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Blind Segmentation of Speech Using 
 Non-linear Filtering Methods 

Okko Räsänen, Unto K. Laine and Toomas Altosaar 
Aalto University School of Science and Technology  

Finland 

1. Introduction 

Automated segmentation of speech into phone-sized units has been a subject of study for 
over 30 years, as it plays a central role in many speech processing and ASR applications. 
While segmentation by hand is relatively precise, it is also extremely laborious and tedious. 
This is one reason why automated methods are widely utilized.  For example, phonetic 
analysis of speech (Mermelstein, 1975), audio content classification (Zhang & Kuo, 1999), 
and word recognition (Antal, 2004) utilize segmentation for dividing continuous audio 
signals into discrete, non-overlapping units in order to provide structural descriptions for 
the different parts of a processed signal. 
In the field of automatic segmentation of speech, the best results have so far been achieved 
with semi-automatic HMMs that require prior training (see, e.g., Makhoul & Schwartz, 
1994). Algorithms using additional linguistic information like phonetic annotation during 
the segmentation process are often also effective (e.g., Hemert, 1991). The use of these types 
of algorithms is well justified for several different purposes, but extensive training may not 
always be possible, nor may adequately rich descriptions of speech material be available, for 
instance, in real-time applications. Training of the algorithms also imposes limitations to the 
material that can be segmented effectively, with the results being highly dependent on, e.g., 
the language and vocabulary of the training and target material. Therefore, several 
researchers have concurrently worked on blind speech segmentation methods that do not 
require any external or prior knowledge regarding the speech to be segmented (Almpanidis 
& Kotropoulos, 2008; Aversano et al., 2001; Cherniz et al., 2007; Esposito & Aversano, 2005; 
Estevan et al., 2007; Sharma & Mammone, 1996). These so called blind segmentation 
algorithms have many potential applications in the field of speech processing that are 
complementary to supervised segmentation, since they do not need to be trained extensively 
on carefully prepared speech material. As an important property, blind algorithms do not 
necessarily make assumptions about underlying signal conditions whereas in trained 
algorithms possible mismatches between training data and processed input cause problems 
and errors in segmentation, e.g., due to changes in background noise conditions or 
microphone properties. Blind methods also provide a valuable tool for investigating speech 
from a basic level such as phonetic research, they are language independent, and they can 
be used as a processing step in self-learning agents attempting to make sense of sensory 
input where externally supplied linguistic knowledge cannot be used (e.g., Räsänen & 
Driesen, 2009; Räsänen et al., 2008). 
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This paper introduces a novel method for blind phonetic segmentation of speech that 
utilizes novel non-linear filtering methods and a short-term FFT representation of signal 
spectra. The method is compared to existing methods reported in literature and is shown to 
achieve a very similar level of performance despite the large methodological differences. A 
careful analysis of errors occurring in the segmentation is performed, shedding light to the 
question why all blind algorithms fall short of ideal segmentation performance in a similar 
manner. 

2. A novel methodological approach to segmentation 

The algorithm is based on the assumption that phonetically meaningful units are manifested 
as spectrally coherent, relatively steady stretches of a speech signal. To divide a speech 
signal into non-overlapping units, a segmentation algorithm needs to utilize parameters 
with specific distance metrics to estimate the similarity or changes in the signal’s spectral 
content. The algorithm introduced here utilizes temporally integrated cross-correlation 
distances of feature vectors. In the basic version of the algorithm, features are produced by 
the Fourier transform from speech segments provided by short-term windowing. The 
straightforward use of FFT coefficients instead of many other possible parametric choices 
(e.g., MFCC or PLP) was motivated by preliminary findings made during in-house vowel-
classification experiments under extremely noisy conditions. The computational simplicity 
of the FFT was also an influencing factor. In order to compare the effects of auditory 
modeling to a pure FFT representation, the use of MFCCs was tested and is reported in 
section 3.5. 
In contrast to many prevailing approaches (e.g., Almpanidis & Kotropoulos, 2008; Aversano 
et al., 2001; Estevan et al., 2007), the FFT analysis is performed in a short (6 ms Hamming) 
window with a small window shift (2 ms) in order to detect the location of the main vocal 
tract excitation (after the glottal closure) for voiced sounds. These window locations provide 
high energy with sharp formants (good spectral contrast), which further improves the 
detection of formant movements at the segment boundaries as well as the noise robustness 
of the process. A short window also reduces the smoothing effect of formant frequency 
modulation during pitch periods and removes the unwanted influence of the fundamental 
frequency from the features. 
The incoming speech signal is first pre-emphasized with a 2nd order FIR filter: 

