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1. Introduction 

Model predictive control (MPC) is a control method (or group of control methods) which 
make explicit use of a model of the process to obtain the control signal by minimizing an 
objective function. Control law is easy to implement and requires little computation, its 
derivation is more complex than that of the classical PID controllers. The main benefit of 
MPC is its constraint handling capacity: unlike most other control strategies, constraints on 
inputs and outputs can be incorporated into the MPC optimization (Camacho, E., 2004). 
Another benefit of MPC is its ability to anticipate to future events as soon as they enter the 
prediction horizon. The implementation supposes good knowledge of system for the 
purpose of model creation using the system identification. Modeling and identification as a 
methodology dates back to Galileo (1564-1642), who also is important as the founder of 
dynamics (Johanson, R., 1993). Identification has many aspects and phases. In our work we 
use the parametric identification of real system using the measured data from control centre. 
For the purpose of identification it is interesting to describe the sought process using input-
output relations. The general procedure for estimation of the process model consists of 
several steps: determination of the model structure, estimation of parameters and 
verification of the model. Finally we can convert the created models to any other usable 
form. This chapter gives an introduction to model predictive control, and recent 
development in design and implementation. The controlled object is an urban tunnel tube. 
The task is to design a control system of ventilation based on traffic parameters, i.e. to find 
relationship between traffic intensity, speed of traffic, atmospheric and concentration of 
pollutants inside the tunnel. Nowadays the control system is designed as tetra - positional 
PID controller using programmable logic controllers (PLC). More information about safety 
requirements for critical processes control is mentioned in the paper (Ždánsky, J., Rástočný, 
K. and Záhradník, J., 2008). The ventilation system should be optimized for chosen criteria. 
Using of MPC may lead to optimize the control way for chosen criteria. Even more we can 
predict the pollution in the tunnel tube according to appropriate model and measured 
values. This information is used in the MPC controller as measured disturbances. By 
introducing predictive control it will be made possible to greatly reduce electric power 
consumption while keeping the degree of pollution within the allowable limit. 

www.intechopen.com



  
Advanced Model Predictive Control 

 

110 

2. Tunnel ventilation system 

Emissions from cars are determined not only by the way they are built but also by the way 
they are driven in various traffic situations. Various gases are emitted by combustion 
engine. They consist largely of oxides of nitrogen (NOx), carbon monoxide (CO), steam 
(H2O) and particles (opacity). Because of these dangerous gases, it is necessary to provide 
fresh air in longer tunnels. The fresh air which is used to lower the concentration of CO also 
serves to improve visibility. The purpose of ventilation is to reduce the noxious fumes in a 
tunnel to a bearable amount by introducing fresh air. Every tunnel has some degree of 
natural ventilation. But a mechanical ventilation system should have to be installed. In order 
to create air stream, jet fans are installed on the ceiling or side walls of the tunnel. The fans 
take in tunnel air and blow it out at higher speed along the axis of the tunnel. In the tunnel 
is mounted several fans with about hundred kW each. 
The design and industrial implementation of automatic control systems requires powerful 
and economic techniques together with efficient tools. In order to solve a control problem it 
is necessary to first describe somehow the dynamic behaviors of the system to be controlled. 
Traditionally this is done in terms of a mathematical model. Mathematical models are 
mathematical expressions of essential characteristics of an existing system that describe 
knowledge about the system in a usable form. 
Ventilation control system will base on model and sensors information about NOx, opacity, 
velocity, number of vehicles and CO measurements. According to the amounts of pollutants 
in exhaust gas, air flow driven by the vehicles and degree of pollution inside the tunnel, 
optimized operation commands will given to the jet fans. “Optimum” means that pollutant 
concentration is kept within the allowable limit (for CO, 75 ppm or less), and at the same 
time electric power consumption is minimized. Another criterion is also possible, for 
example: number of switching the jet fans. 

