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The BBN TransTalk Speech-to-Speech 
Translation System 

David Stallard et al.,* 
Raytheon BBN Technologies,  

USA 

1. Introduction 

Portable translation devices which enable people who speak different languages to 
communicate with each another in voice are likely to have a far-reaching impact in both the 
civilian and military worlds. While long a staple of science fiction, a la the "Star Trek 
universal translator", devices that actually translate between languages have not been fully 
realized. In the last decade, however, under the sponsorship of the Babylon and 
TRANSTAC (Translation for Tactical use) programs of the  US Defense Advance Research 
Program Agency (DARPA), several research sites, including BBN (Stallard et al., 2007), 
CMU (Waibel et al., 2003), IBM (Gao et al., 2006), SRI (Akbacak et al., 2009) and USC (Belvin 
et al. 2005), have made significant progress in developing a real two-way speech-to-speech 
(S2S) translation systems.  These systems are not “universal translators” in the science-
fiction sense, in that must be configured for the language and conversational domain of 
interest, rather than spontaneously understanding them. However, the technology is 
language-independent, and under the auspices of the TRANSTAC program, systems have 
been configured for several different foreign languages of interest to the US Government, 
including Iraqi Arabic, Malay, Farsi, Dari, and Pashto. Though the technology is also 
domain-independent, most of these systems support conversations in the so-called "force 
protection" military domain, which is broadly construed to include not only conversations 
relevant to checkpoints, searches, and other military operations, but also rapport building, 
civil affairs, and basic medical conversations. 
In this article, we describe BBN’s S2S system, TransTalk, which runs not only on laptops and 
ultra-mobile PCs, but also on mobile Android Smartphones, running locally on the device 
itself and not a server. In common with other TRANTSTAC systems, TransTalk’s technology 
is language-independent, and has been configured to translate between English and 
numerous other languages, including Iraqi Arabic, Dari, Pashto, Farsi, and Malay.  
TransTalk also has a uniquely simple user interface which does not require the user to view 
a screen. TransTalk integrates automatic speech recognition (ASR), machine translation 
(MT), and text-to-speech (TTS) synthesis engines for converting speech in one language into 
a different language. In particular, TransTalk uses the BBN Byblos ASR engine for 
converting speech to text. BBN Byblos is a multi-pass, speaker-independent large 
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vocabulary speech recognizer which uses n-gram language models instead of a finite state 
grammar. For machine translation, TransTalk primarily uses a BBN-developed Statistical 
Machine Translation (SMT) component. For text-to-speech synthesis, we use engines 
developed by TTS research sites under the DARPA TRANSTAC program, which includes 
CMU and Cepstral.  TransTalk has consistently been a top performer in independent 
applications conducted by the US government.   
Of particular importance to the recent progress in S2S technology has been the adoption of 
Statistical Machine Translation (SMT).  SMT uses a statistical, corpus-driven approach, 
rather than hand-coded translation rules; and is driven by automated rather than manual 
performance evaluation.  There are two advantages conferred by SMT.  First, the statistical 
paradigm generally provides better performance than approaches based on hand-written 
rules, as these rules are often brittle and conflict with one another.  Second, the automated 
nature of the process allows much more rapid development and testing of new approaches 
to improve performance.  The resulting labor savings has greatly accelerated the progress of 
both machine translation and S2S as a whole.  In this way, SMT may be seen as following in 
the footsteps of ASR, which also underwent dramatic improvement following the adoption 
of statistical paradigms and automated evaluation.  
S2S systems are configured for particular language pairs by training ASR and translation 
models using speech and language data (recordings, transcriptions, and translations) in 
the relevant languages. For optimal performance, the data collected should match the 
intended domains of conversation of the system. That is, if the intended domain is force 
protection, data should be collected for that domain.  While data outside that domain can 
be helpful for general modeling of the given language, it often lacks the key concepts and 
constructions that are important in the specific application domain. In practice therefore, 
the domain-relevant data is frequently collected in simulated translingual dialogs 
between role-playing individuals.  Because of the finite resources available for such data 
collection, and because many of the languages of interest are low-resource themselves, 
S2S technology must frequently cope with sparse data, which poses challenges for both 
ASR and MT. 
In this paper, we describe the individual components of our system, including its ASR, MT, 
TTS, dialog manager, and user interface components, and their integration into a free-form 
two-way S2S translation system. We present novel algorithms for overcoming specific 
challenges posed by colloquial and low resource nature of the languages of interest.  
Another important issue in speech-to-speech translation is using some form of confirmation 
strategy for minimizing errors in transferring a concept from one direction to other. Such 
errors can easily cause the dialog to drift or stall. Here, we present multiple confirmation 
techniques for a user to get feedback from the system so as to detect errors in the concepts 
being conveyed by the system. In addition, we describe a novel methodology for assessing 
the usefulness of these user confirmation strategies. 
The remainder of the paper is organized as follows.   Section 2 gives a brief overview of the 
our TransTalk system.   Section 3 discusses our user-centered approach to system design 
and interaction.  Section 4 presents work we have done on our ASR component, with 
particular emphasis on improving performance for colloquial dialects of low-resource 
languages.  Section 5 discusses the machine translation component of our system, and 
continues the emphasis on low-resource languages.  Section 6 presents live evaluation 
results for our system, and Section 7 concludes. 
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2. System overview 

A block diagram of the BBN TransTalk system is shown in Figure 1.  The BBN TransTalk 
system uses BBN's Byblos speech recognizer (Nguyen and Schwartz, 1997), BBN's SMT 
engine, and third-party text-to-speech synthesizer(s). Various input modalities are 
supported, including both handheld and headset microphones. The primary physical 
interface is the "BBN SuperMic", a handheld unit developed by BBN, which encompasses a 
directional microphone, speakers, and two push-and-hold "listen" buttons, one for receiving 
the English speech, and the other for receiving the foreign speech. Figure 2 shows the BBN 
TransTalk system running on multiple platforms: (a) Ultra-Mobile PC (UMPC) with BBN 
SuperMic, and (b) Android smartphone.  
 

 

Fig. 1. Block Diagram for BBN TransTalk 2-Way S2S Translator. 

English speech received through the physical interface device is sent to the English speech 
recognizer, which outputs a sequence of words in the recognizer's vocabulary.  This English 
text is then sent to both the SMT component and to a separate information extraction 
component.  The information extraction component performs the following functions: 
1. English speech received through the physical interface device is sent to the English 

speech recognizer, which outputs a sequence of words in the recognizer's vocabulary.  
This English text is then sent to both the SMT component and to a separate information 
extraction component. The information extraction component performs the following 
functions: 

2. Canonicalization: matches the utterance to one of a set of utterances for which it has 
stored translations (Stallard et al., 2007).  If none is found, the output of the SMT 
component is used instead.  Arabic speech corresponding to the translation is then 
played back.  This may be a pre-recorded wave file, or more generally, the result of text-
to-speech synthesis. 

3. Question Detection: determines whether the recognized utterance is a question or a 
statement. This module also classifies the question as one of the pre-defined classes.} 

4. Named Entity Detection: detects whether the spoken response has named entities such 
as person names, place names, geo-political organizations, etc. (Prasad et al., 2008; Bikel 
et al., 1999). 

A composite foreign language translation ("Arabic") in Figure 1  is produced by the SMT 
and the information extraction component. This translation is then either played as a pre-
recorded wave file, or more generally, by the text-to-speech synthesis. 
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Fig. 2. BBN TransTalk Two-way S2S Translator on UMPC and Smartphone platform. 

