
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322395262?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


8 

Brain-actuated Control of Robot Navigation 

Francisco Sepulveda 
BCI Group - School of Computer Science and Electronic Engineering, University of Essex 

United Kingdom 

1. Introduction 

Brain-driven robot navigation control is a new field stemming from recent successes in brain 
interfaces.  Broadly speaking, brain interfaces comprise any system that aims to enable user 
control of a device based on brain activity-related signals, be them conscious or 
unconscious, voluntary or evoked, invasive or non-invasive.  Strictly speaking, the term 
should also include technology that directly affects brains states (e.g., transcranial magnetic 
stimulation), but these are not usually included in the terminology.  Two main families of 
brain interfaces exist according to the usual terminology, although the terms are often used 
interchangeably as well: i) Brain-computer interfaces (or BCIs) usually refers to brain-to-
computer interfaces that use non-invasive technology; ii) Brain-machine interfaces (or BMIs) 
often refers to implanted brain-interfaces.   This chapter shall use these terms (BCI and BMI) 
as defined in this paragraph.  Other sub-categories of BCIs are discussed below. 
The idea of BCIs is credited to Jaques Vidal (1973) who first proposed the idea in concrete 
scientific and technological terms. Until the late 1990’s the area progressed slowly as a result 
of work in but a handful of laboratories in Europe and North America, most notably the 
groups at the Wadsworth Centre (Albany, NY) and the Graz (Austria) group led by G. 
Pfurtscheller.  Aside from the few researchers working on BCIs in the ‘70s and ’80s,  slow 
progress then was largely due to limitations in: i) our understanding of brain 
electrophysiology, ii) quality and cost of recording equipment, iii) computer memory and 
processing speed, and iv) the performance of pattern recognition algorithms.  The state-of-
the-art in these areas and the number of BCI researchers have dramatically increased in the 
last ten years or so.  Yet, there is still an enormous amount of work do be done before BCIs 
can be used reliably outside controlled laboratory conditions. 
In this chapter, an overview of BCIs will be given, followed by a discussion of specific 
approaches for BCI-based robot navigation control. The chapter then concludes with a 
summary of challenges for the future of this new and exciting technology. 

1.1 Overview of BCIs 

A typical – and simplified – BCI system is illustrated in Fig. 1. In principle, the easiest way 
for most users to control a device with their thoughts would be to have a computer read the 
words a user is thinking.  E.g., if a user wants to steer a robot to the left, he/she would only 
need to think of the word ‘left’.  However, while attempts at doing this have been made, 
such approach currently leads to true positive recognition rates that are only slightly above 
chance – at best.  At present BCIs work in two ways (see item A in Fig. 1): either i) brain 
signals are monitored while the user performs a specified cognitive task (e.g., imagination of 
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hand movements), or ii) the computer makes decisions based on the user’s brain’s 
involuntary response to a particular stimulus (e.g., flashing of an object on a computer 
screen), although both approaches have been combined recently as well (Salvaris & 
Sepulveda, 2010).  
 

 

Fig. 1. Schematic of a brain-computer interface system 

Once signals are recorded (which usually includes amplification, common mode rejection 
and antialising filtering) and digitized, they need to be further processed to increase the 
signal to noise ratio by applying frequency band filters, spatial filters, and various 
referencing methods (see step B in Fig. 1 and the Signal Processing section below).  At this 
stage, we often have several hundred to several thousand data points per second, 
depending on the domain on which the data are analyzed. To reduce both the 
dimensionality of the pattern recognition task and the amount of irrelevant data (e.g., data 
that do not carry information related to the mental states of interest) feature selection 
algorithms (step C) are applied at least during offline testing, although they can also be 
applied on-line.  Once features are extracted/selected, they are fed into a classifier (step D) 
that will attempt to infer the user’s mental state.  Finally, some BCI systems also provide 
specific feedback to the user (step E), such as a sample of the classifier’s output or a 
parameter related to the user’s level of concentration, amongst others.   Some of the steps 
described here make use of methods that are common to other areas. Machine learning and 
feature selection algorithms (e.g., support vector machines, linear discriminant analysis, 
nerofuzzy inference, genetic algorithms, cluster overlap indices, etc.) used in BCIs are often 
the same as those applied in other fields such as computer vision, etc., or variations of them.  
These, as such, will not be discussed in this chapter (but see Lotte et al., 2007, for further 
information).  On the other hand, a number of techniques are specific to the kind of data 
used in BCIs, i.e., usually suitable for encephalographic (EEG) data.  These are discussed in 
some detail below. 
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1.2 Types of BCIs 

Throughout the years, BCIs have been categorized in several different ways. Most accepted 
terminology falls under one of the following (Wolpaw et al., 2002): 

• Invasive vs. non-invasive. 

• Dependent vs. independent. 

• Spontaneous vs. evoked vs. event-related. 

• Synchronous vs. asynchronous. 
So far, these have been studied mostly in a mutually exclusive manner (e.g., either 
synchronous or asynchronous).   They are described in more detail below. 