 0 1 2
[ ] [ ] [ 1] [ 2]y n b x n b x n b x n      (1) 

where values b0 = 0.3426, b1 = 0.4945 and b2 = -0.64 are used according to (Nossair et al., 
1995) in order to set the formants to an approximately equal amplitude level. The signal is 
then windowed with a 6 ms Hamming window and shifted by 2 ms steps. The linear-scale 
absolute value FFT is then calculated from these 96 samples in the window to create a 
spectral representation at each frame location, yielding a total of 48 coefficients for 16 kHz 
signals. The short-term energy (STE) of each 2 ms frame is also stored for further use.  The 
FFT coefficients in each frame are then divided by the mean of their values within the frame 
and all coefficients are compressed using a hyperbolic tangent mapping in order to simulate 
the non-linear sensitivity of human hearing: 

 
[ ] tanh( [ ])f m f m  

 (2) 
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where  = 0.45 and f[m,c] is the c’th coefficient at time m. 
Once the entire signal has been transformed, a cross-correlation matrix C is calculated from 
the frames, i.e., each element C(m1,m2) indicates the cross-correlation of feature vectors at 
time m1 and m2: 

 1 2

1 2

1 2

( ) ( )
( , )

( ) ( )

f m f m
C m m

f m f m

 


 
 (3) 

Now the diagonal of the correlation matrix can be considered as the linear time axis that 
runs through the signal, i.e., from the top-left towards the bottom-right. 
 

 

Fig. 1. Part of the correlation-matrix with a superimposed 2D-filter moving along the 
diagonal. The area under the square at time m corresponds to a[m] and the area under the 
triangles corresponds to b[m]. Signal frame indices are marked on both axes. 

A special 2D-filter is applied to the correlation matrix that is composed of one square region 
a[m] of size d1 x d1 with its top-right corner placed against the diagonal, as well as two 
identical triangles b[m] with side lengths of d2 where each hypotenuse is placed next to the 
diagonal (refer to fig. 1). As the filter moves downwards along the diagonal, the sum of the 
cross-correlation matrix elements under the triangles b[m] is subtracted from the sum of the 
elements under the square a[m] at each time step. 

 [ ] [ ] [ ]s m a m b m   (4) 

This produces a representation s[m] of the speech signal where large negative peaks reflect 
significant spectral changes and thus indicate potential segment boundary locations, refer to 
fig. 2. The resolving capability of s[m] can be adjusted by varying the parameters d1 and d2, 
which is, in the end, basically a trade-off between the temporal accuracy and boundary 
detection reliability. 
Signal s[m] can be noisy especially when using small values of d1 and d2 and often results in 
an overly detailed analysis. The application of a so-called minmax-filter is therefore 
warranted to refine the representation (the minmax-filter is a conceptual modification of the 
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well known maxmin-filter). As the filter passes through the signal, at each point it takes nmm 
subsequent samples from s[m] and determines the maximum vmax and minimum vmin values of 
this sliding window subvector. The difference of this method compared to common maxmin-
filtering is that the filter produces the difference dmax=vmax-vmin as an output at the point where 
the minimum value was located instead of the center of the time window (note that deep 
valleys in s[m] indicate the location of segment boundary candidates). The filtering removes 
small fluctuations and retains only the largest (local) changes in the signal s[m] at the points of 
local minima. The following pseudo-code describes the functionality of the filter: 

 
max

max

max( [ : ]) min( [ : ])

_ (min( [ : ]))

[ ]

mm mm

mm

d s m m n s m m n

I find index s m m n

s m I d

   
 
  

 (5) 

 

Fig. 2. Signal s[m] produced by the sliding 2D-filter of figure 1. Valleys indicate potential 

segment boundary locations. 

As a result of filtering, signal s’[m] is obtained, refer to fig. 3, in which the estimated 
segment boundary locations are now represented as easily identifiable positive peaks. Peak 
heights are normalized to a scalar value ranging from 0 to 1 to provide a probability 
classification for each boundary: the higher the peak, the larger the local change in the 
spectral properties, and the more probable it is that a phone transition has occurred. 
 

 

Fig. 3. s’[m] generated by minmax-filtering of s[m]. 
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Another special operation that mimics a form of temporal masking is applied to the 

representation s’[m] to ensure that only the most prominent points of change are reported. 

For example, in the case of long spectral transitions between two adjacent phones, or due to 

non-correlating noise, several peaks may appear very close to one other. The inclusion of 

multiple points of change from several nearby frames is prevented by the following 

procedure: the distance between each peak in s’[m] that crosses a manually chosen threshold 

level pmin is calculated. If two or more peaks are closer than td to each other, the probability 

ratings of the peaks are compared. Only the most probable (highest) peak is retained, while 

its location is slightly adjusted towards the removed peak(s). The new location is situated 

between the old peaks and directly proportional to the ratio of probability ratings of the 

peaks in the region. As a result, a further refined sr[m] is obtained. 

In theory, a list of detected segments can now be created by choosing all the peaks that 

exceed the minimum peak probability threshold pmin. In practice however, this leads to 

splitting of the silent or quiet sections of the signal into several small segments. This can be 

avoided by comparing the energy of the original signal at each peak location to a minimum 

energy threshold emin before a final decision is made. In terms of different energy 

thresholding mechanisms that were studied, the optimal results were obtained by using the 

mean energy value from –8 ms to +30 ms around the estimated boundary location for 

comparison to a fixed threshold, which was set to +6 dB from the minimum signal level. 