The foreign language speaker's reply ("Arabic" in Figure 1) is sent to the foreign language 
recognizer, which outputs text in the foreign language. The foreign language text is 
translated into English text with a process similar to the one in English-to-Foreign direction. 
The translated text is then sent to a second speech synthesizer, which speaks it out for the 
English speaker to hear, and/or displaying it on a screen. 

3. User-centered interaction 

3.1 Overall design 
A key aspect of our TransTalk system is its user-centered interface.  Our design of the 
interface was guided by a number of desiderata.  Obviously, the interface had to be simple, 
easy to use, and efficient.  But it also had to work without a screen display, so that it could 
be used by soldiers in “eyes-free” operation. We also wanted it to be easy for the user to 
detect when the system had made an error in translation, and to correct the error.  Finally, 
we wanted the user to be able to abort system output and barge in at any time to speak 
again, no matter what the system was doing at the time. The user interface design we 
developed provides an elegant joint solution to all of these goals.  
In physical terms, the system’s user interface is indeed simple.  It consists of just two push-
and-hold buttons, one labeled “YOU”, the other “HIM”.  The YOU button commands the 
system to begin listening for English speech, and performing ASR on it as soon as speech is 
heard. The HIM button, similarly, causes the system to begin listening for speech in the 
foreign language and performing ASR on it.  When the button is released, the system stops 
listening, finishes up ASR, and then passes the ASR output to MT for translation into the 
opposite language, and then to TTS for speaking out to the other party. 
The requirement that the ELS be able to detect translation errors has impact on the 
interface’s behavior. It is simply a fact that despite ongoing improvements in the underlying 
technologies, for the foreseeable future, S2S systems will make errors in translation.  If 
undetected, translation errors can lead to mutual incomprehension and a complete 
breakdown of the dialog.  To cope with this problem, our system presents the ELS with a 
“confirmation” utterance that tells him what the system thought he said, so that he can 
determine whether the system made an error.  In the system’s usual mode of operation, this 
confirmation utterance is simply a read-back of the English ASR result. (We discuss 
alternatives such as “back-translation” in a later section). 
Now, if a display screen were available, this confirmation utterance would simply be 
displayed on the screen and the ELS could quickly scan it to determine whether he had been 
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understood correctly.  However, the TRANSTAC program requires (and most military users 
prefer) that the system be usable without a display.  The only way the confirmation 
utterance can be delivered is through voice.   One possibility would be for the system to 
explicitly ask the user via TTS “Did you say ‘Show me your id’?”.  However, this “explicit 
confirmation” would slow down the dialog, and the repeated confirmation interactions 
would likely be irritating to the user.  Our system instead uses “implicit confirmation”, in 
which it speaks out the confirmation utterance for the ELS to hear.   If the ELS decides this is 
correct, he takes no action, and the system’s processing continues as normally, generating 
the translation and playing it out for the foreign language speaker (FLS) to hear. If the ELS 
instead decides that the confirmation is incorrect, he simply presses the “YOU” button 
again.  This aborts any ASR, MT, or TTS activities the system may be performing, and in 
particular halts voice output in either English or the foreign language. The system then 
begins listening to the ELS, who may speak again, either repeating his utterance more 
clearly, or rephrasing it, as he chooses. 
Because it aborts all ongoing system activities, the “YOU” button effectively doubles as an 
“abort” button.  If the ELS wants to abort the system’s current activities, but does not want 
to speak again right away, he can simply press the YOU button and then quickly release it 
again, without speaking. The system recognizes this very short listening interval as being an 
abort, rather than a speech event, and ignores the empty result that ASR returns.  In this 
way, we avoid the need for a dedicated third “abort” button, thereby retaining our 
maximally simple two-button interface. 
The above-described abort and barge-in functionality of the YOU button illustrates another 
key design goal of our system, which might be stated as “The user controls the system; the 
system does not control the user”. That is, the system does not constrain the ELS user’s 
actions, but rather allows him to interrupt it at any time, and speak again without having to 
wait for the system to be “ready”. He can simply assume that the system is always ready. 
Such a capability is not straightforward to achieve, however. In the synchronous pipeline of 
ASR, MT, and TTS, the various components can be in different states when the abort/barge-
in occurs.  Example states include processing the last input, returning results for the last 
input, aborting in response to the button push, and resetting internal data structures to 
prepare for the next input. A component that is in any of these states will not be ready to 
begin immediately processing new input. The easiest way to cope with this might be to 
require all system components to return to their ready state before allowing new input from 
the user (perhaps using a beep as a ready signal).  However, the time that it would take all 
the system’s components to return to their ready state is variable, and depends among other 
things upon which component(s) were interrupted, and which state they were in when 
interrupted. To force the ELS to wait until all components are in their ready state before he 
speaks again, even by 10’s of milliseconds, is to invite user frustration and user error. In 
particular, it would be very difficult to prevent the user from speaking too early, thus 
resulting in truncated utterances being sent to the ASR, with the consequent loss of speech 
recognition and translation accuracy. 
Our approach avoids these problems. Instead of attempting to configure the user’s behavior to 
cope with the situation, we configure the system’s internal behavior. That is, if a component is 
not yet ready for new input, the system buffers the input until the component returns to the 
ready state and can begin processing it.  Examples include user speech (for ASR), English ASR 
output (for MT), and foreign-text MT output (for TTS).The system begins to buffer user speech, 
in particular, as soon as the button is pressed. Any slight latency that may results from this 
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internal wait will be manifested only as a slight delay in the system’s final output, which will 
probably not be noticeable by the user, rather than a delay enforced on the user’s input, which 
would certainly be noticeable by him. The overall theme of our interface is that the system 
retains its internal complexity inside itself, where it belongs, rather than imposing it upon the 
user, who has more important things to do. 

3.2 Improving the efficiency of voice confirmation 

An obvious efficiency issue presented by voice confirmation is the additional time it costs 
the interaction.  Confirming the ELS’s utterance means that each English utterance is spoken 
twice, first by the ELS, and then again by the system.  To alleviate this, we can substantially 
reduce the effective time that confirmation costs by performing the E2F MT concurrently 
with the confirmation TTS. Since the E2F MT would have to be performed anyway whether 
or not confirmation was done, doing it at the same time as confirmation, rather than waiting 
until confirmation is done, saves time.  Effectively, we are reducing the time that 
confirmation TTS costs the dialog (avg. 3.0 seconds), by subtracting the time that the MT 
takes to run (avg.1.2 seconds), yielding a relative reduction of 40%.  Figure 3 illustrates this 
time savings, with the top panel representing confirmation and MT running in series, 
compared with confirmation and MT running in parallel.  
Moreover, if the ELS and FLS are listening on separate channels, as is the case in the two-
phone configuration, we can obtain even greater time savings by also playing the Iraqi 
translation TTS itself at the same time as the English confirmation TTS.  In this mode, the 
system begins playing the foreign TTS as soon as the E2F MT produces the foreign-language 
utterance for it.  Given that E2F is faster than confirmation, it will generally be the case that 
the system will then be speaking English and foreign-language utterances simultaneously.  
However, because each party has his own phone, neither hears the TTS output intended for 
the other. Because the system is speaking in two different languages in parallel, we term this 
technique “parallel confirmation”. 

 

 

Fig. 3. Different Confirmation Modes. 