1.2.1 Invasive vs. non-invasive 

In a narrow sense, there is an obvious difference between invasive interfaces (i.e., 
implanted) and those (non invasive) that go on the skin surface or farther from the body.  In 
a strict sense, however, any technology that deposits external elements on the body, be it 
matter or even photons and magnetic fields, is invasive in that it directly affects the internal 
physical state of the body.  As discussed under Recording Equipment, below,  technologies 
such as near-infrared spectroscopy (NIRS, which deposits near-infrared light on tissue), 
magnetic resonance imaging (which applies magnetic fields) and positron emission 
tomography (which requires the administration of a radioactive substance) are all invasive 
as the very mechanisms by which they work requires that the observed tissue (and 
surrounding ones) be internally disturbed.  For most of these technologies, the effects on the 
body are well known. For NIRS, however, the effects of the absorbed energy on the brain 
tissue have not been studied concerning long term and even short term but prolonged use 
(e.g., rare occasions, but with hours of use every time), and thus caution is recommended at 
this point in time. 
Of the technologies described later in the chapter, only electroencephalography and 
magnetoencephalography can be considered non-invasive. 

1.2.2 Dependent vs. Independent BCIs 

BCIs have been classified as either dependent or independent (Wolpaw et al., 2000).  A 
dependent BCI does not require the usual ways of brain output to express the internal 
mental state (e.g., speech, facial expression, limb movement, etc.), but it does require that 
some functionality (e.g., gaze control) remain beyond the brain.  In practice what this means 
is that a dependent BCI is not entirely reliant on the brain signals alone.  For example (see 
SSVEP BCIs below), in some cases the user must be able to fixate his/her gaze on a desired 
flashing object on a computer screen in order for the BCI to determine which object (or 
choice) the user wants amongst a finite set.  This is a problem in principle as a ‘pure’ BCI 
should not require any body-based functionality beyond being conscious and being  able to 
make decisions at the thought level.  However, in practice very few users have no overt (i.e., 
observable via visual or auditory means) action abilities left.  These, so called totally locked-
individuals, would not be able to benefit from a dependent BCI, so independent BCIs are 
needed in this case.  On the other hand, most disabled and otherwise functionally restricted 
people (including some locked in individuals), as well as able-bodied people,  have at least 
some voluntary eye movement control, which motivates further research in dependent BCIs. 
Independent BCIs, in contrast, do not require any physical ability on the part of the user 
other than the ability to mentally focus and make decisions.  In other words, even if the user 
has no voluntary control of any organ beyond the brain, an independent BCI would be able 
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to infer the user’s mental choices by looking at the brain signals.  In this case, the signals are 
independent of whether or not the user has any control of any body parts.  Examples of this  
are mental navigation,  mental arithmetic, imagination of limb movements, etc. 

1.2.3 Spontaneous vs. evoked vs. event-related 

Evoked potentials (EPs) are observable brain responses to a given stimulus, e.g., a flashing 
letter, a sound, etc., whether the user is aware of or interested in the stimulus or not.  EPs are 
time locked to the stimulus in that the observed brain signal will contain features that are 
consistently timed with respect to the stimulus.  For example, if a user focuses his/her gaze 
on a flashing character on a computer screen, this flashing frequency (if it is between about 
6Hz and 35Hz) will be observable in the visual cortex signals.  Other brain signals can be 
spontaneous, i.e., they do not require a given stimulus to appear. Thoughts in general can be 
assumed to be spontaneous (although strictly speaking this is still debatable).  An example 
of spontaneous potentials are those related to movement intentions in the sensory motor 
cortex and are thus not a result of specific input.  Finally, a third class of signals is termed 
‘event-related potentials’ (ERP).  They are related to evoked potentials but also include brain 
responses that are not directly elicited by the stimulus.  I.e., they can include spontaneous or 
deliberate thoughts such as mental counting, etc. (Rugg and Coles, 1995), but they have a 
well controlled time window within which brain signals are monitored, whether 
spontaneous or as a result of a specific stimulus.  The term event-related potential is currently 
seen as more accurate for all but the most restricted stimulation protocols and it is preferred 
over the term evoked potentials. 

