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Moisture and Estimation of  
Moisture Generation Rate 

Tao Lu, Xiaoshu Lu and Martti Viljanen   
Department of Civil and Structural Engineering,  

Aalto University School of Science and Technology 
Finland 

1. Introduction 

Buildings are exposed to outside weather, which cannot remain free of water in liquid and 
vapour phases. “Except for structural errors, about 90% of all building construction 
problems are associated with water in some way.” by Lieff and Trechsel (Lieff & Trechsel, 
1982). Moisture problem has become one of the most important factors decreasing indoor air 
quality (IAQ) and limiting the building service life. Over the last decade, moisture failures in 
building systems have reached billions of Euros in damages in Europe, many of which 
involved the deterioration of sheathing panels. Research has verified the existence of health 
problems in relation with moisture problems. In Finland, for example, it has been reported 
that 38% of detached houses and 25% of apartments had notable or significant moisture 
problems (Haverinen, 2002). The cost of repairing moisture damage that resulted in negative 
health effects was estimated as € 10 000 – 40 000 per case. Therefore, the prediction and 
control of moisture transport in buildings are import from both technical and health points 
of view.  
Moisture can migrate into a building in several ways, depending on vapour, liquid or 
ice/snow. In general, three major moisture sources can be identified: outdoors (e.g. air 
humidity, precipitation, moisture in the ground), the indoors (e.g. humans, water use), and 
wet construction materials (Rousseau, 1984). Moisture accumulation into building structures 
may lead to physical, biological or chemical deterioration of building materials as well as the 
growth of some microbial or chemical contaminations (Salthammer, 1999; Andersson, 1997). 
One major problem caused by moisture is mould.  
Moulds are the most typical form of fungus, which can be found anywhere. They can grow 
on virtually any organic substances as long as moisture and oxygen are present. Like other 
fungi, moulds reproduce through the production of spores. Mould spores continually waft 
through the air, both indoors and out-of-doors. Many types of moulds exist indoors, and 
almost all moulds could cause heath effects (through air), depending on the type and 
amount of mould present as well as the sensitivity of individual experiencing mould 
exposure. Certain health effects, such as irritation of eyes, nose and throat, dermatitis, 
exacerbation of asthma, and respiratory distress, have been reported to be associated with 
mould exposure (Verhoeff et al., 1995; Pope et al., 1993). Other effects such as fever, flu-like 
symptoms, fatigue, respiratory dysfunction, excessive and regular nose bleeds, dizziness, 
headaches, diarrhea, vomiting, liver damage, and impaired or altered inhalation have been 
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identified in persons who have been exposed to mould (Croft et al., 1986; Jarvis, 1995; Smith 
& Moss, 1985). Some moulds even produce toxins (mycotoxins) (Jarvis, 1990; Burge, 1986; 
Yang, 1995). 
Indoor mould was reported worldwide. A series of studies conducted in European 
countries, Canada and the United States showed that at least 20% of buildings had one or 
more signs of visible mould growth indoors on walls, floors or ceilings (Institute of 
Medicine, 2004). Similar reports also come from other areas of the world. A survey in rural 
Taiwan and China showed that 30.1% of visited people reported the presence of visible 
mould inside their houses (Yang et al., 1997). In a study of 98 houses in Japan, 15.6% was 
reported to have visible mould (Saijo et al., 2004). In another study in three China cities 
(Beijing, Guangzhou and HongKong), about 11% of parents of 10 902 schoolchildren 
reported visible mould on the ceilings and walls (Wong et al., 2004). Indoor mould was also 
reported to occur in school buildings, day-care centres, offices and other buildings (Mudarri 
& Fisk, 2007).  
Excessive moisture is generally the cause of mould growth. Relevant experiments were 
committed to study the lowest moisture level for mould growth. Adan (Adan, 1994) found 
that moulds don’t grow below a relative humidity of 80%. In Viitanen and Ritschkoff’s work 
(Viitanen & Ritschkoff, 1991), they suggested relative humidity should be kept below 75% 
within a temperature range of 5-40 oC to avoid mould growth. This result was confirmed by 
Rowan et al. (Rowan et al., 1999). In a more detailed review work, Johansson et al. 
(Johansson et al., 2005) described that critical moisture conditions for mould growth were 
75-90% for clean materials and 75-80% for contaminated or solid materials (Table 1).  
 