Figure 3 illustrates the benefits of this technique by graphically comparing Serial 
Confirmation, Serial Confirmation with Parallel MT, and Parallel Confirmation. Note that 
Parallel Confirmation effectively reduces the time-cost of confirmation to zero, since in this 
configuration the confirmation is performed entirely in parallel with activities that would need 
to be performed anyway, and whose combined duration exceeds that of the confirmation.  
Note also an additional important benefit of parallel confirmation; namely, that it enables 
improvements in the MT’s speed to increase the system’s overall translation speed, 
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specifically, by reducing the lag before foreign TTS starts. By contrast, in Serial Confirmation 
with Parallel MT, no further throughput increase is possible, once the time that the MT takes 
to translate the ELS’s English utterance is less than the time that the English confirmation 
TTS takes to speak that utterance. 
We have used the parallel confirmation effectively in a two-phone configuration, where 
each speaker has his own handset. The two phones communicate via Bluetooth and send 
text back and forth, allowing confirmation TTS and translation TTS to be generated in 
parallel on the respective handset.  

3.3 Generating the confirmation utterance 
As stated previously, our primary method of generating a confirmation utterance is to simply 
read back the ASR output.  The advantage of this approach is that it allows the user to catch 
ASR errors quickly, which is important since ASR errors on concept words guarantee a wrong 
translation. The disadvantage, of course, is that correctness of the ASR output says nothing 
about whether the MT output itself was correct. In particular, it is perfectly possible for the 
ASR output to be error-free, yet for the MT result for that output to be completely wrong.   
An alternative strategy that addresses this issue is “back-translation”, in which the output of 
ASR + MT into the target language is translated back into the source language, and the 
result played back to the user for his approval. A back-translation that is close to the original 
utterance in meaning can have the important psychological advantage of making the user 
feel more secure that he was translated correctly.  In fact, in informal interviews, users of 
our S2S system who have use system with the back-translation alternative to cofirmation 
express a strong approval of it. 
The back-translation approach can be objected to, however, on two grounds.The first 
objection is that the output of back-translation, having been passed through three successive 
noisy channels (ASR, forward MT, and backward MT), will likely be hopelessly garbled, 
causing most forward translations to appear wrong. The second objection is that even when 
not garbled, back-translation may yet be misleading, since the same incorrect phrase pair 
rule used in the forward direction may also be selected (in reversed form) in the backward 
direction, leading back to the original source phrase again and leaving the error undetected.  
The most straightforward way to evaluate the efficacy of back-translation and other 
confirmation approaches would be to run two complete sets of live  evaluations, one with 
the approach in question and one without, and compare the results on measures such as 
concept transfer, rate of concept transfer, user satisfaction, and the like. Unfortunately, given 
the great expense of carrying out realistic evaluations, which involve assembling personnel 
from multiple locations in the US, this is infeasible. We therefore must look for some offline 
method of evaluating back-translation.  
The implicit hope of back-translation, and indeed of any other confirmation utterance-based 
strategy, is that the ELS could develop a mental model, based on his experience in using the 
system, of the minimal level of back-translation quality that would predict that the  forward 
translation is correct.  We do not concern ourselves here with how the ELS would develop 
such a mental model, but rather seek to determine whether it is even possible to develop 
such a model at all – that, to determine whether the data is sufficiently consistent that is 
possible to infer useful prediction rules from it. 
As a subjective measure of translation quality in either direction, we use the familiar 1-5 
Likert scale to rank both forward translations (i.e. English-to-foreign), and back-translations. 
We do not assume that users will actually assign Likert scores while using the system; but 
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instead view the score as a numerical proxy for the user’s reaction. We assign the following 
interpretations to the different elements of the Likert scale. 

5: Essentially a perfect translation. 
4: An adequate if slightly disfluent translation which conveys the utterance’s meaning 
3: A partial translation which is missing one or more concepts, or is severely disfluent. 
2: A translation which is missing most of the concepts. 
1: A translation with no apparent relation to the input. 

If back-translation were a perfectly effective diagnostic, the Likert rating of the back-
translation and the Likert rating of the forward translation would have the same value. 
Obviously, this will seldom be the case, since both are noisy processes, with one of them 
operating on the output of the other. One might then fall back to a weaker requirement, for 
example only requiring that the back-translation and forward-translation quality be well-
correlated in a linear relationship. 
Our approach to this problem is quite different. Note that we are not interested in predicting 
the actual value of the Likert rating for the forward translation, but rather in simply 
predicting whether or not the forward translation’s Likert rating is above a certain threshold 
of acceptability. Therefore, we seek to use the back-translation for binary classification, 
rather than regression.In particular, we choose a specific minimum acceptable Likert score F 
for the forward translation - say, a score of 4. We then test various minimum thresholds B 
for the back-translation Likert score. In particular, for utterances whose back-translation 
score is at or above the threshold B, we test the prediction that the utterance’s forward 
translation Likert score will be at or above the threshold F, and thus acceptable. Below B, we 
predict that the forward translation Likert will be below F, and therefore unacceptable. We 
compute precision, recall, and F-measure for each such threshold. Different costs for the 
different error types, e.g. a higher penalty for false acceptance than for false rejection, can be 
straightforwardly taken into account by using a weighted harmonic mean. 
To test the evaluation methodology outlined above, we used a set of 779 English utterances 
that were spoken to our system by ELS users during the TransTac live evaluation in June 
2008, conducted by the US government’s National Institute of Standards and Technology 
(NIST). In this evaluation, active-duty military personnel played the part of the ELS, while  
native speakers of Iraqi Arabic were recruited to play the part of the FLS. The utterances of 
both parties, and the system’s ASR and MT outputs for these, were recorded for later 
analysis. The Iraqi translation output produced by the system for the ELS’s utterances was 
Likert-scored by a native Arabic speaker experienced in the application domain. To produce 
the back-translations, we ran (offline) our Arabic-to-English MT on the system’s Iraqi 
translation outputs. These back-translations were then Likert-scored by a native English 
speaker knowledgeable in the application domain. For comparison, the same English ranker 
also Likert-scored the output of our system’s English ASR for these same 779 utterances (i.e. 
the ASR read-back strategy).   
The resulting scores are shown in Table 1. As can be expected, the highest mean Likert 
scores were produced on ASR output, which tends to overestimate the true (forward) Likert 
score, while the lowest were associated with back-translation output, which tends to 
underestimate it. Both were approximately equally well-correlated with forward Likert 
score, however, with a correlation coefficient of approximately 0.60. The English ASR WER 
obtained on this corpus was 6.2%, while the English-to-Arabic BLEU score on this ASR 
output was 56.7%.  
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Some examples of back-translations and their Likert rankings are: "Turn off your vehicle" 
(for "Turn your vehicle off"), ranked 5; "Construction prior experience do you have" (for "Do 
you have prior construction experience"), ranked 4; and "How many subcontracting work" 
(for "How many subcontractors work for you") ranked 3. Table 1 shows the mean Likert 
scores for each of the conditions, namely, forward translation, back-translation, and ASR 
output of Likert scores for the back-translation. 
To obtain results on back-translation efficacy, we set the forward translation Likert score 
threshold F to be 4.0. This may be considered a good minimum acceptable score for our 
purposes, as scores below 4.0 are by definition associated with "semantic damage" to the 
translation. Table 2 gives acceptance rate, false rejection rate, false acceptance, F-measure, 
and precision-weighted F-measure for different back-translation Likert score cutoffs B. Each 
row of this table can be interpreted as a prediction rule, which predicts that an utterance 
whose back-translation Likert score is at or above the cutoff will have a forward translation 
whose Likert score will be 4.0 or higher. 
 

Forward-trans. Back-trans. ASR 
4.42 3.99 4.64 

Table 1. Mean Likert Scores.  