This asymmetry resembles the temporal masking effect present in hearing, in which 

effective backward masking is limited to approximately –10 ms whereas forward masking 

extends to a much longer time period (see page 78 in Zwicker & Fastl, 1999). All peaks 

exceeding the silence threshold are used as segmentation output. Figure 4 shows a 

schematic overview of the algorithm. 

 

 

Fig. 4. Block diagram of the segmentation algorithm showing subsequent processing 

steps.  

3. Experiments 

The aim of the experiments was to obtain a good understanding of the overall performance 

of the algorithm so that it could be compared to earlier results found in other publications 

related to blind segmentation. Furthermore, determining the general effects of different 

parameters on segmentation results was desired. The results are presented for both genders 

separately in order to analyze whether gender specific differences exist, and a comparison of 

the obtained results to those found in existing literature is made. Additionally, noise 

robustness is evaluated. These results, with a brief analysis of the underlying statistics, will 

be covered in this section. 
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3.1 Evaluation measures 
In order to evaluate segmentation quality, it is necessary to have a reference to which the 

output of the algorithm is compared.  Since many well-known speech corpora are provided 

with a manual annotation, including TIMIT and our in-house Finnish speech corpus, a 

comparison to annotated segment boundaries was chosen as the primary evaluation metric. 

While manual segmentation is prone to the variability present in individual judgments, it is 

often considered as a reliable baseline for quality if it is carefully produced (Wesenick & 

Kipp, 1996). In addition, manual inspection of the segmentation output was performed in 

several phases of development and testing, yielding a more detailed insight into the 

phonetic details of the underlying signal in relation to the behavior of the algorithm. 

A standard way to measure hits and misses in the literature is to detect whether the 
segmentation algorithm produces a segment boundary within a ±20 ms window (search 
region) centered around each reference boundary (Almpanidis & Kotropoulos, 2008; 
Aversano et al., 2001; Estevan et al., 2007; Kim & Conkie, 2002; Sarkar & Sreenivas, 2005; 
Scharenborg et al., 2007; Sjölander, 2003). If overlapping search regions exist, that is, 
adjacent regions with their reference boundaries are closer than 40 ms to each other, then the 
regions are asymmetrically shrunk to divide the space between two reference boundaries 
into two equal-width halves (see Räsänen et al., 2009). This will prevent ambiguous 
situations associated with overlapping search regions. Now each region can be searched for 
algorithmically generated boundaries: a boundary within a search region is considered as a 
hit and all additional boundaries within the same search region are counted as insertions. 
Empty regions are the source of deletions (or misses). Using this approach, the total number 
of hits Nhit, detected boundaries Nf, and reference boundaries Nref  are computed over the 
entire test material in order to derive the measures defined in table 1. 
Overall segmentation accuracy is defined in terms of hit rate (HR). For some finite section 
of speech let Nhit be the number of boundaries correctly detected and Nref be the total 
number of boundaries in the reference. HR can then be calculated using equation 6 in 
table 1 (Aversano et al., 2001). HR is inversely proportional to the miss (or error) rate, 
which is also sometimes used to indicate segmentation accuracy.  Another central 
measure, especially in the case of blind methods, is the over-segmentation (OS) rate (7), 
which can be obtained if the total number of algorithmically produced boundaries Nf is 
included in the analysis (Petek et al., 1996). Different authors have used varying symbols 
for the above measures, originating from, e.g., signal detection theory. However, they 
have been found non-descriptive and are therefore replaced in this work by the new 
symbols HR and OS. 
 

* 100 (6)hit

ref

N
HR

N
  ( 1) * 100 (7)

f

ref

N
OS

N
   

(8)hit

f

N
PRC

N
 (9)hit

ref

N
RCL

N
  

2.0 * *
(10)

PRC RCL
F

PRC RCL



 

Table 1. Standard quality measures used to evaluate segmentation 
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Precision (8) describes the likelihood of how often the algorithm identifies a correct 
boundary whenever a boundary is detected. Recall (9) is the same as HR (6) but without 
scaling to a percentage. In order to describe the overall quality of the segmentation with a 
single scalar between 0 and 1, the F-value can be computed from precision and recall 
(Ajmera et al., 2004). However, it has been shown that the F-value is not sensitive to so-
called stochastic over-segmentation, where the hit rate of the algorithm can be increased by 
allowing higher levels of over-segmentation while the algorithm is actually producing new 
boundaries at random locations without any true reference to the underlying signal 
(Räsänen et al., 2009). A quality measure called R-value has been proposed to overcome this 
problem (Räsänen et al., 2009), and was therefore utilized in the evaluation process as a 
main criterion of quality, although the other quality measures are also reported for 
comparison. The R-value measures the distance between the current point of operation and 
the ideal performance (100% HR, 0% OS) in the HR/OS-plane (12), and the distance 
between the current point of operation and the case where the number of insertions is zero 
(12). These distances r1 and r2 are combined into a single scalar value between 0 and 1 
according to (13), with unity indicating ideal performance. 