1.2.4 Synchronous (cue based) vs. asynchronous (self-paced) 

The three subcategories described in the previous paragraph are also referred to using two 
other terms, synchronous and asynchronous interfaces. BCIs based on EPs and ERPs are 
synchronous in that they restrict the interaction as the user is only allowed to convey an 
intention or command to the machine when the machine allows it.  I.e., either the monitored 
signal is a response to a computer-timed stimulus, or it is a mental task executed only when 
the monitoring computer gives the ‘go ahead’ to the user, typically by means of a tone or an 
object on the screen.  The user, thus, has control over what to convey to the machine, but not 
when.  This is by far the most common approach in BCIs.  For example, a common approach 
is to have the computer give a visual or auditory cue to let the user know that he/she is to 
perform a mental task (e.g., movement imagination) immediately afterwards.  In this case, 
as in most BCIs, the user is told to stop the task after a few seconds.  The computer then uses 
these few seconds of data to infer the mental state of the user.  In another common 
synchronous approach, users choose from a set of flashing letters (see the P300 and SSVEP 
approaches later in the chapter). Obviously, in this case computer interpretation of the 
signals can only be done on data obtained while the object of interest in flashing, the timing 
for which is very precisely controlled in order to map specific data features to the correct 
flashing object.  Synchronous BCIs are often called ‘cue-based’ as well. 
Asynchronous BCIs (e.g., Townsend et al., 2004), on the other hand, use brain signals that are 
produced any time by the user, with or without a specific computer-controlled stimulus. 
This makes classification of the user’s intention difficult as the machine first needs to 
identify whether a deliberate intention-related signal has been produced (the so called ‘onset 
detection’ problem, e.g., see Tsui et al., 2006) to then be able to identify what intention took 
place.  An alternative is to use continuous classification of the signals with ‘idle’ or ‘no 
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specific state’ as one of the classes, but this may reduce classification performance overall as 
it adds a class to the number of possible outputs from the translation algorithm.  An 
example of an asynchronous BCI is the use of movement imagination (e.g., left hand 
movement vs. right hand movement) to steer a robot left or right when the user decides this 
must be done and not when the robot/computer demands a command.  Asynchronous BCIs 
are often called ‘self-paced’ as well. 
The main problem with asynchronous BCIs is the difficulty in determining training and 
validation labels for the classifier.  In essence, if the computer is not able to determine when 
an onset took place with a precision in the order of a few hundred milliseconds, it is unlikely 
that the data will be correctly labelled for (re)training purposes. To circumvent this problem, 
often the user is asked to perform the spontaneous mental task for relatively long periods, 
e.g., near 10s, so that onset timing errors become irrelevant (see e.g., Sepulveda et al., 2007).  
However, this approach puts serious limitations on the rate of information transfer between 
the user and the machine. 
Due to the timing and labelling problems with asynchronous (self-paced) BCIs, most work 
to date has used synchronous (cue-based) interfaces.  However, self-paced BCIs are much 
more natural to the user as they do not require that the subject be paying full attention to a 
given stimulus or cue.  Thus, not only does the user have timing freedom with self-paced 
BCIs, but he/she is also free to multi-task and interact with the environment beyond the 
BCI.  This is the ultimate aim of BCIs. 

1.3 Recording equipment 

A number of devices have potential for use in BCIs.  Some candidates are briefly discussed 
below.  As we will see, only one class of equipment is currently suitable for widespread use, 
but, depending on the circumstances, the other devices may be useful as well. 

• Functional magnetic resonance imaging (fMRI) (Belliveau et al., 1991): This is a powerful 
technology used for functional brain mapping based on hemodynamics (i.e. , blood 
flow and oxygenation changes). 

• Pros:  It provides excellent spatial resolution. 

• Cons: The equipment is very large, heavy and expensive. Thus, portability is not a 
possibility for at least a few decades, if ever. The temporal response is slow 
compared to, e.g., electroencephalography (EEG, discussed on the next page).  As 
fMRI monitors hemodynamics, a few seconds of changed and sustained neural 
activity go by before significant changes are seen (Raichle et al., 2006).  This poses a 
major problem for real-time BCIs, in which case a particular mental state of interest 
may have come and gone without being detected. This is because much of BCI-
relevant brain activity is of a transient nature (but see SSVEP later in the chapter for 
an exception to this).  On the other hand, if a mental task is maintained for several 
seconds, in semi or actual steady-state, fMRI will allow detection of this process.  
An additional problem is the use of strong magnetic fields, which poses safety 
issues, especially if metals (e.g., electrodes) are in the proximity. 

• Positron emission tomography (PET) (Ter-Pogossian et al., 1975): In principle this 
technology can be used for brain mapping, usually through radioactive oxygen or 
glucose given to the user. 

• Pros: spatial resolution is better than with EEG. 

• Cons:  First and foremost, then use of radioactive substances precludes use of this 
technology in BCIs, although in extreme cases (e.g., in totally locked in individuals) 
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it can be useful for validating other methods as it is a well established technology, 
having been available for several decades.  Like fMRI, the approach also suffers 
from poor time resolution, aside from the fact that long delays (up to hours) are 
required between radioisotope ingestion and the brain imaging procedure.  The 
recording equipment is very large and expensive as well. 

• Near infrared sprectroscopy (NIRS) (Wolf et al., 2007): This method too is based on 
hemodynamics. In this case blood oxygenation changes are linked to the amount of 
reflected near-infrared light applied on the brain through transmitters on the scalp, the 
receiver being placed nearby on the scalp as well.  The approach is similar to that used 
in existing sensors using mid-range infrared, but near infra-red has much deeper 
penetration in tissue (up to a few centimetres), lending itself to brain monitoring. 

• Pros: This is currently the cheapest hemodynamics-based technology available, 
although the equipment is still more expensive than for EEG.  Compared to other 
hemodynamics devices, NIRS equipment is also fairly portable, and wireless 
systems have been recently developed as well (Muehlemann et al., 2008). 