For many S2S applications, a false acceptance can be regarded as worse than a false 
rejection, because of the possibility of confusing the respondent, etc. For example, one might 
decide that a false acceptance is twice as bad as a false rejection. The rightmost column of 
Table 2 gives F-measure computed with these weights (0.67 vs. 0.33).  
The results in Tables 1 and 2 seem to show that the worst fears regarding back-translation 
are not realized.  By no means does back-translation yield incomprehensible utterances for 
most cases, nor is it a false and over-optimistic guide. Indeed, for cutoffs of 4.0 or higher, its 
false acceptance rate is actually quite low. This precision does come at the expense of recall, 
however, and in particular at a cutoff of 4.0 fully 39% of ELS utterances would be rejected 
and have to be retried. A better strategy might be a slightly less strict cutoff of 3.5, which 
yields a low false acceptance rate of 8%, while falsely rejecting only 14%. This rule 
corresponds to a back-translation which subjectively seems rather poor, but which is not 
completely deficient. 
  

Cutoff Acpt FlsRej FlsAcc FMsr WFMsr 
5.0 0.27 0.68 0.02 0.48 0.58 
4.5 0.35 0.59 0.03 0.57 0.67 
4.0 0.61 0.29 0.04 0.81 0.86 
3.5 0.78 0.14 0.08 0.89 0.90 
3.0 0.94 0.02 0.14 0.92 0.90 
2.5 0.96 0.02 0.15 0.91 0.89 
2.0 0.99 0.00 0.16 0.91 0.88 
1.0 1.00 0.00 0.17 0.91 0.88 

Table 2. Precision and Recall for Back-translation. 

The key question to be addressed, however, is whether back-translation is better than our 
default confirmation strategy of simply reading back the system’s English ASR output. To 
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address this question, Table 3 repeats the above experiment, using Likert rankings on the 
system’s English ASR output. Note the false acceptance rate is higher than for back-
translation, but the false rejection rate is much lower, yielding good F-measure scores at all 
values of the cutoff. For most cutoff values, the ASR read-back strategy even slightly out-
performs back-translation on weighted F-measure. 
 

Cutoff Acpt FlsRej FlsAcc FMsr WFMsr 
5.0 0.72 0.19 0.07 0.86 0.88 
4.5 0.75 0.17 0.08 0.88 0.89 
4.0 0.86 0.07 0.10 0.92 0.91 
3.5 0.94 0.02 0.13 0.92 0.90 
3.0 0.99 0.00 0.16 0.91 0.89 
2.5 0.99 0.00 0.16 0.91 0.89 
1.0 1.00 0.00 0.17 0.91 0.89 

Table 3. Precision and Recall for ASR Readback. 

It might seem from this analysis that ASR read-back is a superior strategy to back-
translation. It should be noted, however, that ASR read-back on this dataset has a floor of 
7% false acceptance, below which it cannot possibly go. The back-translation strategy, by 
contrast, can go as low as 2% false acceptance, albeit at the price of a very high false rejection 
rate.  If the goal were to fix a certain maximum allowable rate of false acceptance rate – say 
8% -  rather than maximizing F-measure, the back-translation strategy could be seen as 
slightly superior, resulting in a 14% false rejection rate as opposed to ASR read-back's 17%.   

4. Automated Speech Recognition (ASR) 

4.1 Overview 

The ASR component of our S2S system is the BBN Byblos speech recognizer (Nguyen and 
Schwartz, 1997). Byblos models speech as the output of context-dependent phonetic Hidden 
Markov Models (HMMs). The outputs of the HMM states are mixtures of multi-dimensional 
diagonal Gaussians.  Different forms of parameter tying are used in Byblos, including State 
Tied Mixture (STM) triphone and State Clustered Tied Mixture (SCTM) quinphone models.  
The mixture weights in both these cases are shared based on decision tree clustering using 
linguistic rules. Decoding is performed using our patented two pass search strategy 
(Nguyen and Schwartz, 1997).  The forward pass is a fast-match beam search using an STM 
acoustic model and an approximate bigram language model.  The output of the forward 
pass consists of the most likely word-ends per frame along with their partial forward 
likelihood scores.  The backward pass operates on the set of choices from the forward pass 
to restrict the search space, and uses the more detailed SCTM quinphone model and a 
trigram language model to produce the best hypothesis. 
Development of ASR capability for our S2S system posed special challenges, as many of the 
languages of interest, including Iraqi Arabic, Pashto, and Dari ,are not only low-resource, but 
also of colloquial dialect.  Such languages are challenging for ASR development for two 
reasons.   First, in many cases there is no standard written form for the colloquial dialects of a 
language, leading to a lack of consistency in transcriptions of audio  in that language.  Second, 
creating pronunciation lexicons for words in these dialects is challenging. Most ASR engines 
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use phones as units for acoustic modeling, and each word in the recognition lexicon is 
manually spelled using these phones. Given that skilled acoustic-phoneticians for low-
resource languages are few, the manual creation of phonetic spellings for large vocabulary 
ASR in low-resource languages is generally impractical. Moreover, creating a phonetic 
dictionary is even more difficult for languages that use the Arabic script for their writing 
system. This is because in most of the colloquial dialects of such languages (e.g. Iraqi Arabic, 
Farsi, Dari, and Pashto), short vowels do not correspond to characters of their own, but instead 
appear as diacritic marks on other characters, and furthermore, are usually omitted.  This 
results in additional pronunciation ambiguity and language-model confusability for vowel-
less word forms which may correspond to several different actual words.  A a classic example 
is the Arabic root form having the meaning of writing or inscribing, “k-t-b”, which can appear 
with many different vowel forms, some of which correspond to the “book”, “writer”, “he 
wrote”, “bookdealer”, etc.   Nevertheless, all these forms are typically written simply as “ktb”. 
Given these challenges, most state-of-the-art ASR systems resort to the "grapheme-as-
phoneme" approach for lexicon creation (Billa et al., 2002).In this approach, the 
pronunciation for a word is derived directly from the orthography by treating the 
constituent character/grapheme as phones. The grapheme approach has several advantages 
including: (1) it automates the dictionary creation process, thereby simplifying the ASR 
training, (2) it does not suffer from inter-annotator differences in manual pronunciation 
creation for words, and (3) it allows the automated addition of new vocabulary at runtime.  
While the grapheme-as-phoneme approach has emerged as a promising approach for 
mitigating the impact of inherent ambiguity introduced by absence of short vowels, 
researchers have also explored automatic diacritization based on morphological analysis 
(Xiang et al., 2006). However, such automatic diacritization methods have several 
shortcomings, - most of which are due to the creation of large number of vowelization 
variants, of which very few are actually useful. The increased number of pronunciation 
variants for a given word has several undesirable effects. First, it typically increases the 
word’s confusability with other words, because the difference in pronunciation between 
words usually becomes smaller. Second, it increases the search space during decoding, 
because the decoder has to consider a larger number of pronunciations for each word. 
Finally, most of the rules used by morphological analyzers for a given language were 
developed for the language’s formal form, and tend to break down when applied to  
colloquial dialects.  Therefore, the grapheme approach is usually still better than using 
automatic diacritization for colloquial dialects. Nevertheless, the recognition performance 
with grapheme-as-phonemes is significantly worse than with a high-quality, manually 
created phonetic dictionary. 
In this section, we present techniques that reduce the difference between grapheme and full 
phonetic systems by using manual pronunciations for only a small fraction of words (Prasad 
et al, 2010). Specifically, we investigate two different techniques for developing a recognizer 
for colloquial Pashto.  The first technique uses a modified version of the text-to-phoneme 
(T2P) tool (Black et al., 1998). T2P is a decision tree approach that learns letter-to-sound rules 
from a small set of manual pronunciations. The standard version of T2P has serious 
limitations for languages for which the number of letters/graphemes is significantly 
different from the number of phones. Here, we describe a novel approach for extending T2P 
to deal with such languages. The second technique uses a hybrid phoneme/grapheme 
recognition approach, similar to the one described in (Magimai-Doss et al., 2004). 
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4.2 Automated lexicon creation 