2.1 Tunnel description 
The ventilation system in urban tunnel Mrázovka in Prague represents one function unit 
designed as longitudinal ventilation with a central efferent shaft and protection system 
avoiding spread of harmful pollutants into the tunnel surround area. Ventilation is 
longitudinal facing in direction of traffic with air suction at the south opening of the eastern 
tube (ETT) and at the branch B, with air being transferred at the north opening to the 
western tunnel tube (WTT) (Pavelka, M. and Přibyl, P., 2006). The task is to design a control 
system of ventilation based on traffic parameters, i.e. to find relationship between traffic 
intensity, speed of traffic, atmospheric and concentration of pollutants inside the tunnel. To 
do that the eastern tunnel tube (ETT) has been chosen as a model example due to principle 
of mixing polluted air from ETT to WTT (measured concentrations of pollutants in the WTT 
are also influenced by traffic intensity in the ETT).  
To get the required description, the following data has been taken from the tunnel control 
centre: traffic intensity of trucks and cars, their speed, concentrations of CO (carbon 
monoxide), NOx (oxides of nitrogen), OP (opacity-visibility) from the ETT, atmospheric 
pressure etc.  These values are measured by sensors installed inside the tunnel (at five 
different places of the ETT). Traffic parameters are measured at three places, air flow at 
three places and concentrations of NOx and atmospheric pressure in the north portal. 
Traffic intensity is sensed by a camera system and the cars are then counted and sorted by 
categories in database system. More information about monitoring of the traffic can be 
found in (Pirník, R., Čapka, M. and Halgaš, J., 2010). About the security by transferring the 
data is discussed in (Holečko, P., Krbilová, I., 2006). 
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Fig. 1. Simplified diagram of road tunnel (length of 1230m) 

3. Mathematical models for MPC 

Mathematical models are mathematical expressions of essential characteristics of an existing 
or designed system that describe knowledge about the system in a usable form. Turbulence 
inside the tunnel, variety of traffic and atmospherics make the system behavior stochastic. 
To make the models we use the parametric identification. The MATLABs tools allowed a 
conversion between several types of models. The main tasks of system identification were 
the choice of model type and model order. For Single-input Multiple-output discrete time 
linear systems we can write the metrics equation for jet fan characteristics: 

 [ ]
1 11

2 21 1

2 31

( ) ( )

( ) ( ) ( )

( ) ( )

y k G k

y k G k u k

y k G k

   
   

= ⋅   
      

 (1) 

The “Jet Fan Model” is a model in the MPC format that characterizes effect of ventilator on 
CO concentration, NOx concentration and visibility (opacity). It is a system with 1 input (u) 
and 3 outputs (dilution of CO-Out1, NOx concentration-Out2 and opacity OP-Out3). One of 
the main advantages of predictive control is incorporation of limiting conditions directly to 
the control algorithm. The “Jet Fan Model” characteristics are shown in Fig. 2. 
The “Disturbance Model” is a model of the tunnel tube in state space representation:  

 ( ) ( ) ( ) ( ) ( )ttttt uBxAx ⋅+⋅=
′

 (2) 

( ) ( ) ( ) ( ) ( )ttttt uDxCy ⋅+⋅=  

This model is used to predict the pollutions inside the tunnel tube. These data enter to the 
measured disturbances input (MD) of MPC controller for the purpose of switching the jet 
fans before the limit will be exceeded. 
Created model was validated by several methods (Hrbček, J., 2009).  The purpose of model 
validation is to verify that identified model fulfills the modeling requirements according to 
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Fig. 2. Jet fan characteristics 

 
Fig. 2. Model of the tunnel tube. Out 1 – Concentration of CO, Out 2  –OP-opacity inside the 
tunnel, Out 3 – Concentration of NOx 

subjective and objective criteria of good model approximation. In method “Model and 
parameter accuracy” we compare the model performance and behavior with real data. A 
deterministic simulation can be used, where real data are compared with the model 
response to the recorded input signal used in the identification. This test should ascertain 
whether the model response is comparable to real data in magnitude and response delay. 
 

 
Fig. 3. Model and parameter accuracy test for CO concentrations. Measured data is shown 
by black line and simulated data are shown by gray dashed line. 
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This method showed graphically accuracy between simulated values and measured values. 
Although the simulated and measured data not fit precisely, this result is sufficient for most 
stochastic system like pollution inside the road tunnel. 
An Akaike Final Prediction Error (FPE) for estimated model was also determinate. The 
average prediction error is expected to decrease as the number of estimated parameters 
increase. One reason for this behavior is that the prediction errors are computed for the data 
set that was used for parameter estimation. It is now relevant to ask what prediction 
performance can be expected when the estimated parameters are applied to another data 
set. This test shows the flexibility of the model structure. We are looking for minimum value 
of FPE coefficient. 