• Cons: As in other hemodynamics-based systems, time resolution is poor.  On the 
other hand, different from PET and fMRI, spatial resolution is poor due to 
significant scattering of the near-infrared light in tissue.  NIRS systems are also 
very sensitive to transmitter and sensor motion and environmental NIR sources. 

• Magnetoencephalography (MEG) (Cohen, 1972): MEG records the magnetic fields 
orthogonal to the electric fields generated by ensemble neural activity, although there is 
evidence suggesting that the source of detectable magnetic fields in the brain is 
physiologically different from those generating EEG (Hamalainen et al., 1993). 

• Pros: It has much better time resolution than hemodynamics-based systems.  
Electrical and magnetic field changes reflect the underlying neural activity within a 
few milliseconds.  Also, in contrast with fMRI, PET and NIRS, MEG only monitors 
brain signals and does not deposit any matter or energy on the brain.  It is thus a 
truly non-invasive technology in that it does not disturb the object of study. 

• Cons: MEG equipment is still very large, comparable in size with fMRI equipment.  
It is also very costly. 

• Electroencephalography (EEG) (Niedermeyer et al., 2004):  This is by far the oldest of all 
the devices discussed here, having been available at least since the 1920’s (Swartz and 
Goldensohn, 1998). In EEG, the electrodes are usually placed on the scalp and record 
the electrical activity taking place in the brain tissue underneath, which reaches the 
electrode region by volume conductor processes. In order for neural activity to be 
detectable using EEG, it must be both fairly near the cortical surface and include many 
millions of cells in synchrony so that the total sum of the activity is large enough to be 
detected from the scalp. Still, the largest EEG potentials seen under most conditions 
have amplitudes in the order of a few tens of microvolts. 

• Pros:  EEG is the least expensive technology for brain monitoring.  EEG systems are 
also very portable and provide excellent time resolution.  Due to their passive 
nature (from the brain’s point of view), they are very safe as well. 

• Cons:  There are two main limitations in EEG systems.  One (poor spatial 
resolution) is inherent while the other (poor usability) can still be tackled. Poor 
spatial resolution is inherent due to the volume conductor effects through which 
signals from nearby (even up to a few cm apart) areas are irreversibly mixed 
together.  While various approaches exist to minimize this problem, sub-centimeter 
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EEG features have little meaning.  Poor usability stems from the need to use 
electrode gel to reduce the impedance between the electrodes and the scalp, but 
there are commercial systems currently available that employ user-friendly wet 
electrodes or dry (usually capacitive) electrodes, at the expense of signal quality. 

• Implanted Brain Interfaces, or Brain-Machine Interfaces (BMIs) (Lebedev & Nicolelis, 2006):  
Various approaches have been developed that require the implantation of electrodes 
and arrays thereof to record brain electrical signals much closer to their source than 
with MEG and EEG.  These record local potentials and in some cases signals from as 
few as tens of cells can be recorded.  These brain interfaces have been implanted at 
various depth levels under the skull, from the surface of the protective tissue 
surrounding the brain to near a centimetre into the cortex.  

• Pros: The main advantage of implanted devices is that they have the potential to 
simultaneously provide the best spatial and time resolution. 

• Cons: Very high cost, risky surgery and post-surgery damage risks (including 
possible irreversible loss of neural tissue) are the main issues.  These are currently of 
such high level, however, that (implanted) BMIs are still experimental, although there 
is currently at least one user with a working BMI in place (Hochberg et al., 2006). 

Of all the devices described above, EEG is so far the best candidate for routine BCI use as it 
is portable, safe, relatively inexpensive, and has good temporal resolution.  For these 
reasons it is the device of choice in the vast majority of BCI research and development.  
Hence, hereafter in this chapter all methods under discussion refer to EEG unless otherwise 
specified. 
A typical EEG set up is illustrated in Fig. 2. In the picture electrodes have been placed on the 
scalp on locations anterior and posterior to the areas of the brain that control limb 
movements (see Motor Imagery below).  In this case differential (bipolar) recordings are 
obtained for each anterior/posterior electrode pair, providing relevant information on 
movement-related intentions. 
 

 

Fig. 2. Typical EEG cap for use in BCIs. In the picture, only electrode locations used for 
monitoring hand and foot movement imagination are included in the set-up 
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1.4 Signal processing 

