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Coherent Current States 
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 B.Verkin Istitute for Low Temperature Physics and Engineering of the 
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Kharkov 61103, 

Ukraine 

1. Introduction 

To present day overwhelming majority works on theory of superconductivity were devoted 

to single gap superconductors. More than 50 years ago the possibility of superconductors 

with two superconducting order parameters were considered by V. Moskalenko  
 

 

Fig. 1. a. The structure of MgB2 and the Fermi surface of MgB2 calculated by Kortus et al. 
(Kortus et al., 2001). 
b. The coexistence of two complex order parameters (in momentum space).  
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(Moskalenko, 1959) and H. Suhl, B.Matthias and L.Walker (Suhl et al., 1959). In the model of 

superconductor with the overlapping energy bands on Fermi surface V.Moskalenko has 

theoretically investigated the thermodynamic and electromagnetic properties of two-band 

superconductors. The real boom in investigation of multi-gap superconductivity started 

after the discovery of two gaps in 2MgB  (Nagamatsu et al., 2001) by the scanning tunneling 

(Giubileo et al., 2001; Iavarone et al., 2002 ) and point contact spectroscopy (Szabo et al., 

2001; Schmidt et al., 2001; Yanson & Naidyuk, 2004). The structure of 2MgB  and the Fermi 

surface of 2MgB   calculated by Kortus et al. (Kortus et al, 2001) are presented at Fig.1.a. The 

compound 2MgB  has the highest critical temperature 39cT   K among superconductors 

with phonon mechanism of the pairing and two energy gaps 1 7meV   and 2 2,5meV   

at 0T  . At this time two-band superconductivity is studied also in another systems, e.g. in 

heavy fermion compounds (Jourdan et al., 2004; Seyfarth et al., 2005), high-Tc cuprates 

(Kresin & Wolf, 1990), borocarbides (Shulga et al., 1998), liquid metallic hydrogen (Ashcroft, 

2000; Babaev, 2002; Babaev et. al, 2004). Recent discovery of high-temperature 

superconductivity in iron-based compounds (Kamihara et al., 2008) have expanded a range 

of multiband superconductors.  Various thermodynamic and transport properties of 2MgB  

and iron-based superconductors were studied in the framework of two-band BCS model 

(Golubov et al., 2002; Brinkman et al., 2002; Mazin et al., 2002; Nakai et al., 2002; Miranovic 

et al., 2003; Dahm & Schopohl, 2004; Dahm et al., 2004; Gurevich, 2003; Golubov & Koshelev, 

2003). Ginzburg-Landau functional for two-gap superconductors was derived within the 

weak-coupling BCS theory in dirty (Koshelev & Golubov, 2003) and clean (Zhitomirsky & 

Dao, 2004) superconductors. Within the Ginzurg-Landau scheme the magnetic properties 

(Askerzade, 2003a; Askerzade, 2003b; Doh et al., 1999) and peculiar vortices (Mints et al., 

2002; Babaev et al., 2002; Gurevich & Vinokur, 2003) were studied.  

Two-band superconductivity proposes new interesting physics. The coexistence of two 

distinctive order parameters 1 1 1exp( )i   and 2 2 2exp( )i    (Fig.1.b.) renewed 

interest in phase coherent effects in superconductors. In the case of two order parameters we 

have the additional degree of freedom, and the question arises, what is the phase shift 

1 2     between 1  and 2 ? How this phase shift manifested in the observable effects? 

From the minimization of the free energy it follows that in homogeneous equilibrium state 

this phase shift is fixed at 0 or , depending on the sign of interband coupling. It does not 

exclude the possibility of soliton-like states ( )x  in the ring geometry (Tanaka, 2002). In 

nonequilibrium state the phases 1  and 2  can be decoupled as small plasmon oscillations 

(Leggett mode) (Legett, 1966) or due to formation of phase slips textures in strong electric 

field (Gurevich & Vinokur, 2006).  