Grapheme-as-Phoneme: We developed a grapheme-as-phoneme (Billa et al., 2002) mapping 
based on the orthography of the words in the Pashto data in the TRANSTAC corpus. The 
Pashto corpus spans a wide range of scenarios, including checkpoint patrols, civil affairs, 
medical interviews, facility inspections, etc. The audio in the corpus was segmented and 
transcribed by Appen, Pty, Ltd. We first pre-processed Appen’s audio data and 
transcriptions in order to eliminate segments with transcriptions that are not suitable for 
either acoustic or language model training, e.g. unintelligible speech, long pauses, 
overlapping, or foreign speech. Next, we divided the speakers and data into two sets: A 34-
hour (400K total, 10K unique words) training set and a 2-hour, 26K total word, test set. 
We used a modified Buckwalter transliteration system to create Romanized forms of Pashto 
letters. A total of 34 phones were derived from the graphemes after Romanization. Because 
several letters map to the same sounds, the total number of graphemes is less than the total 
number of letters in Pashto alphabet. In Table 4, we compare the phone set used for the 
phonetic and grapheme representations. 
 

Representation Pashto Sounds Non-speech Total Phonemes 
Phonetic 42 3 45 
Grapheme 34 3 37 

Table 4. Pashto phoneme and grapheme representation 

Learning Text-to-Phoneme Mappings: Our approach for text-to-phoneme conversion is based 
on the set of public-domain tools from CMU (Black et al, 1998). The training of T2P models 
with the CMU tools is performed in three steps: 
1.    Align letters to phonemes in the training dictionary 
2.    Extract contextual features from the alignments 
3.    Train a decision tree using the contextual features. 
We found serious limitations in the alignment step of the standard T2P tool. Specifically, the 
standard alignment process can only handle word and pronunciation pairs where the 
number of letters is greater or equal to the number of phones, allowing no more than one 
phone to be aligned to a given letter. While this may be acceptable for most of English 
words, it does not work for many other languages including Pashto. 
Therefore, we implemented a new alignment algorithm that overcomes the limitations of the 
standard T2P tool. The algorithm uses iterative expectation maximization (EM) style 
optimization to find alignments that best describe the training dictionary. Our updated 
alignment algorithm has the following key steps: 
1.    Initialization 

a. Set P(phone = p | letter = c) = 
௡௨௠	ௗ௜௖௧௜௢௡௔௥௬	௣௔௜௥௦	௪௜௧௛	௕௢௧௛	௖	௔௡ௗ	௣௡௨௠	௪௢௥ௗ௦	௪௜௧௛	௖  

b. Set P(deletion | c) = 0.1 
2.    Iterate until convergence 

a. Find best path (according to the current model) through [letters phones] grid using 
dynamic programming and allowing any number of phones per letter 

b. Update P(p | c) = 
௡௨௠௕௘௥	௢௙	௔௟௜௚௡௘ௗ	௣௔௜௥௦	ሺ௣,௖ሻ௧௢௧௔௟	௡௨௠௕௘௥	௢௙	௖  

c. Update p(deletion | c) = 
௡௨௠௕௘௥	௢௙	௨௡௔௟௜௚௡௘ௗ	௖௧௢௧௔௟	௡௨௠௕௘௥	௢௙	௖  

Hybrid Phoneme/Grapheme: In the hybrid phoneme/grapheme approach, during recognition 
each word is modeled with two different phone sequences. The first phone sequence is created 
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manually by native speakers. The second sequence uses a grapheme-as-phone representation.  
In training, we assume independence between the manual phone set, “P'' and the grapheme 
representation, “G'', and train two different sets of context-dependent HMMs.  Words which 
do not have any manually created pronunciations are spelt with just the grapheme-derived 
phones. While performing recognition, one can also use pronunciation probabilities to weight 
the grapheme and phoneme pronunciations differently. 

4.2 Experimental results 

In the following, we present experimental results on Pashto ASR for comparing the 
different approaches outlined above. All recognition experiments used a three pass 
recognition strategy in the BBN Byblos recognizer. The first pass, referred to as the 
forward pass, uses context-dependent triphones with state-tied mixture (STM) parameter 
tying and a bigram language model (LM). The second pass, referred to as the backward 
pass, operates on the lattice from the forward pass using context-dependent quinphones 
with SCTM configuration for acoustic models and a trigram LM.  The output from the 
backward pass is a lattice or an n-best list.  The third and final recognition pass, referred 
to as the rescoring pass, uses SCTM models trained with crossword quinphones to re-rank 
the n-best list produced by the backward pass. All acoustic models in the results below 
were trained using maximum likelihood estimation (MLE). LM training used a total of 
700K words from Pashto transcriptions and translations available in the corpus provided 
by Appen. 
Our first experiment was designed to compare the quality of pronunciations produced by 
standard T2P and the modified version using the improved alignment algorithm. We used 
a set of 10K manually created word pronunciations to perform the comparison. We 
compared the two approaches under two operating conditions. In the first condition, we 
used 1K manually created word pronunciations for training and 9K for testing. In the 
second, we divided the 10K words equally into two sets of 5K each. Table 2  shows the 
percentage of words where the predicted pronunciations were identical to the 
corresponding reference, i.e. the manual pronunciation. From Table 2, we conclude that 
our updates to the T2P tool outperform the standard tool by a factor of 2 to 3 in prediction 
accuracy. On analysis of the pronunciation errors from the modified T2P tool, we found 
that most of the errors are single phone variations in the phonetic string. Therefore, we 
adopted the improved approach for subsequent experiments that rely on creating 
automatic phonetic pronunciations. 
 

Train Test 
#Wds T2P Modified T2P #Wds T2P Modified T2P 

1K 36% 98% 9K 12% 22% 
5K 29% 96% 5K 14% 42% 

Table 5. Percentage of words where the predicted pronunciation from the two different text-
to-phone are identical to the reference pronunciation 

Next, to perform a systematic comparison of different strategies for creation of 
pronunciation lexicons, we explored three different scenarios by varying the amount of 
words with manually created phonetic spellings: 
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1.   Low-resource that simulates having pronunciation for only the top-1K most frequent 
words in the training data.} 

2.    Medium-resource with the top-5K words having manual pronunciations.} 
3.    Full-resource where every word has a manual pronunciation.} 
For each of the aforementioned scenarios, we trained the following systems: 
1.   P: Phoneme-based systems that are estimated from the corresponding fraction of the           

audio transcripts for which every word has a manually created pronunciation.} 
2.    G: Single grapheme-based system trained over the entire training set.} 
3.     P+G: Hybrid phoneme/grapheme approach where the recognition dictionary uses two 

pronunciations (phonetic and graphemic). For words that have a manual pronunciation 
we use the phonetic representation and for words that do not have a manual 
pronunciation we use the grapheme representation. During training, we estimate two 
sets of context-dependent HMMs. The first set uses phonetic representation and is 
trained from the corresponding fraction of the audio transcripts for which every word 
has a manually created pronunciation. The second set uses grapheme representation 
and is trained over the entire available training set. Thus, the grapheme-based HMMs 
for all three training scenarios are estimated from the same amount of data. This 
ensures that the grapheme HMMs use all available training data.} 

4.  P+T2P: In this approach, there is a common set of HMMs that use only phonetic 
representation. For the words that do not have manual pronunciations, the trained 
letter-to-sound rules from the modified T2P tool are used to create pronunciations 
automatically. Therefore, the HMMs are trained over the entire training set. The only 
difference between the three P+T2P systems is the fraction of words with manual and 
automatic pronunciations. 