The signal-to-noise ratio in EEG signals is significantly <1.  This is largely due to the small 
amplitude of the recorded signals (in the order of microvolts), but also due to a number of 
other factors,  such as: irreversible summation of sources due to volume conduction in 
tissue, brain multitasking, less than suitable skin-electrode impedances, evoked potentials 
resulting from unwanted or unaccounted for stimuli, motion artifacts (electrode and cable 
movement, etc.), environmental noise, strong interference from muscle signals, eye motion 
artifacts, etc.  On the whole this produces a very noisy signal, which, at first glance, has little 
if any information about the underlying brain function. For the simplest cases, basic features 
can be extracted (e.g., closing of one’s eyes or relaxing produces a visible amplitude increase 
in the alpha band – 8Hz to 10Hz), but in most cases sophisticated feature extraction and 
machine learning algorithms need to be employed to obtain even partially reliable 
information.  A typical EEG signal set is shown on the left panel in Fig. 3. The figure 
illustrates the recorded signals at various locations on the scalp after they have been 
submitted to digital filtering and ear-referencing (discussed in the next subsections). 
Three characteristics can be easily identified in the EEG plot in Fig. 3: i) the strong 
correlation between signals from nearby electrodes, thus illustrating the poor spatial 
resolution mentioned above; ii) the lack of obvious events during movement imagination, 
starting at the green arrows and lasting 3s; and iii) the strong artifact caused by rolling of the 
eyes, shown in the red box.  Notice that while the eye-movement artifact is more prominent 
in the more frontal areas, it does spread as far as the back of the head. 
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Fig. 3. EEG time-domain signal sample and standard electrode locations.  Left panel: 
multichannel recordings during two trials (i.e., attempts) of hand movement imagination.  
Right panel:  standard scalp location of electrodes for a 32-channel setup using the 10-20 
system (Cooper et al., 1969). Fp: frontal pole, AF: antero-frontal, F: frontal, FC: fronto-
central, C: central, T: temporal, CP: centro-parietal, P: parietal, PO: parieto-occipital, O: 
occipital, z: mid-sagittal line.  The (red) box on the left panel shows the effect of eye 
movement on the signals.  The green arrows show when a visual cue was given to the user 
to begin mental imagination of right hand movement, which lasted 3s 
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The figure above illustrates how challenging information extraction is even after digital 
filtering and ear-referencing EEG signals.  Without these pre-processing steps, however, the 
signals are even less usable. We thus proceed to discuss the minimum pre-processing stages. 

1.4.1 Frequency band filtering 

EEG signal energy is optimal in the 0Hz-80Hz range, although historically most studies 
have ignored frequencies above about 45Hz (as most processes of interest to the medical 
community take place below 45Hz). In this range, there are three main sources of noise 
which must be removed or minimized: i) motion artifacts caused by electrode and cable 
movements (including slow electrode drift), which are mostly below 0.5Hz; ii) mains 
interference (50Hz in the UK, 60Hz in the USA); and iii) muscle signals, i.e., 
electromyography (EMG, e.g., from jaws, facial muscle twitches, swallowing, etc.), some of 
which actually overlaps with EEG as EMG produces relevant information between near 0Hz 
and about 500Hz (up to 1kHz if implanted EMG is recorded). EMG cannot be fully removed 
due to the EEG/EMG overlap, but it can be minimized by avoiding muscle contractions in 
areas near the brain and by applying a lowpass digital filter to the EEG signal (if EMG is 
simultaneously recorded, it can be used with methods such as independent component 
analysis to reduce the EMG interference on the EEG signal).  Most motion artifacts can be 
removed with a highpass filter at ~0.5Hz (some researchers will apply a cutoff as high as 
5Hz if they wish to ignore the EEG delta band). Mains interference can be eliminated by 
referencing (see next subsection). But, if no referencing will be applied, a notch or stopband 
filter must be used to remove mains interference. Overall, both analogue and digital filters 
are needed as a first step in EEG processing. Typical filters suitable for BCIs are illustrated in 
Fig. 4, which are shown only as basic guidelines as researchers might use different filter 
types, orders and cutoff frequencies. 
 

EEG
Antialiasing

Analogue filter
Highpass filter
Analogue filter

Analogue 
Notch filter

Digital
Highpass

Digital
Lowpass

Digital Notch
Filter

Lowpass
Butterworth
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cutoff at <80Hz

Butterworth
order 1 or 2
cutoff at ~1Hz

Butterworth
order = 4
cutoff at ~1Hz

forward and
reverse

Butterworth
order = 6
cutoff at <80Hz

forward and
reverse

IIR
order = 2
at 50Hz (60Hz in some countries)

only one notch

filter is needed

at 50Hz (60Hz in some countries)

 

Fig. 4. Typical frequency band filtering of EEG signals 

1.4.2 Referencing 

EEG signal referencing is the subtraction of the potential recorded at a scalp location 
(usually already subtracted from a scalp-based common mode rejection point at the 
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hardware stages) from a nearby overall reference location. This is done to remove common 
environmental noise from the recorded EEG.  To this end, the reference point must be near 
enough to a scalp electrode so that it has a similar noise content, but it should not have any 
signal sources itself.  There are two typical referencing methods: 

• Outside the scalp (ear or mastoid referencing):  one of the ear lobes or mastoid locations  

(or the average between the left and right ones) is used as the reference. This is the 

standard approach for overall removal of environmental noise for most experimental 

scenarios. 

• Scalp average: this is used when the goal is to investigate the difference between one 

channel and the rest of the scalp.  It is useful also for rough localization of function (e.g., 

movement imagination vs. other tasks) or to study waves that are over several, but not 

all, channels (e.g., the P300 wave discussed later in the chapter). 