In this chapter we are focusing on the implication of the  -shift in the coherent 

superconducting current states in two-band superconductors. We use a simple (and, at the 

same time, quite general) approach of the Ginsburg–Landau theory, generalized on the case 

of two superconducting order parameters (Sec.2).  In Sec.3 the coherent current states and 

depairing curves have been studied. It is shown the possibility of phase shift switching in 

homogeneous current state with increasing of the superfluid velocity sv . Such switching 

manifests itself in the dependence sj(v ) and also in the Little-Parks effect (Sec.3). The 

Josephson effect in superconducting junctions is the probe for research of phase coherent 

effects. The stationary Josephson effect in tunnel S1-I-S2 junctions (I - dielectric) between 
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two- and one- band superconductors have been studied recently in a number of articles 

(Agterberg et al., 2002; Ota et al., 2009; Ng & Nagaosa, 2009). Another basic type of 

Josephson junctions are the junctions with direct conductivity, S-C-S contacts (C – 

constriction). As was shown in (Kulik & Omelyanchouk, 1975; Kulik & Omelyanchouk, 

1978; Artemenko et al., 1979) the Josephson behavior of S-C-S structures qualitatively differs 

from the properties of tunnel junctions. A simple theory (analog of Aslamazov-Larkin 

theory( Aslamazov & Larkin, 1968)) of stationary Josephson effect in S-C-S point contacts for 

the case of two-band superconductors is described in Sec.4). 

2. Ginzburg-Landau equations for two-band superconductivity. 

The phenomenological Ginzburg-Landau (GL) free energy density functional for two 

coupled superconducting order parameters  1  and 2  can be written as  

2

1 2 12 ,
8

GL
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F F F F
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The terms  1F   and 2F  are conventional contributions from 1  and 2 ,  term 12F  describes 

without the loss of generality the interband coupling of order parameters. The coefficients 
  and  describe the coupling of two order parameters (proximity effect) and their 

gradients (drag effect) (Askerzade, 2003a; Askerzade, 2003b; Doh et al., 1999), respectively.  
The microscopic theory for two-band superconductors (Koshelev & Golubov, 2003; 
Zhitomirsky & Dao, 2004; Gurevich, 2007) relates the phenomenological parameters to 
microscopic characteristics of superconducting state. Thus, in clean multiband systems the 
drag coupling term ( ) is vanished. Also, on phenomenological level there is an important 

condition , that absolute minimum of free GL energy exist: 
1 2

1

2 m m
  (see Yerin et al., 

2008). 
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By minimization the free energy   F=
2

3
1 2 12( )

8

H
F F F d r


    with respect to 1 , 2  and A


 

we obtain the differential GL equations for two-band superconductor  
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and expression for the supercurrent 
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In the absence of currents and gradients the equilibrium values of order parameters 

1,2(0)
1,2 1,2

i
e
   are determined by the set of coupled equations 
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 (6) 

For the case of two order parameters the question arises about the phase difference 

1 2     between 1  and 2 . In homogeneous zero current state, by analyzing the free 

energy term F12   (3), one can obtain that for 0   phase shift   0   and for 0     . 

The statement, that   can have only values 0 or   takes place also in a current carrying 

state, but for coefficient 0   the criterion for   equals 0 or   depends now on the value 

of the current (see below).   

If the interband interaction is ignored, the equations (6) are decoupled into two ordinary    

GL equations with two different critical temperatures
1cT and

2cT . In general, independently 

of the sign of  , the superconducting phase transition results at a well-defined temperature 

exceeding both 
1cT and 

2cT  , which is determined from the equation: 

     2
1 2 .c cT T    (7) 

Let the first order parameter is stronger then second one, i.e. 
1 2c cT T . Following 

(Zhitomirsky & Dao, 2004) we represent temperature dependent coefficients as 

 1 1 1

2 20 2 1

( ) (1 / ),

( ) (1 / ).
c

c

T a T T

T a a T T




  
  

 (8) 

Phenomenological constants 1,2 20,a a  and 1,2 ,   can be related to microscopic parameters 

in two-band BCS model. From (7) and (8) we obtain for the critical temperature cT : 
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For arbitrary value of the interband coupling   Eq.(6) can be solved numerically. For 0   , 

1c cT T  and for temperature close to cT  (hence for 2c cT T T  ) equilibrium values of the 

order parameters are (0)
2 ( ) 0T  , (0)

1 1 1( ) (1 / ) /cT a T T   . Considering in the following 

weak interband coupling,   we have from Eqs. (6-9) corrections 2  to these values: 
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Expanding expressions (10) over (1 ) 1
c

T

T
   we have conventional temperature 

dependence of equilibrium order parameters in weak interband coupling limit 
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Considered above case (expressions (9)-(11)) corresponds to different critical temperatures 

1 2c cT T  in the absence of interband coupling  . Order parameter in the second band (0)
2  

arises from the “proximity effect” of stronger (0)
1  and is proportional to the value of  . 