Table 2 compares the performance of the systems trained from various dictionary 
configurations as evaluated on the test set in terms of the word error rate (WER). All results 
are reported with unsupervised constrained maximum likelihood linear regression 
(CMLLR) speaker adaptation (Gales, 1998). Decoding was performed with the same 10K 
vocabulary, except for the system P, where the vocabulary size is restricted to the number of 
words with manual pronunciations. The out-of-vocabulary (OOV) rate for the test set with 
the 10K vocabulary is 4%, whereas for system P the OOV rate is 5% for the 5K dictionary 
and 12% for the 1K dictionary. 
 

System 
# of Words with Manual Pronunciation 

0K 1K 5K 10K ( all) 
P - 53.2% 46.2% 45.2% 
P + T2P - 45.7% 45.3% 45.2% 
P + G 47.3% (G) 46.8% 45.5% 45.1% 

Table 6. WER of systems trained from various dictionary configurations as evaluated on the 
test set. Decoding was based on the same 10K vocabulary, except System P, where the 
vocabulary is restricted to the number of words with manual pronunciations. 

As one would expect, the grapheme system (System G in parentheses in the  P+G row of 
Table 2 results in the worst performance (WER of 47.3%) compared to the systems with the 
same vocabulary. On the other hand, the phoneme system (System P), which uses manual 
pronunciations for every word results in a WER of 45.2% - a 2.1% absolute reduction in 
WER than the grapheme system. 
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For the low (1K) and medium (5K) resource scenarios the P+T2P and P+G systems yields 
better performance than the phoneme system. In particular, the P+T2P system significantly 
outperforms the P+G system for the low-resource scenario (WER 45.7% vs. 46.8%). For the 
medium-resource scenario, both P+T2P and P+G systems result in comparable performance. 
Note that the P+G system uses pronunciation probabilities to assign a different weight to the 
grapheme and phoneme pronunciations. 

5. Machine translation  

BBN's Statistical Machine Translation (SMT) engine is a phrase-based translation system 
based on (Koehn, 2004). Word alignments between source-target sentence pairs are 
generated using GIZA++ (Och and Ney, 2003). In order to improve the quality of the 
alignments, word alignments in the forward and backward direction are merged as in 
(Koehn et al., 2003). Phrase pairs are automatically extracted from the word alignments by 
merging neighboring alignment groups using a set of rules. The decoder uses a log-linear 
model of different features to choose between competing translation hypotheses. The 
parameters of the model are estimated using statistics of the phrase pairs extracted from the 
word alignments. The interpolation weights are optimized by minimizing the translation 
errors on a held out development set. 
The system uses a variety of techniques for increasing accuracy.   Among these is the use of 
multiple alignments, generated from morphological segmentation, as well as a technique for 
inducing collocations on the English side of the parallel corpus.  This technique uses the 
Minimum Description Length (MDL) principle to find N-grams whose reduction to a single 
token reduces the overall number of “bits” needed to encode the document.   This has the 
effect of partially “inflecting” the English, so that it better matches an inflected language on 
the other side of the corpus.  Other recent improvements have been the use of phrase 
alignment confidence (PAC) (Ananthakrishnan et al., 2009) to deal with data sparseness, 
and context-dependent lexical smoothing for incorporating context. 
In this section, we present several enhancements for statistical machine translation in 
context of speech-to-speech translation. We illustrate these improvements on 
Pashto/English MT. We first describe our baseline system for Pashto/English translation. 

5.1 Baseline Pashto/English MT 
Pashto is an inflected language that follows a Subject Object Verb (SOV) word order versus 
the Subject Verb Object (SVO) word order of English. Nouns and adjectives in Pashto are 
inflected for gender, number, and case. Verbs in Pashto are complex both in form and in use. 
Verbs agree in person and number with either the subject or the object of the sentence 
depending on the tense and the particular construction. One or more affixes can be attached 
to a word or to each other to form compound words, and components of compound words 
can be joined or separated depending on style. The different dialects of Pashto show many 
non-standard grammatical features, some of which are archaisms or descendants of old 
forms that are discarded by the literary language. 
 

Translation Direction 
#Pashto Words #English Words 

Total Unique Total Unique 
Pashto-to-English (76K sent. Pairs) 1.3M 20.0K 1.1M 10K 
English-to-Pashto (34K sent. Pairs) 520K 13.5K 460K 6.7K 

Table 7. Description of Pashto/English parallel data available for SMT training. 
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The data available for training our SMT engine on Pashto/English is shown in Table 3. The 
amount of data is significantly smaller than the typical broadcast news translation task, where 
corpora are of the order of several million sentence pairs. Given the fairly small size of the 
training data, we trained the translation systems on data from both translation directions. The 
tuning set (held-out from training) comprises of 2K Pashto sentences and 2.3K English 
sentences. For validation purposes, we report results on a set of 547 sentences for Pashto-to-
English (P2E) and 564 sentences for English-to-Pashto (E2P) with 4 references each. 
For translating from Pashto-English, we also segment words in Pashto into its constituent 
"morphemes", that is prefix, stem, and suffix before training in order to improve the quality 
of the phrase alignments and subsequently the translation. We used the same 
decomposition algorithm as in (Riesa et al., 2006) to segment our training data. We manually 
selected 86 prefixes and 68 suffixes in Pashto. Given the list of predefined affixes and 
uninflected words we iteratively stripped affixes from the word until a valid combination of 
affixes and stem was found in a large dictionary. Segmentation into morphemes resulted in 
a 27% reduction in the size of the Pashto vocabulary. It also reduced the number of 
unknown tokens (untranslated words) by 38% on the validation set. 
The training and decoding was performed as follows. We used GIZA++ (Och and Ney, 
2003) to generate the word alignments in the source-target and target-source directions 
according to IBM Model 4. The merged word alignments are used to generate a phrase 
translation table which contains source-target phrase pairs and associated statistics. The log-
linear model includes features computed from the phrase table as well as the target side 
language model. We use a 4-gram language model trained on 3M Pashto words for E2P and 
a 5-gram language model trained on 20M English words for P2E.  In our experiments, we 
optimize the feature weights for maximum BLEU on the held-out tuning set. We then 
decode the validation set with the same configuration but with the tuned weights instead.  