 2 2

1
(100 ) ( )r HR OS    (11) 

 
2

100

2

OS HR
r

  
  (12) 

 1 2
( ) ( )

1
200

abs r abs r
R


   (13) 

Some authors also compute insertion rates (Cherniz et al., 2007) or ROC curves based on the 
ratio of insertions and total number of frames in the system (Esposito & Aversano, 2005). 
However, we find this type of methodology problematic since the number of frames is 
directly affected by the window step size, whereas the number of insertions and hits are not 
greatly affected since the temporal parameters (e.g., masking distance) are defined in 
temporal units (seconds) instead of number of frames. For example, changing the step size 
from 2 ms to 1 ms would basically halve the number of insertions per frame, providing very 
little information about the performance of the algorithm itself. 

3.2 Material 
The segmentation algorithm was tested on clean speech using the TIMIT speech corpus 
covering several American-English dialects. Additionally, a set of experiments was 
conducted using Finnish speech from a smaller and speaker-limited in-house corpus to 
detect possible language dependencies. The Finnish speech consisted of two male speakers 
each uttering 81 sentences of read speech, each sentence containing 28 phones on average. 
The sentences had been phonetically designed so that all of the naturally occurring diphones 
in Finnish were covered. A single phonetician then carefully segmented and labeled this 
material manually to produce about 4500 phones in total as well as 1680 segments (e.g., 
closures and releases indicated separately). 

3.3 Results 
Table 2 contains the evaluation results for the TIMIT test set using settings that provide 
optimal performance in terms of R-value (see section 3.4 for parameter dependencies). The 

www.intechopen.com



 
Speech Technologies 112 

full test set (560 female and 1120 male sentences) was used, containing utterances from a 
total of 168 different speakers. A hit rate of 71.9% with -6.9% over-segmentation was 
obtained as a mean for both genders. The results also show that the results from both 
genders are nearly similar, the performance on female data being slightly higher (table 2).  
 

gender HR (%) OS (%) F-value R-value 

female 72.84 -7.9 0.78 0.79 

male 71.37 -6.4 0.76 0.77 

male+female 71.9 -6.9 0.76 0.78 

Table 2. Segmentation results for the TIMIT test set. 

The reader should note that by accepting higher values of over-segmentation (something 
that is not always desirable), higher hit rates are possible. The most straightforward 
manner to increase the over-segmentation level of the described algorithm is to adjust the 
length of the minmax-filter and the probability threshold pmin of the peak detector. Table 3 
shows the results for the entire test set of TIMIT at an over-segmentation level of 54.3%. 
Although the overall HR has now increased notably, a large degradation of the R-value 
(and a relatively smaller degradation of the F-value) reflects the fact that this is simply 
due to an extremely high number of produced segment boundaries that start to hit search 
regions by chance. 
 

gender HR (%) OS (%) F-value R-value 

male+female 85.5 54.3 0.69 0.48 

Table 3. Segmentation results for the TIMIT test set at a higher level of over-segmentation 
(male and female combined). 

In general, the obtained results are well in line with the other results reported in literature 
regarding blind segmentation algorithms (table 4). More importantly, it seems that different 
blind algorithms achieve very similar levels of accuracy in terms of F- and R-values despite 
their methodological differences. The algorithm by Estevan et al. (2007) seems to obtain the 
highest R-values, but since we did not implement all of the algorithms shown in the table, it 
is impossible to conclude anything due to the fact that the differences in accuracy are of the 
same scale as the possible deviations in quality measures caused by ambiguities in 
evaluation methods (see Räsänen et al., 2009). The similarity of results is a topic that shall be 
returned to in the discussion section. 
For the Finnish in-house corpus, the speech of two male speakers was automatically 
segmented independently to gain insight to both a) single speaker dependency, and b) the 
difference between rather swiftly spoken English material compared to very carefully 
articulated Finnish speech. The algorithm achieved 73.1% and 74.0% hit rates with over-
segmentation values of 1.4% and -1.4% (F = 0.73, R = 0.77, and F = 0.75, R = 0.78, 
respectively) for the two Finnish speakers using the same parameters as in the TIMIT 
tests. These findings support the language and gender independency supposition of the 
algorithm and verify that excessive parameter tweaking is not necessary between 
languages.  
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Algorithm HR (%) OS (%) F-value R-value 

Räsänen et al. (2009, this paper) 71.9 -6.90 0.76 0.78 

Almpanidis and Kotropoulos (2008) 80.72 11.31 0.76 0.78 

Aversano et al. (2001) 73.58 0.00 0.74 0.77 

Esposito and Aversano (2005) 79.30 9.00 0.76 0.78 

Estevan et al. (2007) 76.00 0.00 0.76 0.80 

Table 4. Blind segmentation results on TIMIT from different authors. 