Building material group Relative humidity (%) 

Wood and wood-based materials 75-80 

Paper on plasterboard  80-85 

Mineral insulation materials 90-95 

Extruded and expanded polystyrene 90-95 

Concrete 90-95 

Source: Johansson et al. (2005) 

Table 1. Critical relative humidity for various groups of materials. 

Therefore, indoor moisture becomes the major factor on the presence of mould. Indoor 
moisture was also linked to the growth of Bacteria (Heinz & Mark, 2009).  Hence, control of 
indoor moisture level becomes essential concerning IAQ. It is not uncommon in some 
climates to have moisture loads in excess of over 20 kg per day (Kerestecioglu & Gu, 1990). 
The load mainly comes from indoor activities like occupants, washing and cooking etc. In 
residential buildings, the largest single moisture load is from people’s respiration and 
perspiration.    
However, methods of evaluating indoor moisture generation rates in buildings are generally 
lacking. The difficulty lies on the fact that the moisture generation rate has no clear 
relationship with the number of occupants. Factors like cleaning and plants have big effect 
(Hite & Bray, 1948). Large background contributions from the foundation and soil have been 
reported (TenWolde, 1994). Typically, a trial-and-error method is adopted in evaluating the 
indoor moisture generation rate in calculating building heat and moisture transfer. Values of 
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indoor moisture generation rate are adjusted in comparing the measured and the calculated 
moisture contents. The final selected value is based on the minimum difference of the 
moisture contents between the measured and the calculated. TenWolde (TenWolde, 1994) 
used this method and the mathematical model developed by the same author to analyse the 
indoor moisture generation rates for six manufactured houses during winter. Houses were 
occupied by one to two persons in each house and dimensions were varying from 4.3 × 20.1 
to 4.9 × 23.2 m2. The estimated average values of moisture generation rates were 32×10−6 to 
75×10−6 kg s−1 per person. Very often, an experimental value is used. 
In this chapter, a mathematical method in predicting indoor moisture generation rate is 
developed. The method is based on a series of measured indoor moisture contents. Using a 
Stirling interpolation fitting of the measured indoor moisture contents, the time-dependent 
indoor moisture generation rate can be determined. The moisture generation pattern can be 
obtained thereafter. The developed method provides an easy and concise way of 
determining indoor moisture generation levels, hence can be served as a useful tool in 
predicting building heat and moisture transfer. 
This chapter is trying to accomplish two objectives. The first is to apply the mathematical 

method to predict the indoor moisture generation rate for a real test house. Results are 

analysed by the heat and moisture transfer model developed by Lu (Lu, 2002; Viljanen et al., 

1999). With this model, the validation of the proposed mathematical method in deriving 

indoor moisture generation rate is studied. The second objective is to study the effect of 

indoor moisture generation patterns on the indoor moisture level using the developed heat 

and moisture transfer model. 

The chapter is organised as follows: Following the introduction is a brief description of 

overall heat and moisture transfer model equations for the building system. The 

mathematical method used in predicting indoor moisture generation rate is given in details 

after the heat and moisture transfer model description. The validation of the developed 

model is conducted for a real test house. Finally, simulation results are presented, which 

mainly involve the study of the effect on indoor moisture behaviour of different moisture 

generation patterns. 

2. Model equations for a building system 

A building system is divided into building envelopes such as walls, roof, floor, foundation 

etc and building indoor air. The modelling work can be generalised as following main steps: 

1) developing heat and moisture transfer model equations for building envelopes; 2) 

developing heat and moisture transfer model equations for indoor air and 3) numerically 

solving the system equations for building envelopes and indoor air at any time with outdoor 

conditions expressed as boundary conditions. Hence the transient temperature and moisture 

variations can be obtained for a building system under outdoor conditions. A complete heat 

and moisture transfer model for a building system is described by Lu in (Lu & Viljanen, 

2000; Viljanen et al., 1999). 