4. Model predictive control of ventilation system 

Under the term “Model Predictive Control” we understand a class of control methods that 
have certain characteristic features. MPC refers to a class of computer control algorithms 
that utilize an explicit process model to predict the future response of a plant. From this 
model the future behaviour of the system is predicted over a finite time interval, usually 
called prediction horizon, starting at the current time t. 

4.1 The basic idea of predictive control 
The receding horizon strategy is shown in Fig. 4. 
 

 
Fig. 4. The receding horizon strategy, the basic idea of predictive control. 

The future outputs for a determined horizon N, called the prediction horizon, are predicted 
at each instant t using the process model. These predicted outputs y(t + k|t) 1 for k = 1…N 
depend on the known values up to instant t (past inputs and outputs) and on the future 
control signals u(t+k|t), k = 0... N-1, which are those to be sent to the system and calculated. 
The set of future control signals is calculated by optimizing a determined criterion to keep 
the process as close as possible to the reference trajectory w(t + k) (which can be the setpoint 
itself or a close approximation of it). This criterion usually takes the form of a quadratic 
function of the errors between the predicted output signal and the predicted reference 
trajectory. The control effort is included in the objective function in most cases. An explicit 
solution can be obtained if the criterion is quadratic, the model is linear, and there are no 
constraints; otherwise an iterative optimization method has to be used. Some assumptions 
about the structure of the future control law are also made in some cases, such as that it will 
be constant from a given instant. 

t t+1     ... t+k    … t+N

past future 

y(t)

t-1

u(t)

w(t)

u(t+k|t)

y(t+k|t)^
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The control signal u(t|t) is sent to the process whilst the next control signals calculated are 
rejected, because at the next sampling instant y(t+1) is already known and step 1 is repeated 
with this new value and all the sequences are brought up to date. Thus the u(t+1|t+1) is 
calculated ( which in principle will be different from the u(t+1|t) because of the new 
information available) using the receding horizon concept (Camacho, E. F., Bordons, C., 2004). 
The notation indicates the value of the variable at the instant t + k calculated at instant t. 

4.2 Application to real system 
Tunnel ventilation is expected to fulfil the following requirements at least (Godan, J. at 
all. 2001): 
• Concentration of emissions in the tunnel kept within the acceptable limits for the 

monitored harmful pollutants, in consideration of time spent by persons inside the tunnel; 
• Good visibility for through passage of vehicles under polluted air inside the tunnel; 
• Reduction of effects of smoke and heat on persons in the case of vehicle fire; 
• Regulation of dispersion of pollutants in the air caused by petrol fumes from vehicles 

into the surround environment of the tunnel. 
Model Predictive Control (MPC) comes from the late seventies when it became significantly 
developed (Camacho, E. F., Bordons, C., 2004) and several methods were defined. In this 
work we have applied the Dynamic Matrix Control (DMC) method which is one of the most 
spread approaches and creates the base of many commercially available MPC products. It is 
based on the model obtained from the real system:  

 
1

( ) ( ),
N

i
i

y k h u k i
=

= −  (3) 

where hi are FIR (Finite Impulse Response) coefficients of the model of the controlled 
system. Predicted values may be expressed: 

 

ˆˆ( | ) ( ) ( | )

ˆ( ) ( ) ( | )

i

i i

y n k n h u n k i d n k n

h u n k i h u n k i d n k n

+ = Δ + − + + =

= Δ + − + Δ + − + +



 
 (4) 

We assume that the additive failure is constant during the prediction horizon: 

 ˆ ˆ ˆ( | ) ( | ) ( ) ( | )md n k n d n n y n y n n+ = = −  (5) 

Response can be decomposed to the component depending on future values of control and 
to the component determined by the system state in time n: 

 ˆ( | ) ( ) ( ),iy n k n h u n k i f n k+ = Δ + − + +  (6) 

where f(n+k) is that component which does not depend on future values of action quantity: 

 ( ) ( ) ( ) ( ).n k i if n k y n h h u n i++ = − − Δ −   (7) 
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Predicted values within the prediction horizon p (usually p>>N) can be arranged to the 
relation (8): 

 

1

2 1

ˆ( 1| ) ( ) ( 1)
ˆ( 2| ) ( ) ( 1) ( 2)

...