Although referencing is very effective in removing common environmental noise, it does 

nothing to improve spatial resolution, i.e., the difference between signals from adjacent 

electrodes.  To this end, spatial filtering is often used, the most common approaches being 

bipolar and Laplacean processing, as follows: 

• Bipolar: This is a simple subtraction between signals from two adjacent electrodes. It 

will give a good estimate of activity in the area between the two electrodes. For 

example, subtraction of channel CP1 from channel FC1 (see Fig. 3 above) gives good 

information about activity related to right arm movement, whose control is the area 

between these two electrodes. 

• Laplacean:  the subtraction of one channel from the ones surrounding it.  This is very 

useful for maximizing spatial resolution, e.g., to distinguish between imagination of  

movement for different limbs as their control areas are near each other in the cortex. For 

example, to monitor signals related to foot movement, the Cz signal (Fig. 3) can be 

subtracted from the average of the signal from the {FC1, FC2, CP1, CP2} electrode set.  

In this way, the Cz signal would yield less information about irrelevant areas nearby 

and more about what is directly underneath the Cz electrode. 

The bipolar and Laplacean methods are also called referenceless as any previous signal 

referencing done will drop out during the subtraction process. 

Referencing and referenceless methods can also reduce eye-movement artifacts, but often 

these persist and must be reduced by more sophisticated methods such as independent 

component analysis (Vigario, 1997), at the expense of processing speed and risking losing 

relevant information.  However, many BCIs ignore eye-movement artifact removal 

altogether as the pattern recognition algorithms can learn to ignore the artifact and the 

increase in computer memory use and processing time is often not worth the effort. 

2. Approaches for BCI control of robot navigation  

As mentioned above, there are many approaches currently under development in BCIs.  

Some will more easily lend themselves to applications in robot navigation, but almost every 

approach can be used for this purpose with minor modifications.  Due to space and topic 

relevance restrictions, it is not possible to cover all approaches within this chapter.  Instead,   

in the next subsections the three main candidates for brain-actuated robot navigation using 

(non-invasive) BCIs are discussed. The subsection will conclude with a discussion of how to 

employ a particular approach towards BCI control of robot  navigation. 
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2.1 Motor Imagery (MI) 

Imagination or mental rehearsal of limb movements is a relatively easy cognitive task for 
BCI users, especially able-bodied ones. Some individuals will not find this task as straight 
forward, but most become better at motor imagery (MI) with practice.  Another advantage 
of this approach is that it allows the user to multitask, e.g., he/she does not need to focus on 
the BCI computer and can thus interact with the environment more freely than with 
methods such as P300 and SSVEP discussed below. 
In addition, MI benefits from the fact that movement-related brain activity is well localized.  
Several areas of the brain handle movement-related intentions before these are executed, but, 
at the execution stage, the primary motor cortex (PMC) is the main control center (right panel 
in Fig. 5).  The area immediately posterior to the PMC, the somatosensory cortex, receives 
sensory information from the equivalent body parts controlled by the PMC. Within the PMC, 
subregions of the body are distributed in a well localized functional map as well.  For example, 
a cross section of the left primary motor cortex area is illustrated on the right panel in Fig. 5, 
where the labels indicate which part of the (right side of) the body is controlled.   We can 
clearly see how one might use signals from different channels to be able to distinguish 
between movements of different body parts, e.g., hand vs. foot.  However, the functional map 
shown below can only be fully explored by means of implanted devices, intra-cortical ones in 
particular.  Due to the volume conductor effects mentioned above, EEG electrodes will also 
pick up signals from areas near the region underneath the electrode.  For example, an EEG 
electrode on the scalp right above the hand area will likely contain signals related to other 
areas as well, from arm to neck, at least.  This problem, however, can be lessened by applying 
multichannel recordings and bipolar or Laplacean processing, as discussed above. 
 

front back

central

temporal

 

Fig. 5. Brain localization of primary movement control 

2.1.1 Motor Imagery (MI) towards robot navigation 

As mentioned above, motor imagery is an intuitive cognitive task for most, although it may 
require practice.  Control of robot navigation with this method can thus be easily mapped to 
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limb movements.  For example (Fig. 6), to steer a robot to the right, the user can imagine or 
mentally feel (also known as kinaesthetic motor imagery) a movement of the right hand (e.g., 
hand closing, wrist extension, etc.).   The example below shows only three movements.  Other 
motor imagery tasks can be added to increase the number of robot movement classes (i.e., 
choices).  For example, imagination of tongue movement is often used as an additional class.  
 

right hand

left hand

foot

movement

imagination

turn right

turn left

forward

 