3.4 Parameter dependency 
In order to determine the impact of each parameter on overall performance in the described 
algorithm, parameters were adjusted and tested independently. Data used in the 
experiments were a randomly chosen subset of the TIMIT test set (N = 200 utterances), a set 
size considered sufficiently large to describe the behavior of the quality measures as a 
function of the parameter values. The most important parameters controlling the 
algorithm’s behavior were the length nmm of the minmax-filter, the peak masking distance td, 
and the boundary probability threshold pmin. 
First it was verified that the FFT window length of 96 samples leads to the best performance 
(this corresponds to 6 ms at a 16 kHz sampling rate). As the purpose was to perform an FFT-
analysis in which the window location regularly matches the location of the maximum 
energy of pitch periods  (see section 2), this 6 ms window approximately satisfies the 
condition for both male and female speakers. Since the performance degraded for smaller 
and larger window sizes, the window length was fixed to 6 ms for the remaining parameter 
experiments. 
During the development of the algorithm it was observed that the length nmm of the 
minmax-filter, the threshold pmin, and the masking distance td of the final peak selector, were 
the most dominating parameters in the performance of the algorithm. As for nmm, the value 
is mainly a tradeoff between over-segmentation and hit-rate, where approximately nmm = 34 
frames (68 ms) was used in most of the tests to produce approximately OS = 0% for the 
entire TIMIT test material (note that the parameter experiments were performed with a 
subset of the test section and led to slightly different results due to a reduced set size). In the 
experiments it was observed that while the length nmm controls the tradeoff between OS and 
HR, the F- and R-values are not greatly affected by these changes when OS levels are low. 
On the contrary, the peak selection threshold value pmin has a more dramatic effect on the F 
value. This is an expected result since it resembles the probability threshold for boundary 
detection: as more probable peaks are chosen, the obtained precision improves. However, 
when using higher values of pmin the algorithm starts to miss less probable boundaries (in 
terms of the algorithm), decreasing the recall. 
For masking distance td, an optimal point can be found in the proximity of td = 25 ms. This is 
a reasonable result since the rate of articulation in normal speech rarely exceeds four phones 
per 100 ms. There are still, e.g., some very short plosives that may exhibit bursts shorter than 
20 ms, resulting in a decreased HR with longer masking distances than burst durations. On 
the other hand, by using values of tens of milliseconds, segmenting longer bursts into 
several small segments is avoided since the cross-correlation of the spectral coefficients may 
vary considerably within such variable transitions.  

www.intechopen.com



 
Speech Technologies 114 

 

Fig. 5. Effects of different parameter values on segmentation results tested independently of 
each other. Parameter ranges are nmm = 20-100 ms, td = 5-45 ms, ws = 1-3 ms and pmin = 0.02-
0.1. Adjustment of the values changes the trade-off balance between hit-rate and over-
segmentation, but the slope decreases as the value of over-segmentation increases. 

To summarize, it was noted that most parameters control the tradeoff between over-
segmentation and hit rate in a parallel fashion, while no parameter alone has a clear impact 
on improving the results (see fig. 5). Also, since many of the parameters are complementary, 
there are many possible combinations that achieve very similar results. Each value of choice 
for a parameter limits the maximum hit-rate by some amount in order to keep the over-
segmentation at a reasonable level. It is possible to achieve much higher hit-rates by 
allowing over-segmentation to grow to very high values (see table 2). However, a large 
number of insertions is not usually desirable if the goal is to perform phonetic segmentation.  
It should be noted that once the parameters were set, the algorithm performed equally well 
for both genders and also for English and Finnish speech without any need for language 
specific optimization. 

3.5 FFT versus MFCC in noise 
While the FFT spectrum is a straightforward choice for use in algorithms for segment 

boundary detection, more popular alternative methods to describe spectral information also 

exist. One well-established choice in the field of speech processing is to use a parametric 

representation called Mel-frequency cepstral coefficients (MFCC) to obtain a simple auditory 

representation of the spectrum. To determine whether MFCCs enhance the performance of the 

segmentation algorithm when compared to the FFT, comparison tests were carried out. The 

first 20 static cepstral coefficients (ignoring the zeroth one) were chosen to represent the speech 

signal, since a further increase in their number did not yield any improvements. 

Tests showed that the application of MFCCs to a 10 ms Hamming window with 2 ms steps 

led to optimal results in terms of windowing properties. Further increases in window size 

led to blurred temporal accuracy and therefore missed boundaries. Very similar results, as 

compared to the FFT, were obtained with noise-free signals, and led to values of HR = 

74.7%, OS = 1.1% (F = 0.74, R = 0.78).  

White noise and babble noise robustness of these two representations were tested with a 
subset of the TIMIT corpus by introducing additive white noise and babble noise to the 
original signals. The babble noise was generated from TIMIT data by summing together 

www.intechopen.com



 
Blind Segmentation of Speech Using Non-linear Filtering Methods 115 

speech signals from five different speakers speaking different utterances. Figure 6 displays 
the behavior of the R-value as a function of SNR. A decrease in SNR in the white noise 
condition leads to a small increase in the hit-rate with the FFT, but since this also starts to 
increase the over-segmentation level, the overall R-value drops dramatically. The hit-rate 
increase is explained as an increase in unintentional hits to the search regions due to 
increased OS (see Räsänen et al., 2009). MFCC segmentation preserves a much more 
conservative OS-rate at reasonable white noise levels when compared to the FFT. 
 