2.1 Model equations for building envelopes 

The fundamentals of heat and moisture transfer in porous media (building envelopes) can 

be found in pioneering papers by Philip and DeVries (Philip & DeVries, 1957) and Whitaker 

(Whitaker, 1977). In modelling heat and moisture transfer in building porous materials, 
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Whitaker’s REV method (Whitaker, 1977) is adopted. The general approach is to start with 

conservation equations, constitutive equations and state equations by means of the 

thermodynamics of the Gibbs relation. The conservation equations include the mass, the 

momentum and the energy conservation equations. In writing the heat and moisture transfer 

model equations for building envelopes, simplifications have been made. These include  

i. In considering moisture transfer for building envelopes, convection effect is not 

included. Moisture transfer is described as Fick’s generalised diffusion equation with 

water vapour concentration as a driving potential. This is justified by Liesen and 

Pedersen (Liesen & Pedersen, 1999) for example. However, in the case of existence of 

liquid phase, the transport of liquid by Darcy’s law can be taken into account.  

ii. Local thermodynamic equilibrium is assumed at every point of the material. 

iii. For all moisture transport coefficients, any hysteresis effect is not included. 

iv. The flux of heat or moisture at the interface of contacted materials has a continuous 

property. 

v. Heat and moisture transfer equations are limited to one-dimensional for building walls 

and roof and two-dimensional for building floor, foundation and soil.  

vi. Soil is a homogeneous material. 

vii. At a depth of 5 m of the soil ground, the temperature is constant equal to 5°C. At certain 

depths, the relative humidity of soil is 100%. 

Having the above assumptions the heat and moisture transfer equations for different 
components of building envelopes can be written down. For example, for building walls, we 
have 

 w w w
w p w( )

T T
C

t x x
ρ λ∂ ∂ ∂

=
∂ ∂ ∂

, (1)  

 w w
w( )

c c
D

t x x

∂ ∂ ∂
=

∂ ∂ ∂
. (2) 

Boundary condition: The interfaces between layers are treated separately and the conditions 
of continuity assumption (iv) are applied. Thus we have for example 

 1
wλ

1
wT

x

∂
∂

|interface  = 2
wλ

2
wT

x

∂
∂

| interface, (3)  

 1
wT | interface = 2

wT | interface,  (4)  

 1
wD

1
wc

x

∂
∂

|interface  = 2
wD

2
wc

x

∂
∂

| interface,  (5)  

 1
wc | interface = 2

wc | interface. (6) 

For surfaces exposed to the outdoor and indoor air, we have for example  

 λw
wT

x

∂
∂

|surface,out= out
T, wh  (Tout-Tw| surface,out) + qw, (7)  
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 Dw
wc

x

∂
∂

|surface,out= out
m, wh (cout-cw| surface,out)  (8) 

and 

 λw
wT

x

∂
∂

|surface,in = in
T, wh  (Tw| surface,in- Tin),  (9)  

 Dw
wc

x

∂
∂

|surface,in = in
m, wh  (cw| surface,in- cin),  (10) 

where qw is the solar energy received by the exterior wall surface. Empirical values of the 

surface heat and moisture transfer coefficients, out
T, wh and in

T, wh , are taken from RIL 117 (RIL 

117, 1979). Lewis relation can be used to determine out
m, wh and in

m, wh . Currently, raining 

effect is not included. 
Similar equations of Eqs. (1)–(10)  for building floor, foundation and soil are given with two-
dimensional. In writing the boundary conditions, the heat and moisture fluxes normal to the 
boundary surfaces which are selected as far as possible from the interest building are 
assumed to be 0 in soil ground. Assumption (vii) is also employed. We are not going to 
address the equations here for space limitation. More details can be referred to Viljanen et al. 
(Viljanen et al., 1999). 
For initial conditions for building envelopes, the temperature or the relative humidity is 
assumed at the steady state with indoor and outdoor temperatures or relative humidity. For 
soil, the initial temperature distribution is treated differently accounting for its big thermal 
capacity (Viljanen et al., 1999).  

2.2 Model equations for building indoor air 

The following physical condition is assumed for building indoor air: 
viii. Indoor air is well mixed. Indoor temperature and moisture content are uniformly 

distributed.  
The well-mixed indoor air model is generally not valid, however, the resultant error may be 

negligible depending on the model’s application. For a normal residential house for 

example, the effect of the indoor air flow on the indoor temperature and moisture level is 

normally small if the ventilation rate is not very big. Hence a well-mix indoor air model is a 

good approximation of the practical situation. 