Consider now another situation, which we will use in the following as the model case. 

Suppose for simplicity that two condensates in current zero state are identical. In this case 

for arbitrary value of   we have 

      1 2 1 21 , .
c

T
T T T a

T
     

 
       

 
 (12) 

 (0) (0)
1 2 .

 
 




   (13) 

2. Homogeneous current states and GL depairing current 

In this section we will consider the homogeneous current states in thin wire or film with 

transverse dimensions 1,2 1,2( ), ( )d T T  , where 1,2( )T and 1,2( )T are coherence lengths 
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and London penetration depths for each order parameter, respectively. This condition leads 

to a one-dimensional problem and permits us to neglect the self-magnetic field of the 

system.  (see Fig.2) . In the absence of external magnetic field we use the calibration   0A 


. 
 

 

Fig. 2. Geometry of the system. 

The current density j and modules of the order parameters do not depend on the 

longitudinal direction x. Writing 1,2( )x  as  1,2 1,2 1,2exp ( )i x    and introducing the 

difference and weighted sum phases: 

 1 2

1 1 2 2
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,c c

  
  

 
  

 (14) 

for the free energy density (1)-(3) we obtain  
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Where 
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The current density j  in terms of phases   and   has the following form 

 

2 2
1 2

1 2
1 2

2 4 cos .
d

j e
m m dx

     
 
   
 
 
  (17) 

Total current j includes the partial inputs 1,2j  and  proportional to   the drag current 12j .  

In contrast to the case of single order parameter (De Gennes, 1966), the condition 

j 0div  does not fix the constancy of superfluid velocity. The Euler – Lagrange equations for 
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( )x  and ( )x  are complicated coupled nonlinear equations, which generally permit the 

soliton like solutions (in the case 0   they were considered in (Tanaka, 2002)). The 

possibility of states with inhomogeneous phase ( )x is needed in separate investigation. 

Here, we restrict our consideration by the homogeneous phase difference between order 

parameters const  .  For const   from equations it follows that ( )x qx  (q is total 

superfluid momentum) and cos 0  , i.e.   equals 0 or . Minimization of free energy for 

  gives  

  2 2cos .sign q      (18) 

 

Note, that now the value of  , in principle, depends on q, thus, on current density j. Finally, 

the expressions (15), (17) take the form: 
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We will parameterize the current states by the value of superfluid momentum q , which for 

given value of j  is determined by equation (20). The dependence of the order parameter 

modules on q  determines by GL equations: 

    
2

3 2 2 2 2 2
1 1 1 1 1 2
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2

q q sign q
m
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2
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2
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    (22) 

The system of equations (20-22) describes the depairing curve  ,j q T  and the 

dependences 1  and 2  on the current j  and the temperature T. It can be solved 

numerically for given superconductor with concrete values of phenomenological 

parameters. 

In order to study the specific effects produced by the interband coupling and dragging 

consider now the model case when order parameters coincide at 0j   (Eqs. (12), (13)) but 

gradient terms in equations (4) are different. Eqs. (20)-(22) in this case take the form  

 
      
      

2 2 2 2
1 1 1 2

2 2 2 2
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1 1 0
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 (23) 
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  2 2 2
1 2 1 22j f q kf q f f qsign q         (24) 

Here we normalize 1,2  on the value of the order parameters at 0j   (13), j is measured in 

units of 
1

2 2e
m

  



, q is measured in units of 
2

12m 


, 



 , 12 m  , 1

2

m
k

m
 .  

If 1k   order parameters coincides also in current-carrying state 1 2f f f   and from eqs. 

(23), 24) we have the expressions 

  
2 2

2
1

1

q q
f q

 



  




 


 (25) 

     2 22 1 ,j q f sign q q        (26) 

which for 0     are conventional dependences for one-band superconductor (De 

Gennes, 1966) (see Fig. 3 a,b). 

 

 

 
 
                                      (a)                                                                      (b) 
 

Fig. 3. Depairing current curve (a) and the graph of the order parameter modules versus 
current (b) for coincident order parameters. The unstable branches are shown as dashed 
lines. 

For 1k   depairing curve   j q  can contain two increasing with q stable branches, which 

corresponds to possibility of bistable state. In Fig. 4 the numerically calculated from 

equations (23,24)  curve  j q is shown for 5k   and 0    .  