5.2 Phrase alignment confidence 

In phrase-based statistical machine translation systems, translation performance is 
contingent on accurate estimation of the translation model parameters derived from the 
phrase pair statistics. However, data sparsity, an inherent problem in SMT even with large 
training corpora, often has an adverse impact on the reliability of the extracted phrase 
translation pairs. A significant proportion of phrase pairs occurs just once (singletons) or a 
few times in the training data, often resulting in unreliable estimates of the associated 
statistics. For instance, the unsmoothed estimate of the translation probability of a singleton 
phrase pair might be very large, but this estimate could be entirely invalid if the pair 
originated from a word alignment error. Thus, it is desirable to have a measure of phrase 
pair quality based on the reliability of the underlying word alignments. The lexical 
smoothing probability used as a feature in the log-linear decoding framework is a well-
known, existing measure of phrase pair reliability. In Ananthakrishnan et al. (2009), the 
notion of alignment entropy as a measure of automatic word alignment quality was used to 
estimate a probability distribution over the alignments of a given source word, and thus 
evaluate the uncertainty (entropy) of its Viterbi alignment in the original parallel corpus. 
Their experiments indicated that alignment entropy is well-correlated with traditional 
measures of alignment quality, such as Alignment Error Rate (AER). As an extension of 
alignment entropy, we introduce a feature called phrase alignment confidence as a measure 
of phrase pair quality derived from an ensemble of parallel corpora obtained by resampling 
the original training. 
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We identify occurrences of the same sentence pair in multiple parallel corpora, and 
determine, based on the corresponding word alignments, whether the phrase pairs extracted 
from this sentence pair are consistent across the corpora in which it occurs. The technique of 
bootstrap resampling (Effron, 1979) can be used to construct such corpora. Assuming the 
parallel training corpus (the pivot) contains N sentence pairs, we create K independent 
resamples, each of size N, by sampling the original corpus with replacement. On average, 
about 63% of sentence pairs in each resample will be unique, the remaining being 
repetitions. Thus, a given sentence pair in the original corpus can be expected to occur 63 of 
100 resamples. We invoke the Expectation-Maximization (EM) algorithm to perform 
automatic word alignment (based on IBM Model 4) on each of the (K + 1) parallel corpora 
(pivot + K resamples). As each resample contains a different set of sentence pairs drawn 
from the pivot, the word alignments in each set can potentially be different. During the 
phrase extraction process, we scan the pivot and identify valid phrase pairs based on the 
word alignments. When extracting phrase translations from a given pivot sentence pair 
(Si,Ti), we identify all resamples Ri, in which that sentence pair occurs, and determine 
whether the phrase pairs identified in the pivot sentence pair are consistently valid across 
the resamples. We define the alignment confidence of a single instance of a phrase pair in 
the pivot as the ratio of the number of resamples in which that instance is identified as a 
valid phrase pair to the number of resamples in which the containing sentence pair occurs. 
Note that this measure is computed for each instance of every phrase pair. For non-singleton 
phrase pairs, we simply take the average of the phrase alignment confidences of each 
instance across the pivot corpus. Thus, every phrase pair in the pivot corpus now has an 
associated confidence score in addition to the original statistics. We refer to this measure as 
phrase alignment confidence. 
The discriminative translation framework of the decoder makes it relatively straightforward 
to add new features to the system. In order to integrate the phrase alignment confidence 
feature, we simply add to the log linear model an additional term consisting of the new 
feature and its corresponding weight. 
Tables 8 and 9 present results for P2E and E2P SMT after inclusion of the phrase alignment 
confidence feature in decoding. We resampled the training corpus (pivot) with replacement to 
generate K=99 resamples for a total of 100 parallel corpora. We then perform augmented 
phrase pair extraction where, for each instance of every phrase pair in the pivot corpus, we 
evaluated its consistency across all resamples in which the containing sentence pair occurs. 
The augmented phrase table encodes this phrase alignment confidence feature in addition to 
the original statistics. Integrating the proposed phrase alignment confidence feature improved 
the BLEU score by 3.5% relative on the P2E validation set and 0.4% relative on the E2P set. We 
believe that while the proposed feature is useful in its own right, it possesses less 
discriminative power than the standard lexical smoothing feature. The length of a phrase pair 
does not play a major role in evaluating the phrase alignment confidence feature, whereas 
longer pairs are almost always de-emphasized by lexical smoothing. In the future, we plan to 
extend our work on phrase pair quality measurement by taking phrase pair length and the 
consistency of within-phrase alignments across the resamples into account, making it more 
competitive with lexical smoothing as well as giving better additive improvements in 
combination with the latter. We also plan to evaluate the relative usefulness of phrase 
alignment confidence with respect to the amount of training data available, and to determine 
whether its importance increases as the training corpus shrinks in size. 
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Configuration BLEU # of Untrans. Words 
Baseline 34.8 80 
+ Phrase Alignment Confidence 36.0 80 
+ Context-Dependent Lexical Smoothing 36.2 80 
+ Back-off to a Bilingual Lexicon 36.2 63 

Table 8. Experimental Results for Pashto-to-English Text-to-Text Translation. 

 
Configuration BLEU # of Untrans. Words 

Baseline 24.8 31 
+ Phrase Alignment Confidence 24.9 31 
+ Context-Dependent Lexical Smoothing 25.1 31 
+ Back-off to a Bilingual Lexicon 25.1 16 

Table 9. Experimental Results for English-to-Pashto Text-to-Text Translation.              

5.3 Context-dependent lexical smoothing 

In our phrase-based decoder, the likelihood of translation from a source phrase S = s1, s2, ... 
sn to a target phrase T = t1, t2, ... tm is primarily modeled with the rule translation probability 
maximum likelihood estimates: 

ܲሺܵ|ܶሻ ൌ 	 ܰሺܵ, ܶሻ∑ ܰሺܵ′, ܶሻௌᇲ  

ܲሺܶ|ܵሻ ൌ ܰሺܵ, ܶሻ∑ ܰሺܵ, ܶᇱሻ்ᇲ  

where NሺS,Tሻ is the number of times the rule S→T was extracted from the training corpus. 
However, translation probability is also modeled with an another feature, known as lexical 

smoothing (Koehn, 2004). The forward lexical smoothing score for the rule S→T is defined 
as: 

ෑ ෍ ܲሺݐ௜|ݏሻ‖ܣሺݐ௜|ܵ, ܶሻ‖௦∈஺ሺ௧೔|ௌ,்ሻ
௠
௜ୀଵ 	

where ܲሺݏ|ݐሻ ൌ ܰሺݏ, ሻݐ ∑ ܰሺݏ, ⁄ᇱሻ௧ᇱݐ  is the probability of the word-to-word translation S→T, and Aሺt|S,Tሻ is the set of source words aligned to t in the rule S→T.  In this case, Nሺt,sሻ counts the 
number of times s is aligned to t in the GIZA aligned training data. Also note that either s or 
t can be NULL. 
The backwards lexical smoothing score is analogously: 

ෑ ෍ ܲሺݏ௜|ݐሻ‖ܣሺݏ௜|ܵ, ܶሻ‖௧∈஺ሺ௦೔|ௌ,்ሻ
௠
௜ୀଵ 	

Note that the lexical smoothing score is computed at the word level without factoring in 
local context, even though intuitively we know that context is important for both human 
and machine translation accuracy. On the other hand, the average word-to-word translation 
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will be seen far more times in the training than the average phrase-to-phrase translation, so 
the word-level maximum likelihood estimates Pሺt|sሻ and Pሺs|tሻ will be estimated than the 
phrase-level maximum likelihood estimates PሺS|Tሻ and PሺT|Sሻ. 
Ideally, we would like to harness the increased contextualization of the rule translation 
probabilities without sacrificing the accuracy of the word-to-word maximum likelihood 
estimates. To that end, in the context-dependent lexical smoothing approach we condition the 
word translation probabilities on local context, and then interpolate them context-
independent probabilities to ensure that the final probabilities are well-estimated. 
We currently use previous word and next word as context types. Formally, these context-
dependent lexical probabilities are represented as: 

