure gradient results between the 
present CFD code and the Fluent code based on data of Table 1. The CFD code predictions 
at high and low solid fractions are in good agreement with the corresponding Fluent code. 
Therefore, the present code could be valid for simulation of other domains. 
 

Composition (%wt) Al=92.50, Si=7.50 

Domain dimension (m) x = y = 1×10-3 

Thermal conductivity (J/s.m.°C) Kl  = 121, Ks = 91 

Heat of fusion (J/kg) ΔHf =418600 

Kinematic viscosity (m2/s) v = 2.3x10 -6 

Specific Heat (J/kg.°C) l
pC =963, S

pC =1084 

Density (kg/m3) ρL = 2385, ρS = 2605 

Transformation temperature (°C) TL = 650, TS=577 

Number elements of cavity N = 40000 

Dimension elements of cavity (cm) ΔX = ΔY = 5μm 

CPU time for Pentium IV (hr) 2 

Boundary condition at locations        - 

 

(1): Inlet 
(4): Outlet 
(2) and (3): Free-slip boundaries 
(5): No-slip boundaries for internal 
dendrites’ surfaces 
No pressure gradient condition for all 
boundaries 
U Inlet=0.16 mm/s, V Inlet=0. 
Reynolds number (inlet)=0.3 

Table 1. Boundary conditions, thermo-physical properties, and initial condition for Fig 8 and 
Fig 10 to 13 domains 
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Fig. 7. Algorithm of the projection method for the present CFD code 
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Fig. 8. Simulation of the pressure fields for 4 solid fractions during Al-6%wt.Si alloy grain 
growth based on Table 1 data 

 

 

Fig. 9. Comparison of the pressure gradient results of Fig. 8 domain between Fluent and 
present code based of Table 1 data 
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3. Temporary permeability and effective parameters 

It is clear that the permeability is a function of pressure gradient based on Darcy’s law; 

therefore, the simulation of the pressure field in the mushy zone and the factors that affect 

it is our target. These factors such as, cooling rate, nucleation and growth rate, 

distribution of nucleus and grains, and morphology of grains, subsequently affects the 

permeability. 

Since, in this investigation a Newtonian thermal condition is assumed; nucleation 

phenomena are entirely random. Therefore, the distribution of nuclei location could affect 

the behavior of the pressure field due to the drag force of nucleus on fluid flow. Figs. 10 to 

12 show the effect of distribution of nuclei and grains on the pressure field for three constant 

solid fractions, 0.02, 0.10, 0.24, and 0.43 at a fixed cooling rate. Stream lines are substantially 

different in these figures, especial at high solid fractions (i.e. fs=0.43), which are affected 

from the number and size of the grains as well as the distribution of nuclei and grains. 

 

 

Fig. 10. Simulation of the pressure fields adjacent to 4 types of nucleus distribution with 1% 
solid fraction and cooling rate of 100 J in each time step.(dQ/dt = 1000 J/s, fs=0.1%) 
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Fig. 11. Simulation of  the pressure field adjacent to 4 types of nucleus distribution with 35% 
solid fraction and cooling rate of 100 J in each time step.(dQ /dt= 1000 J/s, fs=0.35%) 

Fig 13 shows the effect of cooling rate on the pressure field for a fixed solid fraction 

(fs=0.43%). Results show that by increasing the rate of heat extraction from the domain (dQ), 

some parameter such as size, numbers, and distribution of nucleus and grains have changed 

and subsequently the pressure field has changed.  For example at dQ = 70, grains are coarse 

and large, however at dQ = 300, grains are fine and small. 