The interband scattering ( 0  ) smears the second peak in  j q , see Fig.5. 

If dragging effect ( 0  ) is taking into account the depairing curve  j q  can contain the 

jump at definite value of q  (for 1k   see eq. 34), see Fig.6. This jump corresponds to the 

switching of relative phase difference from 0 to  .  
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Fig. 4. Dependence of the current j  on the superfluid momentum q  for two band 

superconductor. For the value of the current 0j j  the stable (  ) and unstable (  ) states are 

depicted. The ratio of effective masses 5k   , and 0    . 

 

 

Fig. 5. Depairing current curves for different values of interband interaction: 0   (solid 

line), 0.1   (dotted line) and 1   (dashed line). The ratio of effective masses 5k   , and 

0  . 
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Fig. 6. Depairing current curves for different values of the effective masses ratio 1k   (solid 

line), 1.5k   (dotted line) and 5k   (dashed line). The interband interaction coefficient 

0.1   and drag effect coefficient 0.5  . 

4. Little-Parks effect for two-band superconductors 

In the present section we briefly consider the Little–Parks effect for two-band 
superconductors. The detailed rigorous theory can be found in the article (Yerin et al., 2008). 
It is pertinent to recall that the classical Little–Parks effect for single-band superconductors 
is well-known as one of the most striking demonstrations of the macroscopic phase 
coherence of the superconducting order parameter (De Gennes, 1966; Tinkham, 1996). It is 
observed in open thin-wall superconducting cylinders in the presence of a constant external 
magnetic field oriented along the axis of the cylinder. Under conditions where the field is 

essentially unscreened the superconducting transition temperature cT  (    is the magnetic 

flux through the cylinder) undergoes strictly periodic oscillations (Little–Parks oscillations)  

 2

0

min( ) ,( 0, 1, 2,...),c c

c

T T
n n

T
 
    


 (27) 

where 0c cT T   and 0 /c e    is the quantum of magnetic flux.  

How the Little–Parks oscillations ( 27) will be modified in the case of two order parameters 

with taking into account the proximity (  ) and dragging ( ) coupling? Let us consider a 

superconducting film in the form of a hollow thin cylinder in an external magnetic field H 

(see Fig.6).  

We proceed with free energy density (19), but now the momentum q  is not determined by 

the fixed current density j as in Sec.3. At given magnetic flux A dl H d     
   the 

superfluid momentum q  is related to the applied magnetic field 
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0

1
.q n

R

 
  

 
 (28) 

At fixed flux  the value of q  take on the infinite discrete set of values for 0, 1, 2,...n    . The 

possible values of n  are determined from the minimization of free energy 1 2[ , , ]F q  .  As a 

result the critical temperature of superconducting film depends on the magnetic field. The 

dependencies of the relative shift of the critical temperature ( ) /c c c ct T T T    for different 

values of parameters , ,R   were calculated in (Yerin et al., 2008). The dependence of ( )ct   

as in the conventional case is strict periodic function of  with the period 0 (contrary to the 

assertions made in Askerzade, 2006). The main qualitative difference from the classical case  is 

the nonparabolic character of the flux dependence   ( )ct   in regions with the fixed optimal 

value of n . More than that, the term     2 2 2 2q sign q       in the free energy (19) 

engenders possibility of observable singularities in  the function ( )ct  , which are completely 

absent in the classical case (see Fig.8.). 

 

 

Fig. 7. Geometry of the problem. 

 

 

Fig. 8. ( )ct   for the case where the bands 1 and 2 have identical parameters and values of 

  are indicated.  
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5. Josephson effect in two-band superconducting microconstriction  

In the Sec.3 GL-theory of two-band superconductors was applied for filament’s length 

L  . Opposite case of the strongly inhomogeneous current state is the Josephson 

microbridge or point contact geometry (Superconductor-Constriction-Superconductor 

contact), which we model as narrow channel connecting two massive superconductors 

(banks).  The length L  and the diameter d  of the channel (see Fig. 9) are assumed to be 

small as compared to the order parameters coherence lengths  1 2,  . 
 

 

Fig. 9. Geometry of  S-C-S contact as narrow superconducting channel in contact with bulk 
two-band superconductors. The values of the order parameters at the left (L) and right (R) 
banks are indicated 

For d L  we can solve one-dimensional GL equations (4) inside the channel with the rigid 

boundary conditions for order parameters at the ends of the channel. 