The heat and moisture balance equations therefore can be written in the following forms: 

 Vρin
in
pC indT

dt
= nVρin

in
pC  (Tout – Tin) + ΣQi,  (11) 

 V indc

dt
= nV(cout – cin) + G +ΣMi, (12)  

where ΣQi is the sum of heat transfer rates between building envelopes and indoor air (W), 

ΣMi is the sum of moisture transfer rates between building envelopes and indoor air (kg s-1) 

and G is the indoor moisture generation rate (kg s-1).  
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To have a closed system of heat and moisture equations for building system, all material 
property data have to be taken into account. These data are taken from RIL 117 (RIL 117, 
1979), some of which are based on the experimental fittings (Viljanen et al., 1999). Moreover, 
the time-dependent indoor moisture generation rate G has to be given in order to solve the 
equations. A mathematical method of calculating G is given in the following section. 
The model partial differential equations, Eqs. (1)-(12), are discretized in space by the finite 
difference method. The resultant ordinary differential equations are discretized in time by 
the Crank-Nicolson scheme. The final algebraic equations are solved by the Newton 
iteration method. Transient temperatures and moisture contents for building envelopes and 
indoor air are then solved at any time under outdoor climatic conditions.  

3. Calculation of indoor moisture generation rate 

Eq. (12) gives the moisture generation rate as: 

 G = V indc

dt
– nV(cout – cin) – ΣMi. (13)  

To deduce G, the derivative of indoor moisture content cin versus time, indc

dt
, is needed. 

However, direct differentiation of the indoor moisture contents can be unstable even though 
the data show smooth and continuous properties. The moisture generation rate increases 
exponentially when the moisture source releases the moisture and decreases exponentially 
after the source stops the release. Bennett et al. (Bennett et al., 1996) developed an approach 
in estimating emission rate from concentration data for formaldehyde measurement. A 
Stirling interpolation polynomial fitting was used in constructing the derivatives of 
contaminant concentrations. Applying this idea, indoor moisture contents cin are 
interpolated by a Stirling polynomial, the derivatives can therefore be obtained by simply 
differentiating the smooth continuous polynomial.  
Stirling interpolation polynomial is based on the average of the backward and forward 
Gauss interpolation polynomials. It uses a diagonal difference table with three successive 
points. It is a symmetrical approximation for the given values. Relevant formulas are shown 
in the appendix. Similarly, a Bessel interpolation polynomial can be used also. It is based on 
a diagonal difference table and uses four points. It is able to interpolate with data that are 
not evenly spaced apart. More details can be seen in Kunz (Kunz, 1957). 
Another unknown value presented in Eq. (13) is the time-dependent moisture transfer rate 

ΣMi between building envelopes and indoor air. In deriving the indoor moisture generation 

rate G, it is customarily assumed that ΣMi is 0, for example in Bennett et al. (Bennett et al., 
1996). However, it may affect the calculation accuracy. We propose two different methods in 

calculating ΣMi here, namely the explicit and the numerical methods. 
For the explicit method, we assume a steady-state condition in Eq. (13) and ignore the 
thermal lag between the envelopes and indoor air, so the moisture transfer rate M for any 
building envelope can be approximated as 

 M = Aδ(cout-cin),  (14) 

where A and δ are the area and the overall moisture transfer coefficient of the building 
envelope respectively.  
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The implication behind the approximation Eq. (14) is that the moisture profile of the 

building envelope is given by a linear combination of cout and cin. For a thin, uniform 

construction material, the method can give a good estimation. However, for a general 

situation, Eq. (14) gives a poor estimation. One way of modifying it is to introduce more 

interpolation nodes for example cout, c1,…cn, cin. The Laplace transform can be used and Eq. 

(14) is reduced to a first order time lag corresponding to cout and cin. As it involves tedious 

basic mathematical manipulations, details are skipped here. More information can be found 

in Underwood (Underwood, 1999), where an approximated heat conduction equation was 

studied. It can be applied to moisture transfer equation. 

For the numerical method, the developed program is adopted to predict ΣMi at any time. 

One difficulty is that in calculating ΣMi, the time-dependent moisture generation rate G is 

needed. Values of G can be approximated first by assuming ΣMi = 0. 

3.1 Model validation criteria 

The Normalized Mean Squared Error (NMSE) and the Correlation Coefficient (r) are 
accepted as two key criteria to evaluate the fit to the identification data. 
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where ix
&

and ix are predicted value and the mean of measured ones ( ix ) respectively, N is 

the number of samples, iz and iy are samples. By definition, the minimum of NMSE is zero, 

indicating the exact match between actual and estimated values. The higher NMSE, the 

worse is our estimation.  The value of r is such that -1 < r < +1, where + and - signs are used 

for positive linear correlations and negative linear correlations, respectively.  An r value of 

exactly +1 indicates a perfect positive fit while -1 means a perfect negative fit. 