ܲሺݏ|ݐ௜ , ௜ିଵሻݏ ൌ ܰሺݏ௜ , ,௜ିଵݏ ∑ሻݐ ܰሺݏ, ,௜ିଵݏ ᇱሻ௧ᇱݐ  

ܲሺݏ|ݐ௜ , ௜ାଵሻݏ ൌ ܰሺݏ௜ , ,௜ାଵݏ ∑ሻݐ ܰሺݏ, ,௜ାଵݏ ᇱሻ௧ᇱݐ  

Rather than directly interpolating the probabilities or using an explicit back-off model, we 
simply interpolate the lexical counts: 

ܲሺݏ|ݐ௜ሻ ൌ 	 ܰሺݏ௜ , ሻݐ ൅ ,ݏሺܰߙ	 ,௜ିଵݏ ሻݐ ൅ ,ݏሺܰߚ	 ,௜ାଵݏ ∑ሻݐ ܰሺ௧ᇲ ௜ݏ , ᇱሻݐ ൅ ∑ ,ݏሺܰߙ ,௜ିଵݏ ᇱሻݐ ൅	∑ ,ݏሺܰߚ ,௜ାଵݏ ᇱሻ௧ᇲ௧ᇲݐ 	 
where Cሺsiሻ is the local context of source word si, and the interpolation weights ǂ and ǃ are 
globally optimized on a tuning set. This type of count-based interpolation acts as an implicit 
``back-off'' model, since the more times a particular context type has been seen, the more 
mass it adds to the final probability. 
The interpolated probability Pሺt|s,Cሺsሻሻ is used in the standard lexical smoothing formula 
and this score is used as an additional log-linear decoding feature. We also use context-
dependent lexical smoothing in the backwards direction, conditioning on target context. 
Tables 8 and 9 summarize the impact of using context-dependent lexical smoothing for P2E 
and E2P SMT.  As shown in the two tables, there is a modest improvement in BLEU scores 
in both directions. 

5.4 Effective use of bilingual lexicon 

Often, the heuristics used to determine valid phrases in the phrase extraction step result 
in unaligned source-target words occurring in the corpora being omitted from the phrase 
translation table. Hence, a word that appears in the training corpus is not guaranteed to 
have a translation during decoding. The use of a supplementary bilingual translation 
lexicon that covers such words improves the coverage of the system. Traditionally 
bilingual translation lexicons are used as additional training data for machine translation 
systems and allowed to drive the word alignments. However, the entries in a lexicon have 
such high phrase translation and lexical probabilities that they can cause serious word 
sense errors if the particular source word occurs in a different context. If a word that 
occurs in the lexicon is identified in the input sentence, its corresponding single word 
translation from the lexicon will almost always be preferred over a longer phrase pair 
whose source phrase contains that word. We tackle this issue by backing off to entries in 
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the lexicon only if the source word cannot be translated as part of a source phrase existing 
in the phrase translation table. 
Using a bilingual expert, we created a bilingual lexicon consisting of a total of 30K entries. In 
our experiments, using the bilingual translation lexicon did not improve the BLEU metric, 
however it resulted in a 50% reduction in untranslated words for E2P and 21% reduction for 
P2E as shown in Tables 8 and 9. 

6. Evaluation 

From 2006 to 2010, BBN TransTalk has been evaluated in several US Goverment 
sponsored evaluations conduced by an independent third party such as NIST and MITRE.  
In these evaluations participating S2S systems are evaluated on several dimensions 
include rate of concept transfer in live interactions with role players, odds of concept 
transfer on offline data, and automated metrics such as word error rate (WER) and BLEU 
scores computed on offline recorded audio. User surveys based on questionnaires are also 
used to measure the ease of use, efficacy of interaction, etc. based on users‘ impression of 
the live interaction.  
Table 10 summarizes BBN’s performance as measured against the following official 
program metrics in the program for the past three years. The evaluations were typically on a 
different language and often on different platforms.  
High-level Concept Transfer (HCT): This metric is computed from live interaction of users 
with the system in an allotted time interval (typically 20 minutes). A team of bilingual 
judges compares the output of the TRANSTAC system to what was spoken by the role-
playing US military personnel, i.e., subject matter experts (SMEs) and foreign language 
speaker (FLS). The judges are asked to rate, on an utterance-by-utterance basis, how well the 
utterance spoken by the human speaker was translated by the system and how many times 
the speaker attempted the utterance. When multiple attempts were made, only the best 
translation was scored. Both English to foreign language and foreign language to English 
directions were scored. The translation quality has four possible scorings: 
1.    Unknown – The utterance in the scenario was not attempted by the SME or FLS. A score 

of “0” is assigned to this category. 
2.  Inadequate – None of the concepts came across in the utterances.A score of “0” is 

assigned to this category.  
3.    Partially adequate – Some of the concepts came across in the utterance.  
4.    Adequate – All of the concepts came across in the utterance.   
Partially adequate are given a score of 0.5, and adequate are given a score of 1. In the case 
where multiple concepts were provided by the FLE in response to the SME’s question, each 
answer is counted separately. These scores are then aggregated over the entire session, and 
the transfer rate per ten minutes of conversation is computed. 
Odds of Successful Low-Level Concept Transfer (LLCT): This metric is computed using the 
system output and reference translations on an offline, pre-recorded data set. A bilingual 
human annotator identifies low-level concepts (such as “car”, “door”, “black color”, etc.) 
that are correct or incorrectly transferred in the system output. Next, the odds of successful 
transfer of these low-level concepts are computed by dividing the number of successes by 
the number of errors. The higher the odds of success, the better the system.  
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Subject Matter Expert (SME) Utility Assessment (SUA): This metric is computed from 
responses to questionnaire by SMEs after interacting with the system in any given session. A 
utility score is computed by aggregating scores across sessions for each type of question. 
The questions in the SME questionnaire range from:  "I found the system easy to understand 
in this interaction” to “I would use this system in the field in its current state of 
functionality”. 
Table 10 describes the performance of BBN systems in the evaluations in reverse 
chronological order with most recent evaluations at the top of the table.   
 

Eval. Date Language Platform 
HCT LLCT 

SUA 
E2F F2E E2F F2E 

Aug 2010 Dari Smartphone 15 (1st) 25 (1st) 3.3 (2nd) 1.5 (1st) 1st 
April 2010 Pashto Smartphone 19 (1st) 30 (1st) 4.2 (1st) 3.0 (1st) 1st 
June 2009 Dari UMPC 13 (1st) 14 (1st) 3.5 (1st) 1.6 (1st) 1st 
Nov 2008 Iraqi Laptop 22 (2nd) 28 (2nd) 7.3 (1st) 5.6 (1st) 1st 

Table 10. Performance of BBN TransTalk in recent DARPA TRANSTAC evaluations. 

7. Conclusions 

We have presented our speech-to-speech translation system, TransTalk, and outlined 
several techniques for overcoming challenges in languages that it has been configured in.  
For ASR, we described an approach for configuring the ASR system with limited amount of 
manual pronunciations. Our approach extends existing approaches for languages that have 
significant mismatch in number of phonemes and graphemes, and shows that comparable 
performance to a full lexicon can be achieved by creating manual pronunciations for a small 
fraction of words in the vocabulary. For MT, we discussed techniques for overcoming 
challenges due to data sparsity such as the use of phrase alignment confidence and effective 
backoff to a bilingual dictionary. We also presented a method for evaluating the 
effectiveness of different user confirmation strategies, and shown that back-translation 
provides higher precision than the simple strategy of reading back the ASR, at the expense 
of recall. 
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