ˆ( | ) ( ) ( ) ,
p

i
i p m

y n n h u n f n

y n n h u n h u n f n

y n p n h u n p i f n p
= − +

+ = Δ + +

+ = Δ + Δ + + +

+ = Δ + − + +

 (8) 

where the prediction horizon is k=1...p, with respect to m control actions. Regulation circuit 
is stable if the prediction horizon is long enough. The values may be arranged to the 
dynamic matrix G: 

 

1

2 1

1 1

0 ... 0

... 0
,

: : :

...p p p m

h

h h
G

h h h− − +

=   (9) 

and expression used for prediction can be written in the matrix form: 

 ˆ ,y Gu f= +  (10) 

where ŷ is a vector of contributions of action quantity and f are free responses.  
The MATLAB’s Model Predictive Control Toolbox uses linear dynamic modeling tools. We 
can use transfer functions, State-space matrices, or its combination. We can also include 
delays, which are in the real system. The model of the plant is a linear time-invariant system 
described by the equations: 

 

( 1) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ,

u v d

m m vm dm

u u vu du

x k Ax k B u k B v k B d k

y k C x k D v k D d k

y k C x k D v k D d k

+ = + +

= + +

= + +

 (11) 

where x(k) is the nx -dimensional state vector of the plant, u(k) is the nu-dimensional vector 
of manipulated variables (MV), i.e., the command inputs, v(k) is the nv-dimensional vector of 
measured disturbances (MD), d(k) is the nd-dimensional vector of unmeasured disturbances 
(UD) entering the plant, ym (k) is the vector of measured outputs (MO), and yu(k) is the vector 
of unmeasured outputs (UO). The overall ny-dimensional output vector y(k) collects ym(k) 
and yu(k). In the above equations d(k) collects both state disturbances (Bd≠0) and output 
disturbances (Dd≠0). 
The unmeasured disturbance d(k) is modeled as the output of the linear time invariant 
system: 

 
( 1) ( ) ( )

( ) ( ) ( ).
d d d

d d

x k Ax k Bn k

d k Cx k Dn k

+ = +

= +
 (12) 

The system described by the above equations is driven by the random Gaussian noise nd(k), 
having zero mean and unit covariance matrix. For instance, a step-like unmeasured 
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disturbance is modeled as the output of an integrator. In many practical applications, the 
matrices A, B, C, D of the model representing the process to control are obtained by 
linearizing a nonlinear dynamical system, such as 

 
( , , , )

( , , , ).

x f x u v d

y h x u v d

′ =

=
  (13) 

at some nominal value x=x0, u=u0, v=v0, d=d0. In these equations x´ denotes either the time 
derivative (continuous time model) or the successor x(k+1) (discrete time model). 
The MPC control action at time k is obtained by solving the optimization problem: 
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  (14) 

where the subscript "( )j" denotes the j-th component of a vector, "(k+i|k)" denotes the value 
predicted for time k+i based on the information available at time k; r(k) is the current sample 
of the output reference, subject to 

 

min min max max
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  (15) 

with respect to the sequence of input increments { ( | ),..., ( 1 | )u k k u m k kΔ Δ − + } and to the slack 

variable ε, and by setting u(k)=u(k-1)+ Δu(k|k), where Δu(k|k) is the first element of the 
optimal sequence. Note that although only the measured output vector ym(k) is fed back to 
the MPC controller, r(k) is a reference for all the outputs. When the reference r is not known 
in advance, the current reference r(k) is used over the whole prediction horizon, namely 
r(k+i+1)=r(k) in Equation 14. 
In Model Predictive Control the exploitation of future references is referred to as anticipative 
action (or look-ahead or preview). A similar anticipative action can be performed with respect 
to measured disturbances v(k), namely v(k+i)=v(k) if the measured disturbance is not known in 
advance (e.g. is coming from a Simulink block) or v(k+i) is obtained from the workspace. In the 
prediction, d(k+i) is instead obtained by setting nd(k+i)=0. The wΔuij, wuij, wyij, are nonnegative 
weights for the corresponding variable. The smaller w, the less important is the behavior of the 
corresponding variable to the overall performance index. And uj,min, uj,max, Δuj,min, Δuj,max, yj,min, 
yj,max are lower/upper bounds on the corresponding variables. The constraints on u, Δu, and y 
are relaxed by introducing the slack variable ε≥ 0. The weight ρε on the slack variable ε 
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penalizes the violation of the constraints. The larger ρε with respect to input and output 
weights, the more the constraint violation is penalized. The Equal Concern for the Relaxation 
vectors Vumin,Vumax, VΔumin, VDumax, Vymin, Vymax have nonnegative entries which represent the 
concern for relaxing the corresponding constraint; the larger V, the softer the constraint. V=0 
means that the constraint is a hard one that cannot be violated (Bemporad A., Morari M., N. 
Lawrence Ricker., 2010).  