4. Simulation results and discussion 

4.1 Validation of the heat and moisture transfer model 

In order to apply the proposed mathematical method in predicting indoor moisture generation 

rate, a comparison of calculated indoor moisture content using the heat and moisture transfer 

model described in the last section with available measurement data for a test house without 

occupants was done. The result is shown in Fig. 1. In the simulation process, as the time-

dependent ventilation rate was not measured, a fitted value of n = 0.3 h-1 = 8.3×10-5 s-1 was 

used. It can be seen that good agreement is obtained with NMSE =0.44 and r=0.81. The relative 

difference between the calculated and the measured data is less than 10%. 
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Fig. 1. Comparison between calculated and measured indoor moisture contents. Validation 
of the heat and moisture transfer model. 

4.2 Validation of the indoor moisture generation rate model 

To perform a validation of the proposed mathematical method in predicting indoor 

moisture generation rate, we measured a series of indoor temperatures and moisture 

contents for a real test house. The measurement period was from 24th of November to 2nd 

of December 1998 and the average ventilation rate was measured as 0.4 h-1= 1.1×10-4 s-1. The 

test house is a one-storey detached house, a massive log house, with a dimension 

7.6× 14.3× 2.5 m3 located near Helsinki of Finland (Lehtinen et al., 1998).  The floor area is 

about 110 m2. The inner and outer walls, roof and floor are mainly composed of wood, 

mineral wool and concrete with thickness 200, 300 and 120 mm, separately. A schematic 

picture of the house dimensions and constructions is given in Figs. 2 and 3. The house was 

occupied by a family with two adults and a baby.  

As reference figures, Figs. 4 and 5 display a comparison between the calculated and the 

measured indoor moisture contents and relative humidity. Indoor moisture generation rate 

was assumed to be 0. The measured indoor temperatures were used in the calculation, see 

Fig. 6. It can be seen that the calculated levels of indoor moisture contents and relative 

humidity are lower than those of the measured data. Indoor moisture generation rate has to 

be taken into account. 

Table 2 lists some of the measurement data including outdoor and indoor moisture contents. 

The last column presents the calculated indoor moisture generation rate per unit volume 

using the method described in the previous section, see the appendix. Here we assume  

that the moisture transfer rate between building envelopes and indoor air is 0, i.e.  

ΣMi = 0. 
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Fig. 2. Layout of cross-section view of the test house. 

 

 
 

Fig. 3. Schematic picture of the constructions of the test house. 
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Fig. 4. Comparison between calculated and measured indoor moisture contents for the test 
house. Indoor moisture generation rate is assumed to be 0. 

 

 

Fig. 5. Comparison between calculated and measured indoor relative humidity for the test 
house. Indoor moisture generation rate is assumed to be 0. 
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Fig. 6. Measured indoor and outdoor temperatures for the test house. 

 

 

Fig. 7. Measured indoor moisture contents and calculated indoor moisture generation rate 
for the test house. 
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Fig. 7 shows the measured indoor moisture content and the calculated time-dependent 
indoor moisture generation rate for the test house. It can be seen that the trend of indoor 
moisture generation rate very much follows that of the indoor moisture contents. The rate 

values vary from 0 to 2.6 gm-3 h-1 = 196 × 10-6 kg s-1. And the average rate value is 0.76 g m-3  

h-1 = 57×10-6 kg s-1. These values fall within the range of moisture generation rate reported 
by other researchers. For example, TenWold (TenWold, 1994) estimated the moisture 

generation rate in one- to two-person house between 63×10-6 kgs-1 and 75×10-6 kgs-1in winter 
period. 
 