 

Fig. 6. The effects of white and babble noise on FFT and MFCC representations. FFT is 
shown with dashed lines and MFCC with solid lines. Circles denote white noise and squares 
babble noise.  

In the case of babble noise, the difference between MFCC and FFT representations is very 
small. Over-segmentation at a near zero SNR level is more than 10% lower with babble noise 
when compared to the white noise situation, yielding much higher R-values. This is slightly 
surprising, since babble noise has its energy and spectral transients concentrated at the same 
frequency bands as the test signals.  
The overall conclusion from comparing FFT and MFCC representations is that the difference 
is small, but MFCC seems to behave in a more stable manner especially when there is noise 
at the higher frequencies (e.g., white noise). This is due to the reduced spectral resolution of 
the MFCC’s at the higher frequencies. With more natural babble noise, this difference is 
diminished. 

4. Segmentation error analysis 

4.1 Phone class-specific accuracies 
Boundaries that automatic segmentation fails to detect are highly dependent on the 

underlying phonetic content. Some phone transitions are easy to detect due to sudden 

changes in the spectrum, whereas, e.g., glides and liquids may be more difficult to separate 

from their neighboring phones. In order to understand why and how the algorithm differs 

from manually produced references in the evaluated material, segmentation accuracy was 

estimated separately for each possible type of diphone transition defined in the reference 

annotation. Evaluation was performed using the FFT signal representation and TIMIT test 

set, yielding overall performances as reported in table 4. In order to capture an overview of 
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the performance and to reduce sparseness of diphone data in TIMIT, the 62 ARPABET 

phone classes used in TIMIT annotation were grouped into 7 larger phone classes according 

to Hasegawa-Johnson (2009). 

 

  TO  

  
Tense 

vowels 
Lax 

vowels 

Glides 
and 

liquids 
Nasals Fricatives

Stops and 
affricates

Closures Mean 

F
R

O
M

 

Tense vowels 48.6 25.4 44.5 85.2 94.8 N/A 65.5 60.7 

Lax vowels 80.0 17.1 37.0 82.4 89.7 N/A 76.3 63.8 

Glides and liquids 52.7 45.4 56.8 79.8 91.3 N/A 63.5 64.9 

Nasals 91.0 82.8 69.3 51.9 86.6 89.7 56.5 75.4 

Fricatives 87.8 82.1 88.4 90.5 68.1 N/A 83.7 83.4 

Stops and affricates 58.1 64.5 70.8 87.1 44.6 N/A 72.6 66.3 

Closures 45.1 34.7 58.2 73.8 77.3 80.3 55.6 60.7 

 Mean 66.2 50.3 60.7 78.7 78.9 85.0 67.7 68.8 

Table 5. Segmentation accuracy (%) for diphone transitions. Rows indicate the preceding 

phone while columns indicate the posterior phone of each pair. Pairs with less than 5 

occurrences are excluded from the statistics. 

As can be seen from table 5, there are extensive differences in accuracy between different 

diphone transitions. Especially problematic are across-class transitions between closures and 

vowels, vowels and glides, and stops and fricatives. This is understandable due to the 

spectral similarities of the phones in these pairs.  Many sound classes also have very 

different segmentation accuracies depending on their relative position in the diphone. This 

is partly due to the fact that language specific structures impose constraints regarding which 

phones can precede or follow the current one. This yields different pre- and post-phone 

distributions for each single phone class, which is not seen in the table since it contains 

averaged results over entire phone groups. Another affecting factor is coarticulation that 

causes the segments to lose some of their spectral contrast.  

Figure 7 shows histograms of segment output deviations from reference boundaries. This 

type of presentation reveals that transitions between spectrally contrasting segments lead 

to sharp distributions around, or near to, zero deviations, whereas similar speech sounds 

(e.g., transitions inside a phone group, the diagonals in figures and tables) have very 

broad distributions and low accuracies. Distributions of the majority of well-detected 

transitions are unimodal and fit well inside the ±20 ms time window used as an 

evaluation criterion. 