4.3 Constraints 
In many control applications the desired performance cannot be expressed solely as a 
trajectory following problem. Many practical requirements are more naturally expressed as 
constraints on process variables. There are three types of process constraints: Manipulated 
Variable Constraints: these are hard limits on inputs u(k) to take care of, for example, valve 
saturation constraints; Manipulated Variable Rate Constraints: these are hard limits on the 
size of the manipulated variable moves Δu(k) to directly influence the rate of change of the 
manipulated variables; Output Variable Constraints: hard or soft limits on the outputs of the 
system are imposed to, for example, avoid overshoots and undershoots (Maciejovski, 
J.M., 2002). We use the Output constraints and Manipulated Variable Constraints.  

5. Simulation in MATLAB 

Models of the tunnel and ventilator have been obtained through identification of real 
equipments. Higher traffic intensity causes increase of pollutant concentrations in the 
tunnel. This intensity is expressed as a vector containing really measured data. The 
MATLAB environment is used to simulate behavior of the system according to the Fig. 5. 
  

Traffic Intensity,
Velocity and Atmospherics Tunnel Tube 

Disturbances Model

 

MPC 
Controller 

Required 
value 

u
Jet Fan + 

+ 

 y – Output 
 (CO, NOx and Visibility) 

w

r 

Measured Disturbance 
with predictions w‘

Constraints 

 
Fig. 5. Improved MPC of multi-dimensional ventilation system 

It is a closed-loop control (regulation) of the system with limitations imposed to control 
quantity and outputs. It uses the internal model and solves optimization problem with the 
use of quadratic programming. We can choose the prediction horizon P and the control 
horizon M. The output constraints were set to 6, because this is the maximum input for three 
pairs of jet fans corresponding with real system. Weight matrix is selected as a diagonal 
matrix, with each element weighting the corresponding control signal. For instance, if the 
influence of particular control is to be reduced, then the corresponding diagonal element 
will be increased to reflect this intention. Weight tuning is the essential task to set the 
controller. In Fig. 7 we can see the results in comparison to Fig. 6. 
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Fig. 6. Simulated values of CO pollution inside the tunnel with (grey line) and without 
(black line) MPC controller and fan number (number of acting jet fans) 

5.1 Simulation results 
The presented simulation results are obtained for the following concentration limits: 6 
ppm for CO concentrations, 0.02 ppm for NOx concentrations and 0.05 ppm for 
visibility concentrations. These values are below really defined maximum limits. 
According to the curve of the output quantity (Fig. 6) it is apparent, that no emission 
value has extended the defined limit. However, the value of under-set maximum limit 
may be extended since one ventilator need not be able to dilute CO concentration 
sufficiently.  
The abbreviation ppm is a way of expressing very dilute concentrations of substances. Just 
as per cent means out of a hundred, so parts per million or ppm means out of a million. It 
describes the concentration of something in air. 
For this simulation we have six acting jet fans in this part of road tunnel. In the next 
simulations we have used a possibility to set weighing matrices (uwt) for tuning the 
controller. The control quantity u is adapted to the input of Jet Fan control unit. The black 
lines represent the concentrations of pollution without using the controller. They are 
named CO. The grey lines represent the concentrations of pollution with using the 
controller. They are named COr. Opacity and concentration of NOx is below the 
dangerous limits. The jet fans were switched on two times per day for chosen limits. We 
can see how affect the ventilation system to reduce the pollution. In this paper we pointed 
out only to concentration of CO, because this type of pollution is most dangerous for 
human organism.  
As it was mentioned in the previous section the weight tuning is also important part of 
controller creation. 
Well tuned controller leads to optimal control. After changing the weights, the jet fans were 
switched on only once per day, furthermore the next day all the fans were not switched on 
in the same conditions. 
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Fig. 7. Weight tuning. Simulated values of CO pollution inside the tunnel with (grey line) 
and without (black line) MPC controller and fan number (number of acting jet fans) 

Opacity and concentration of NOx is below the dangerous limits. The jet fans were switched 
on once per day for chosen limits. The concentrations of NOx and opacity (OP) are shown in 
Fig. 8. 
 