Time 
(24th, 
Nov.) 

cin (gm-3) indc

dt
(gm-3 h-1) cout (gm-3) 

n(cout-cin) 
(gm-3 h-1) 

G

V
(gm-3 h-1) 

12:00 am 5.67 0.2040 3.7521 -0.7672 0.9712  

12:30 am 5.43 -0.5027 3.7260 -0.6816 0.1788  

01:00 am 5.34 -0.0360 3.7096 -0.65214 0.6161  

01:30 am 5.34 0.0160 3.7336 -0.6426 0.6586  

02:00 am 5.34 0 3.7579 -0.6329 0.6329  

02:30 am 5.34 -0.0270 3.774 -0.6264 0.5994  

03:00 am 5.34 0.1350 3.7839 -0.6224 0.7575  

03:30 am 5.43 0 3.7695 -0.6642 0.6642  

04:00 am 5.34 -0.1350 3.7474 -0.6370 0.5020  

04:30 am 5.34 0.0270 3.7226 -0.6470 0.6740  

Table 2. Measured indoor moisture contents and calculated indoor moisture generation rate. 

 

 

Fig. 8. Comparison between calculated and measured indoor moisture contents for the test 
house. Time-dependent moisture generation rate in Fig. 7 is applied. 
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Fig. 9. Comparison between calculated and measured indoor relative humidity for the test 
house. Time-dependent moisture generation rate in Fig. 7 is applied. 

From the obtained time-dependent indoor moisture generation rate in Fig. 7 we can see that 

the moisture generation pattern consists of different peaks, which are coincident with 

occupants’ activities. Applying the result in Fig. 7, Figs. 8 and 9 present the results of the 

comparison between the measured and the calculated indoor moisture contents and relative 

humidity. Table 3 lists the model performances for results (Figs. 8 and 9). Good agreement is 

obtained. 

 

Model 
Normalized Mean 

Squared Error 
(NMSE) 

Correlation 
Coefficient (r) 

a
calculated measured

measured

−
 

Calculated indoor 
moisture content 
vs. measured 
indoor moisture 
content (Fig. 8) 

0.71 0.55 
Maximum = 15%; 
Average= 5%; 

Calculated indoor 
relative humidity 
vs. measured 
indoor relative 
humidity (Fig. 9) 

0.38 0.83 
Maximum = 15%; 
Average = 6%; 

a The range of errors between calculated and measured. 

Table 3. Model performances between measured indoor moisture content and calculated 
indoor moisture generation rate. 
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It is worth noting that the moisture generation rate in Fig. 7 was obtained by assuming the 

moisture transfer rate ΣMi = 0.  It seems this assumption influences the model accuracy in 
calculating indoor moisture content, which gives relatively low Correlation Coefficient 
(r=0.55). But, the error range is small and satisfactory (last column in Table 3). Using the 
program and the information of Fig. 7 we have calculated the moisture transfer rate per unit 

area i

i

M

A

∑
∑

. Values vary from 0.02×10-9 kg m-2 s-1 to 0.13×10-6 kg m-2 s-1. The average value is 

0.03×10-6 kg m-2 s-1. Considering the magnitude of the moisture transfer rate, it is neglected 
in deducing the moisture generation rate. Calculations would not make any principle 
difference if the effect of moisture transfer rate were taken into account. TenWolde 

(TenWolde, 1994) used a moisture transfer rate of 0.068×10-6 kg m-2 s-1 to match the 
calculated and the measured indoor relative humidity.  
One interesting phenomenon is that the model gives very good agreement for indoor 

relative humidity (Table 3). As mentioned earlier, the model has assumed that the heat 

transfer rates between building envelope and indoor air were assumed as zero (ΣQi,, Eq. 

(11)). This assumption may have effects on model accuracy of both indoor temperature and 

moisture content estimates which is beyond statistical explanation.  This guess is further 

proved by the following simulations (Section 4.3). 

In the following, a number of simulations are conducted for the test house shown in Figs. 2 

and 3. These calculations are concerned with the study of the effect on indoor moisture 

contents of different moisture generation rate patterns.  

4.3 Effect of moisture generation rate patterns 

Consider a varied moisture generation pattern shown in Fig. 7 and a constant moisture 

generation pattern. Figs. 10 and 11 present the calculated indoor moisture contents and 

relative humidity. For the constant moisture generation pattern, the rate value of 57×10−6  kg 

s−1 is assumed, which is predicted for the test house as an average rate value. It is observed 

that the indoor moisture content with the constant moisture generation rate is an average 

curve of that with the varied moisture generation rate in Fig. 10. Moreover, the difference is 

so small that it can be neglected. This conclusion is applicable to the indoor relative 

humidity in Fig. 11. 