The overall distribution of all correctly detected segment boundaries relative to the reference 

fits well with a normal distribution with a mean of zero and variance of approximately n2 = 

0.12. This shows that approximately 35% of the boundaries would be located outside the 

search region if the deviation threshold was changed from 20 ms to 10 ms. This provides 

support for the convention of the ±20 ms deviation allowance that is typically found in 

literature (Almpanidis & Kotropoulos, 2008; Aversano et al., 2001; Estevan et al., 2007; Kim 

& Conkie, 2002; Sarkar & Sreenivas, 2005; Scharenborg et al., 2007; Sjölander, 2003), since the 
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algorithm reacts very systematically to changes in the signal in a time window of this size 

but rarely at larger distances. 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 

Fig. 7. Segmentation accuracy for phone classes found in Table 5 shown as temporal error 
distributions (seconds). Error is defined as the distance (in seconds) between produced 
segment boundaries and reference annotation (male + female speakers). 1: Tense vowels, 2: 
lax vowels, 3: glides and liquids, 4: nasals, 5: fricatives, 6: stops and affricates, 7: closures.  
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  TO 

 
 

Tense 
vowels 

Lax 
vowels 

Glides 
and 

liquids
Nasals Fricatives

Stops and 
affricates 

Closures 

F
R

O
M

 

Tense vowels 4.2 2.1 -0.5 -3.6 0.2 N/A -4.9 

Lax vowels -25.0 -14.3 9.7 -1.8 -1.1 N/A -2.4 

Glides and 
liquids 

-0.5 0.4 -2.2 -10.7 -3.1 N/A -7.4 

Nasals -5.4 -7.5 4.6 11.3 1.4 -4.9 1.4 

Fricatives -4.3 -1.1 -6.5 0.9 1.1 N/A -3.4 

Stops and 
affricates 

-9.5 -4.4 -1.4 3.1 -1.4 N/A -1.8 

Closures 2.9 6.1 -1.5 -4.8 -5.6 2.3 -7.8 

Table 6. Segmentation accuracy difference (%) between male and female speakers (positive 
value = male performance better, negative value = female performance better).  

Accuracy differences for phone transitions between male and female speakers were also 
estimated using the FFT representation (table 6). The differences in accuracy show that some 
transitions (e.g., from lax vowels to tense vowels and between lax vowels) are significantly 
more accurately detected in female speech, whereas some others (e.g., nasal-to-nasal and lax 
vowel-to-glide) transitions are more readily detected in male speech. The reason for such 
differences is not clear, but they may arise from cross-gender differences in the anatomy of 
the vocal apparatus. The role of very short-term windowing in FFT may also have an 
impact, since the ratio of window length and one pitch period is different for the two 
genders. 
Phone specific performance was also studied between the FFT and MFCC. It was 

determined that these two representations produce different results for some phone 

categories. The FFT segmentation performs especially well on fricatives, stops and affricates, 

whereas MFCC is more sensitive to vowels, glides and liquids. The FFT based segmentation 

seems to be much more accurate for the beginnings of stops and affricates (+14% compared 

to MFCC; e.g., [bcl]-[b]) whereas MFCC exhibits slightly more accuracy with post-phone 

transitions of the same phone classes (e.g., from [b] to [a]). These differences are somewhat 

expected, as the FFT has a high resolution also at the higher frequencies  (fricatives and 

quick transitions, e.g., bursts) whereas Mel-filtering weights the low frequency range more. 

Despite the differences noted for different speech sound categories, both spectral 

representations end up exhibiting very similar results for overall segmentation accuracy (see 

section 3.3). 

4.2 Inspection of problematic segments 
As the detection of some vowel transitions is problematic for the algorithm, further studies 

were made to gain a deeper insight into these cases. Figure 8 illustrates an example of why it 

may not be possible to achieve extremely high accuracies with bottom-up approaches in 

general. In this example the word “water” is spoken by a female speaker: the time waveform 

is shown in the top pane while the linear-frequency spectrogram is shown below. The 

manually determined boundaries for phone [ao]’s transitions are indicated by dashed lines. 
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The segmentation algorithm is able to detect the [ao]-[dx] transition while the [w]-[ao] 

transition remains undetected, causing a deletion to be registered. There is no noticeable 

change in the spectrum, waveform, pitch, or even in signal energy, so the only possible way 

to place a boundary at such a location would be based on perceptual judgment. An 

automatic algorithm using such features, and working in a bottom-up manner, probably 

cannot detect such types of changes in speech. 

There are also onsets of phones that do not contain sudden spectral changes but their 

waveform shape changes radically when compared to that of their neighbors. One such 

phone that is especially difficult for the present algorithm to detect is the pharyngeal 

fricative [q], which often contains a similar formant structure to the preceding vowel but 

where pitch and signal energy suddenly drop causing a perceptually creaky voice. These 

changes can be seen in the waveform as areas of significantly decreased amplitude and 

shifted phase. One example of this situation can be seen in figure 9 where a transition is 

occurring at the end of the word “misquote” and leading into “was”. These types of deletions 

could be avoided by including a supplementary module with the algorithm that could track, 

e.g., changes in the waveform shape, pitch, or phase of the speech signal.  

 

 

 

 
 
 

Fig. 8. A partial waveform for the word “water” spoken by a female speaker as well as a 
related spectral representation that includes F0 (upper line) and energy contours (lower 
line). Dashed lines indicate reference phone boundaries. The [w]-[ao] transition boundary is 
practically impossible to detect with the bottom-up segmentation algorithm described in 
this paper due to lack of changes in the feature space. Images were created using Praat 
software.  
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Fig. 9. The transition from [ow] to pharyngeal fricative [q] at the end of the word “misquote” 

and also from [q] to [w] in the beginning of word “water” are difficult to detect using 

spectral analysis, while changes in waveform shape are easily perceived visually.  