Fig. 6. Possible use of motor imagery for robot navigation control 

Notice from Fig. 5 above that using separate movements of the right and left feet should not 
be expected to yield two separate classes with EEG as the brain areas that control both feet 
are next to each other and deep in the brain, which means the same electrode (i.e., Cz in Fig. 
3) will pick up signals from both feet. 
Motor imagery will produce features that can be used for classification.  A common feature 
used with MI is band power, in which case the power of the (previously pre-processed) 
signal in specific frequency bands (notably alpha: 8-12Hz and beta: 13-30Hz) yields good 
classification of right vs. left movements. A similar feature commonly used with MI is event-
related desynchronization and synchronization (ERD/ERS) which compares the energy of 
the signal in specific bands with respect to an idle state (i.e., a mentally relaxed period).  In 
either case the most appropriate electrodes are usually the ones over or near the relevant 
primary motor cortex areas. 
Motor imagery can be used with any timing protocol.  It can be used by itself in a cue based 
approach, in a self-paced system, or used in combination with the P300 approach discussed 
below (as in Salvaris & Sepulveda, 2010), although the latter has not been applied to robot 
navigation. 
One of the limitations of MI-based BCIs for robot control is that usually a few seconds of EEG 
data are needed for each control decision and for the motor cortex to fully return to a neutral 
state.  Typically this will give an information transfer rate (from user to robot) of <10 bits/min. 
MI approaches similar to the one discussed above have been applied to robot navigation  
(e.g., Millan et al., 2004). 

2.2 P300 

This approach falls under the event-related potential category.   In this method, the user is 
presented with a visual array of choices (left panel, Fig. 7, based on Farwell & Donchin, 

www.intechopen.com



 
Brain-actuated Control of Robot Navigation 

 

173 

1988), although sound and touch can be used as the stimulus as well.  Typically each row 
and column will flash for a short period (about 100ms) in a random sequence on a computer 
screen.  When the row or column containing the desired choice flashes, the user adds 1 to a 
mental counter to signal that a target has flashed.  For example, if the user wants to type the 
letter P using a BCI, she/he will count every time a row/column containing it flashes.  On 
average, when a target row/column flashes, a strong signal is seen (especially in the centro-
parietal electrodes, Fig. 3) which will peak at about 300ms after the desired object flashed, 
hence the P300 name.  Until recently it was assumed that eye gaze did not significantly 
affect P300 responses, but there is now evidence suggesting that this is not the case (Brunner 
et al., 2010). 
The right panel in Fig. 7 illustrates signal differences between target, non-target and near-
target events).  In most cases, the target P300 peak is only easily distinguishable from non-
target events if an average of several trials is performed, and often up to ten target trial 
responses are needed to have a true positive rate of about 90%.  
 

 

Fig. 7. Typical P300-based stimulus array and EEG responses (modified from Citi et al., 2004) 

2.2.1 P300 towards robot navigation 

The array in Fig. 7 is used for communication BCIs (e.g., as a speller) and does not directly 
lend itself to use in robot navigation control.  However, if each object on the array represents a 
command to a robot, the user can employ the BCI to give the robot a sequence of commands 
which may include variables such as direction, timing schedule, proportional control 
parameters (e.g. , for angular displacement, speed), etc.   But, one of the problems with this 
interface is that the user must wait for all rows and columns to flash before a new flashing 
cycle begins.  With current standard timing parameters, this would take several seconds per 
trial, per chosen letter.  If, as mentioned above, several trials are used to increase true positive 
recognition rates, choosing one letter can take more than 10s, which is not suitable in many 
robot navigation cases.  To minimize this problem, an array with less elements can be used, 
although this will reduce the difference between target and non-target events as this difference 
increases when target events are much less probable than non-target ones. 
An alternative to the P300 standard array and one that is suitable for robot navigation (at 
least in a 4-direction 2D scenario) is shown in Fig. 8.  The figure is based on a system 
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designed for mouse control (Citi et al., 2004), but it can be easily employed for robot 
navigation.  For example, the four flashing objects can represent left/right/back/forward.  
One limitation that would still exist, however, is that the user must have full attention on the 
screen showing the 4-object array. In this case, the user would count every time the desired 
direction flashes, as a result of which the robot would turn in the desired direction.   
 

 

Fig. 8. P300-based interface for basic robot steering 

P300 approaches similar to the one shown in Fig. 8 have been applied to robot navigation 
recently. Also, Rebsamen et al. (2007) produced a P300 system in which the objects on the 
monitor are pictures of the landmarks to which the robot (a wheelchair in this case) must go.  
In that system, the user chooses the end point and the robot uses autonomous navigation to 
get to it. 
The information transfer rate of a P300-based BCI with four classes will yield a higher 
information transfer rate than with motor imagery, possibly >20bits/minute, but, as 
mentioned above, it has the disadvantage that it demands the user’s full attention on the 
visual interface. 

2.3 Steady-State Visual Evoked Potentials (SSVEP) 

The P300 method above is similar to the SSVEP approach in that the user is presented with 
an array containing flashing objects from which the user chooses one.  However, in the 
SSVEP method each object flashes at a different frequency, usually between 6Hz and about 
35Hz (Gao et al., 2003).  When the user fixates his/her gaze on a flashing object, that object’s 
flashing frequency will be seen as a strong frequency-domain element in the EEG recorded 
from areas above the visual cortex (occipital areas, Fig. 3).  For example (Fig. 9), if the user is 
interested in number 7 on a number array, fixating his/her gaze on that object (which is this 
example is flashing at 8Hz) will produce the power spectrum shown on the right panel in 
Fig. 9, which is an average of five trials (i.e., target flashing cycles). 
Notice that the user must have eye gaze control for this approach to work, but, as mentioned 
above, this ability is retained by the vast majority of potential BCI users, both disabled and 
able-bodied. 