Next, assume that the test house is a commercial house with occupant activities existing 

only for certain working hours, for example from 9:00 a.m. to 5:00 p.m. for 8 hours. The 

moisture generation rate is assumed to be 171×10-6 kg s-1 during the working hours and 0 

otherwise, which has a periodic pulse pattern. Note that the daily average moisture 

generation rate is still 57×10-6 kg s-1 as in Figs. 10 and 11. Figs. 12 and 13 show the 

comparison of the indoor moisture contents with these two different moisture generation 

rate patterns. Table 4 illustrates model performances. The difference is within a very small 

range, especially for indoor relative humidity.  

Model performances are excellent in indoor relative humidity estimation.  Results also show 

consistency with ones in Section 4.2, which evidences our guess. Neglecting moisture 

transfer between building envelope and indoor air can affect the model accuracy in 

calculating indoor moisture content, but the impact is limited and very small normally 

(Section 4.2). As such, the model may give relatively poor agreement for indoor moisture 

content which may go beyond statistics, such as Correlation Coefficient, but in general 
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errors are small and acceptable (last columns in Tables 3 and 4).  Furthermore, note that a 

relationship between two variables must be approximately linear when applying 

Correlation Coefficient. When the assumption of linearity is violated, the correlation will 

underestimate the strength of the relationship. In addition, the developed model in this 

 

Model 
Normalized Mean 

Squared Error 
(NMSE) 

Correlation 
Coefficient (r) 

a
simulated target

target

−
 

Constant 
moisture 
generation rate vs. 
time-dependent 
moisture 
generation rate 
(indoor moisture 
content, Fig. 10) 

0.74 0.54 
Maximum = 15%; 
Average= 3%; 

Constant 
moisture 
generation rate vs. 
time-dependent 
moisture 
generation rate 
(indoor relative 
humidity, Fig. 11) 

0.12 0.94 
Maximum = 15%; 
Average = 3%; 

Moisture 
generation rate 
with constant 
pattern vs. 
Moisture 
generation rate 
with periodic 
pulse pattern 
(indoor moisture 
content, Fig. 12) 

0.69 0.56 
Maximum = 9%; 
Average = 4%; 

Moisture 
generation rate 
with constant 
pattern vs. 
Moisture 
generation rate 
with periodic 
pulse pattern 
(indoor relative 
humidity, Fig. 13)

0.14 0.93 
Maximum = 10%; 
Average = 4%; 

a The range of errors between simulated and target. 

Table 4. Model performances for the effect of moisture generation rate patterns 
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Fig. 10. Comparison of the effect on indoor moisture contents of different moisture 
generation patterns for the test house. Constant moisture generation rate and time-
dependent moisture generation rate in Fig. 7 are applied. 

 

 

Fig. 11. Comparison of the effect on indoor relative humidity of different moisture 
generation patterns for the test house. Constant moisture generation rate and time-
dependent moisture generation rate in Fig. 7 are applied. 
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Fig. 12. Comparison of the effect on indoor moisture contents of different moisture 
generation patterns for the test house. Moisture generation rates with constant and periodic 
pulse patterns are applied. 

 

Fig. 13. Comparison of the effect on indoor relative humidity of different moisture 
generation patterns for the test house. Moisture generation rates with constant and periodic 
pulse patterns are applied. 
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paper (e.g. Eq. (13)) is physically verified in many related works (Lu, 2002). In this study, the 
differences between simulated and measurements are all in small margins (last columns in 
Tables 3 and 4), which further verify the model's usefulness in practice.   
This is an interesting result as it can greatly simplify the calculation procedure. Note that 
any moisture generation pattern function can be approximated by a combination of periodic 
pulse functions, so the result actually implies that a constant moisture generation rate 
pattern is always ‘enough’ in calculating the indoor moisture content, especially in deciding 
indoor moisture level. 
 It is worth mentioning that Isetti et al. (Isetti et al., 1988) studied the effect on indoor relative 
humidity of three periodic pulse types of moisture generation patterns with different 
numbers of occupants in an office room. A similar result was obtained. A constant moisture 
generation pattern was not included in their paper. 