In the case 1 2,L    we can neglect in equations (4) all terms except the gradient ones and 

solve equations: 

 

2
1

2

2
2

2

=0,   

0

d

dx

d

dx








 

 (29) 

with the boundary conditions:  

    1 01 10 exp Li   ,    2 02 10 exp ,Ri    (30) 

   1 01 2exp LL i   ,    2 02 1exp .RL i    

Calculating the current density j  in the channel we obtain: 

 11 22 12 21j j j j j    , (31) 

 2
11 01 1 1

1

2
sin ,R Le

j
Lm

   


 

 2
22 01 2 2

1

2
sin ,R Le

j
Lm
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 12 01 02 1 2

4
sin ,R Le

j
L

     


 

 21 02 01 2 1

4
sin .R Le

j
L

     


 

The current density j  (31) consists of four partials inputs produced by transitions from left 

bank to right bank between different bands. The relative directions of components ikj  

depend on the intrinsic phase shifts in the banks 1 2
L L L     and 1 2

R R R     (Fig.10). 

 

 

Fig. 10. Current directions in S-C-S contact between two-band superconductors. (a) – there is 
no shift between phases of order parameters in the left and right superconductors; (b) - there 
is the  -shift of  order parameters phases at the both banks  ; (c) –  -shift  is present in the 

right superconductor and is absent in the left superconductor; (d) –  -shift  is present in the 

left superconductor and is absent in the right superconductor . 

www.intechopen.com



 
Superconductivity – Theory and Applications 

 

50

Introducing the phase difference on the contact 1 1
R L     we have the current-phase 

relation ( )j   for different cases of phase shifts ,R L  in the banks: 

a. 0R L    

2 2
01 02

01 02
1 2

2
sin ( 4 )sinc

e
j j

L m m

 
      


 

b. R L     

2 2
01 02

01 02
1 2

2
sin ( 4 )sinc

e
j j

L m m

 
      


 

c. , 0R L     

 
2 2
01 02

1 2

2
sin ( )sinc

e
j j

L m m

 
   


 

d. 0,R L     

 
2 2
01 02

1 2

2
sin ( )sinc

e
j j

L m m

 
    


 

The critical current cj  in cases a) and b)  is positively defined quadratic form of 01  and 

02 for 
1 2

1

2 m m
  . In cases c) and d) the value of cj  can be negative. It corresponds to 

the so-called   junction (see e.g. (Golubov et. al, 2004)) (see illustration at Fig.11).  

 

 

Fig. 11. Current-phase relations for different phase shifts in the banks. 

This phenomenological theory, which is valid for temperatures near critical temperature cT , 

is the generalization of Aslamazov-Larkin theory (Aslamazov & Larkin, 1968) for the case of 

two superconducting order parameters. The microscopic theory of Josephson effect in S-C-S 

junctions (KO theory) was developed in (Kulik & Omelyanchouk, 1975; Kulik & 
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Omelyanchouk, 1978;) by solving the Usadel and Eilenberger equations (for dirty and clean 

limits). In papers (Omelyanchouk & Yerin, 2009; Yerin & Omelyanchouk, 2010) we 

generalized KO theory for the contact of two-band superconductors. Within the microscopic 

Usadel equations we calculate the Josephson current and study its dependence on the 

mixing of order parameters due to interband scattering and phase shifts in the contacting 

two-band superconductors. These results extend the phenomenological theory presented in 

this Section on the range of all temperatures 0 cT T  . The qualitative feature is the 

possibility of intermediate between sin  and sin  behavior ( )j   at low temperatures 

(Fig.12).  

 

Fig. 12. The possible current-phase relations ( )j    for hetero-contact with 0,R L    . 

6. Conclusion 

In this chapter the current carrying states in two-band superconductors are described in the 

frame of phenomenological Ginzburg-Landau theory. The qualitative new feature, as 

compared with conventional superconductors, consists in coexistence of two distinct 

complex order parameters 1  and 2 . It means the appearing of an additional internal 

degree of freedom, the phase shift between order parameters. We have studied the 

implications of the  -shift in homogeneous current state in  long films or channels, Little-

Parks oscillations in magnetic field, Josephson effect in microconstrictions.  The observable 

effects are predicted. Along with fundamental problems, the application of two band 

superconductors with internal phase shift in SQUIDS represents significant interest (see 

review (Brinkman & Rowell, 2007).  
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