2.3.1 SSVEP towards robot navigation 

Using an SSVEP-based BCI for robot navigation control is similar to the case with the P300 
method, i.e., a suitable array of flashing objects can be designed specifically for robot 
navigation. 
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SSVEP-based BCIs have been used for robot navigation control (e.g., Ortner et al., 2010). The 
information transfer rate will yield a higher information transfer rate than with motor 
imagery, >40bits/minute, but, as is the case with the P300 approach described above, it has 
the disadvantage that it demands the user’s full attention on the visual interface. 
 

 

Fig. 9. SSVEP BCI.  Left: example of a multi-object array in which the object of interest 
(number 7) flashes at 8Hz.  Right: power spectrum of the recorded EEG when the user 
fixates his/her gaze on number 7 in the interface (notice the strong harmonic components) 

2.4 Choosing the most suitable BCI type 

The best BCI type will depend on the scenario to be tackled. For example, for robot 
navigation in an environment for which landmarks are stored in its memory, either the P300 
or the SSVEP approaches can be used only when necessary by allowing the user to choose 
the desired landmark and letting the robot use its autonomous system to get to the 
landmark. If, on the other hand, the environment is novel or the robot encounters 
unexpected obstacles, motor imagery can be used for direct control of robot steering.  All 
approaches can be used in combination as well, e.g., using motor imagery for initial 
navigation while the robot saves information about the environment and then later using 
P300 or SSVEP to perform landmark-based navigation (as in Bell et al. 2010).  Recently, 
wheelchair navigation control was done using a BCI that relied on the so called error 
potentials (an involuntary brain response to undesired events; not discussed here) to allow 
the robot to determine which of the routes it found was suitable to the user (Perrin et al., 
2010). 

3. Future challenges  

In order for BCIs to be routinely used in robot navigation control, a number of factors will 
need to be improved.  Amongst other, the following will need to receive high priority: 

• Recording equipment: while systems based on dry electrodes exist, they do not yet give as 
reliable a signal as standard wet EEG electrodes.  The latter require the use of electrode 
gel or water.  Systems that require the use of electrode gel are the most reliable ones, 
but they require about 1min per electrode to set up, and the gel needs to be changed 
after a few hours.  Water-based systems are quicker to set up, but at present they 
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provide less reliable signals.  As dry sensor  technology improves, it is likely that such 
devices will be preferred, especially by users outside the research community. 

• Degrees of freedom: The number of classes available in a BCI depends on which type of 
BCI is used.  P300 BCIs can provide a large number of classes (>40 in principle, 
although clutter will decrease true positive recognition performance), but this will come 
at the expense of longer processing times for each individual choice.  The same applies 
to SSVEP-based interfaces.  MI-based BCIs can provide only a small number of classes 
at the moment, usually 4 or less if more than 90% true positive rate is desired (although 
up to 20 classes have been successfully classified in a small but well controlled study, 
Lakany & Conway, 2005). 

• Proportional control: BCI control of proportional variables such as robot angular 
displacement and speed has received little attention so far.  This is an important area of 
research for future use of BCI-based robot navigation. 

• Intuitiveness and user freedom: The most intuitive approach is motor imagery, but more 
classes would be needed to make this approach more useful in robot navigation control.  
P300 and SSVEP approaches require full attention on the visual interface and thus give 
no freedom to the user.  Other cognitive tasks have been used in off-line BCI studies 
(e.g., Sepulveda et al., 2007), but these should be investigated further before they are 
used for robot navigation. 

• Speed issues:  If information transfer rate alone is the main concern, SSVEP would be the 
best choice, followed by P300, but the required focus on the interface will remain a 
major problem for the future.  It will thus be crucial to find fast approaches that rely on 
motor imagery or other cognitive tasks that are intuitive and give the user freedom 
from the interface. 

4. Conclusions 

BCIs have come of age in many ways and are now being used outside controlled laboratory 
settings.  However, a number of limitations in the current state-of-the-art will need to be 
addressed in order to make this technology more reliable, low cost, user friendly and robust 
enough to be used for routine robot navigation control.  Until then, BCIs will remain largely 
an experimental tool in robot navigation, or as an additional tool within a multi-modality 
approach.  Nonetheless, brain-actuated or brain-assisted robot navigation control will bring 
benefits to the field, especially in difficult scenarios in which the robot cannot successfully 
perform all functions without human assistance, such as in dangerous areas where sensors 
or algorithms may fail. In such cases BCI intervention will be crucial until a time when 
robots are intelligent and robust enough to navigate in any environment.  But, even then, 
human control of the robot will probably still be desirable for overriding robot decisions, or 
merely for the benefit of the human operator. In another case, when the robot is a 
wheelchair, frequent user interaction will take place, in which case BCIs are essential for at 
least some form of brain-actuated navigation control. 
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