5. Conclusion 

The importance of the effect of the indoor moisture generation rate on accurately predicting 
moisture content for a building system has been demonstrated. Hence in studying the heat 
and moisture transfer for a building system, a method of precisely calculating indoor 
moisture generation rate is needed. To address the problem, this chapter proposes a 
mathematical method to derive time-dependent moisture generation rate function from a 
series of measured indoor moisture contents. The method incorporates the developed heat 
and moisture transfer model to calculate transient temperatures and moisture contents for 
building envelopes and indoor air exposed to any outdoor climatic conditions. The model is 
validated by a real test house. The effect on indoor moisture level of different moisture 
generation patterns is also investigated. 
Through simulation results, we can draw the following main conclusions:  

• The performance of indoor moisture generation rate has a big effect on indoor moisture 
level. In conducting the simulation work, this aspect has to be considered.  

• Given a series of measured indoor moisture contents, it is possible to calculate time-
dependent moisture generation rate using the method proposed in this chapter. 

• A constant moisture generation rate model is generally not valid, but the resultant error 
may be negligible. This has important implication for simplifying a simulation 
procedure. 

Finally, it is stressed that the present model is based on the condition of well-mixed indoor 
air moisture from the moisture sources. For some special cases especially right after the 
moisture release from a big moisture release source, special attention must be paid. 
Moreover, for a heavy moisture content room like sauna or bathroom, the effect of different 
moisture generation rate patterns may be too big to be neglected. 
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7. Appendix 

Table 5 presents a difference table used in interpolating a series of measured data by a 
Stirling polynomial. 
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With equal space h, at point x = x0, the approximation of the derivative of Stirling 
polynomial is give as (p127, Kunz, 1957): 

 [
dy

dx
]x=x0 = 

1

h
( 1 0

2

y y−Δ + Δ
-

1

6

3 3
2 1

2

y y− −Δ + Δ
+

1

30

5 5
3 2

2

y y− −Δ + Δ
+…).  (A.1) 

Applying the above formula Eq. (A.1) to the indoor moisture content we get 

 [ indc

dt
]t=t0 = 

1

tΔ
( , 1 ,0

2

in inc c−Δ + Δ
-

1

6

3 3
, 2 , 1

2

in inc c− −Δ + Δ
+

1

30

5 5
, 3 , 2

2

in inc c− −Δ + Δ
+…). (A.2) 

Take Table 5 as an example, Eq. (A.2) gives the following result at time 2:30 am:  

 [ indc

dt
]2:30am= 

1

0.5
(

0 0

2

+
-

1

6

0 0.09

2

+
+

1

30

0.09 0.45

2

−
) = -0.0270 g m-3 h-1. (A.3) 

In Table 2, it shows that [ indc

dt
]2:30am= -0.0270 g m-3 h-1. 

 

index 
no. 

Time cin Δcin Δ2cin Δ3cin Δ4cin Δ5cin 

-5 12:00 am 5.67  

  -0.24  

-4 12:30 am 5.43 0.15  

  -0.09 -0.06  

-3 01:00 am 5.34 0.09 -0.03  

  0 -0.09 0.12 

-2 01:30 am 5.34 0 0.09  

  0 0 -0.09 

-1 02:00 am 5.34 0 0  

  0 0 0.09 

0 02:30 am 5.34 0 0.09  

  0 0.09 -0.45 

1 03:00 am 5.34 0.09 -0.36  

  0.09 -0.27 0.9 

2 03:30 am 5.43 -0.18 0.54  

  -0.09 0.27  

3 04:00 am 5.34 0.09  

  0  

4 04:30 am 5.34  

Table 5. Difference table. 

Nomenclature 

A area, m2 
c vapour content, kg m-3 
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Cρ specific heat, J kg-1 K-1 
D moisture diffusion coefficient, m2 s-1 
G moisture generation rate, kg s-1 
hm surface moisture transfer coefficient, m s-1 
hT surface heat transfer coefficient, W m-2 K-1 
n ventilation rate, s-1 
q  solar heat flux, W m-2 

Q  heat transfer rate between envelope and indoor air, W  

M  moisture transfer rate between envelope and indoor air, kg s-1  
t  time, s 
T temperature, K 
V  volume, m3 
x space co-ordinate, m 

Greek symbols 

δ  overall moisture transfer coefficient, m s-1 

λ thermal conductivity, W m-1 K-1 

ρ density, kg m-3 

Superscripts 

in indoor  air  
out outdoor air  

Subscripts 

in  indoor air  
interface interface  
out  outdoor air  
surface  surface  
w  wall   
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