Fig 14 shows the temporary permeability that was calculated from the simulated pressure 

fields. In low solid fraction (fs< 0.06) and high solid fraction (fs>0.78), the behavior of 

permeability is as asymptotic function, because of fl factor in Eq. 19a. However between 

two solid fractions, behavior of the temporary permeability is almost liner. Markers, ■, 

●,▲, and ◊, demonstrate the effect of different grains distributions on the permeability 

coefficient, which do not show a significant effect, especially at low and high solid 

fractions. 
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Fig. 12.  Simulation of  the pressure field adjacent to 4 types of nucleus distribution with 72% 
solid fraction and cooling rate of 100 J in each time step.(dQ/dt= 1000 J/s, fs=0.72%) 

4. Conclusions 

It is possible, especially in commercial codes, to obtain the thermal history in casting or 

solidification codes. In fact all numerical fluid flow and heat transfer software can save the 

cooling rate ( )
T

t

∂

∂
, temperature gradient (

Q T
G

k x

∂
= =

∂
), and solidification rate (

sf

t
v

∂
=

∂
) 

for each location of the meshed domain. Therefore, in the present code if the 

interdendritic permeability is defined as a function of cooling rate, the micro-structure 

will be related to the thermal history in a macro scale, and the formation of micro defects 

could be predicted. In other words, the present code is capable of predicting the micro-

defects based on thermal history. However, the cooling rate is not an independent 

variable and should be determined by the temperature gradient and the solidification 

rate, as follows: 
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Fig. 13. Simulation of the pressure field adjacent to 4 types of nucleus distribution with 
0.45% constant solid fraction and dQ equals to 70, 130, 250, and 300 J in each time step 

It means that increasing the cooling rate results in an increase in the number of nuclei and 

the change of dendrite morphology from faceted surface to dendritic surface (cloverleaf 

grain) and that in turn affects the interdendritic permeability. Therefore, the effect of 

temporary solid fraction (dfs) and heat extraction rate (dQ) on the temporary permeability is 

modeled as an asymptotic function and plotted in Fig. 15 and 16. Results shown in Fig. 16 

show that after formation of 0.72% solid, grains are inter-connected and join together. 

Consequently, there is no fluid stream into the mushy zone, but only some micro fluid flow 
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as a vortex of the entrapped liquid between the grains. It seems that the critical permeability 

for the formation of micro-porosity, in a mushy alloy such as Al-6%wt.Si, is less than 1E-10 

to 1E-11 (m2). This is true, even at very high cooling rates of over 3000 J/s and different 

distributions of the equiaxed grains. 

 

 

Fig. 14. Calculation of permeability based of simulation results of the present CFD and CA-
FD codes during grain growth with 4 kinds of nucleus distribution (■●▲◊) versus solid 
fraction 

In this investigation, the temporary permeability results, which was obtained based on the 

cooling and solidification rate can be modeled as a 3-dimensional surface. The resulting 

equation of this 3D-surface as given in Eq. 30 can be used in all casting simulation 

software. 

 ( ) 7.175 0.002 5.185sLog Permeability f dQ− = + +  (30) 

Finally, the significant findings of this investigation can be phrased as follows: 
i. In this investigation an algorithm was developed to calculate the permeability of mushy 

alloys. To simulate the permeability, CFD and CA-FD codes were coupled. The CA-FD 
code was used for nucleation and growth of the equiaxed dendrites and the CFD code 
was used for simulation of the pressure and velocity fields adjacent to the nuclei and 
grains. 

ii. The temporary permeability was calculated based on the present codes (CFD and CA-
FD) 
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Fig. 15. Changes in permeability results in the Al-6%Si alloy 

 

 

Fig. 16. Modeling of temporary permeability as a 3-D surface during equiaxed grain growth 
based on simulation results of the present code 

iii. Permeability simulation results showed that apart from low and high solid fractions, 
fS<0.06 and fS>0.72, respectively, the temporary permeability versus the solid fraction 
during solidification has a linier behavior. 
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iv. Results showed that the temporary permeability during nucleation and growth of the 
equiaxed grains depends on cooling and solidification rate. 

v. At high cooling and solidification rate fluctuations on temporary permeability was 
observed, which was presumably due to the perturbation of the grain surfaces or the 
evolution of semi-spherical grains to cloverleaf dendrites. 

vi. Permeability results of present code can be utilized in commercial casting and 
solidification software. 
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