 
Fig. 8. Simulated values of NOx concentrations inside the tunnel tube (black line) and 
opacity (grey line)  

For this simulation the NOx concentrations and opacity was below defined maximum limits. 
When the jet fans are switched on these pollutions are also decreased. 

5.2 Implementation 
The biggest advantage of Automatic Code Generation affects those developers who already 
use MATLAB and Simulink for simulation and solutions design and to developers who 
used to tediously rework implemented structures in a language supported by Automation 
Studio in the past. In the procedures listed below the Automatic Code Generation tool 
provided by B&R represents an innovation with endless possibilities that help to 
productively reform the development of control systems. The basic principle is simple: The 
module created in Simulink is automatically translated using Real-Time Workshop and 
Real-Time Workshop Embedded Coder into the optimal language for the B&R target system 
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guaranteeing maximum performance of the generated source code. Seamless integration 
into an Automation Studio project makes the development process perfect (B&R 
Automation Studio Target for Simulink. 2011). Since the tunnel ventilation system use 
programmable logic controllers (PLC) it is suitable for real implementation. In our 
department we have appropriate equipment for this solution. 
 

 
Fig. 9. Workflow of the Automatic Code Generation 

The elimination of extensive reengineering in Automation Studio allows simple transfer of 
complex and sophisticated Simulink models to the PLC (Hardware-in-the-Loop). Closed-
loop controllers can also be easily tested and optimized on the target system without 
requiring the user to adjust large amounts of code and run the risk of creating coding errors 
(Rapid Prototyping). Rapid prototyping: Automatic Code Generation makes it possible to 
quickly and easily transform sophisticated Simulink based control systems into source code 
and integrate them into an Automation Studio project. Many potentially successful ideas 
have been immediately rejected due to the large amount of time required for conversion into 
executable machine code and the risk of developing a dead end solution. 
The “Rapid Prototyping” concept brings an end to this. Using Simulink and the Automatic 
Code Generation tool provided by B&R, any system, no matter how complex, can be 
intuitively built, compiled and tested in a short amount of time. This practically eliminates 
implementation errors as the Automatic Code Generation tool has been well-proven over 
several years in critical fields like aviation or automotive industry (B&R Automation Studio 
Target for Simulink. 2011). Nowadays the control algorithm is implemented and awaiting 
for connection to the real system. Fig. 11. shows the model in Simulink. 
We created the model in Simulink according to model for simulations. We replaced the 
simulated inputs by “B&R IN” blocks and simulated output by the “B&R OUT” block. The 
Real-time Workshop provides utilities to convert the SIMULINK embedded models in C 
code and then, with the compiler, compile the code into a real-time executable file. Although 
the underlying code is compiled into a real-time executable file via the C compiler, this 
conversion is performed automatically without much input from the user. The concept in 

Simulink Model 

Automation Studio 
Project 

Automation 
System (PLC) 

C code 

C code 
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Fig. 10. shows that a simulation model can be used in the simulation testing of the predictive 
control system, and after completing the test, then with simple modification to the original 
Simulink programs, the same real-time predictive control system can be connected to the 
actual plant for controlling the plant. 
 
 
 
 

 
Fig. 10. The control system 

 
 
 

 
Fig. 11. The control system in Simulink 
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6. Conclusion 

The paper presents a methodology that has been used for design parametric models of the 
road tunnel system. We needs identification of system based on data obtained from the real 
ventilation system. Model from one week data has been created and verified in MATLAB 
environment. This part is the ground for best design of ventilation control system. Presented 
results point out that created model by identification method should be validate by several 
method. Model of a three-dimensional system has been created and simulated in MATLAB 
environment using the predictive controller. Presented results confirm higher effectiveness 
of predictive control approach. The weight tuning is important part of controller creation as 
the simulation results had proved. The predictive controller was successfully implemented 
to programmable logic controller.  
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