Another general characteristic difference between the algorithm’s output and the reference 
annotations can be found at the endings of speech signals: it is often difficult to determine 
where the final phone ends, and very often the perceptual ending (and annotated boundary) 
takes place earlier, while the spectrum of the breathy ending keeps fading away for a 
moment longer. As the algorithm reacts most prominently to the point where there is a 
structural discontinuity point in the spectrum (i.e., the signal changes from a correlating 
formant structure to a silence), it places a boundary where the spectrum of the exhalation 
finally fades to a non-existent level. This effect was observed with both English and Finnish 
data. 
The implicit assumption underlying this work is that “optimal” automatic segmentation 
of continuous speech should lead to results where preferably only one phone occupies 
one segment. However, there seems to be a large number of cases where effective 
segmentation of continuous speech to phonetic units is difficult using blind bottom-up 
approaches. For some transitions, the changes in the features representing the signal may 
be gradual (e.g., in diphthongs) or almost non-existent (fig. 8), although a human listener 
still perceives a change from one articulatory position to another due to learned 
distinctions. In some other cases, like at the endings of the signals, the points of change 
simply cannot be unanimously defined. Real speech also contains situations where 
phones are spectrally split into two or more "subphones". This occurs, e.g., when an oral 
vowel is nasalized or a nasalized vowel is "oralized" causing rapid spectral changes to 
occur at first formant as well as nasal formant locations. Another example of this type of 
splitting is a liquid or a fricative situated between front and back vowels or some other 
changing phonetic context. This type of phenomena may cause the first part of such a 
segment to differ considerably from its remainder.  
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Thus, the implicit assumption behind the chosen segmentation methodology and the 
preferred goal is partially conflicting with the natural operation of articulatory mechanisms. 
Spectral change alone is not a sufficient cue for phone segment boundaries since some intra-
segmental changes can be larger than some transitions from one phone class to another. This 
leads to an inevitable tradeoff between segmentation accuracy and over-segmentation. If 
more comprehensive blind phone-segmentation is required then problematic cases should 
be studied in more detail in order to handle them in a correct and language-universal 
manner. This question is left as a topic for further studies. 

5. Conclusions 

This paper introduced a novel blind speech segmentation algorithm that utilizes the cross-
correlations of adjacent spectral representations of the signal. Local changes in the spectrum 
are detected using a two-dimensional filter on the cross-correlation matrix. Output from the 
filter is then reduced using a non-linear minmax-filtering technique, and finally a temporal 
masking operation is applied to the detected signal changes. The results obtained by this 
algorithm are comparable to those found in literature (Almpanidis & Kotropoulos, 2008; 
Aversano et al., 2001; Esposito & Aversano, 2005; Estevan et al., 2007; Scharenborg et al., 
2007). The performed experiments also give support for the language and gender 
independency of the algorithm, although further evaluation on several other languages 
would be required to confirm this.  
Experiments from several authors seem to indicate that a maximum level of segmentation 
accuracy with a purely bottom-up approach is already being achieved and falls below 
available HMM-solutions in terms of reference evaluation. The results reported by 
Almpanidis and Kotropoulos (2008), Aversano et al. (2001), Esposito and Aversano (2005), 
and Estevan et al. (2007) all produce very similar results for the TIMIT corpus material 
while using totally different approaches for phone segmentation - a striking discovery 
already noted briefly by Estevan et al. (2007). Interestingly enough, the algorithm 
introduced in this paper also achieves a very similar level of accuracy with yet another 
methodological approach. The observed asymptotic behavior from these five different 
methods may indicate that further improvements may not be possible without 
introducing linguistic or contextual knowledge, even when working in noise-free 
conditions. Analyzing the instantaneous properties of speech signals systematically falls 
short of ideal performance.  
More evidence for the suggested accuracy ‘limit’ existing in the bottom-up approaches can be 
found by analyzing the results of Cherniz et al. (2007), who attempted to improve the 
algorithm presented by Esposito & Aversano (2005) by replacing the original Melbank signal 
representation with continuous multiresolution entropy (CME) and continuous 
multiresolution divergence (CMD). Although the use of CMD had a statistically significant 
effect by lowering the number of insertions (from OS = 16.61% to OS = 13.87%), the number of 

detected boundaries did not change significantly (Pr( < ref) > 80.57%) despite employing 
totally different parametric representations. Similarly, here we have studied the use of FFT and 
MFCC in the blind segmentation task and showed that already the simple short-time FFT 
leads to comparable segmentation accuracy with the MFCCs (R = 0.78). One may ask whether 
part of the observed inaccuracies would result from the variability of the underlying reference 
annotation. However, the role of manual biases in overall performance should be small if ±20 
ms search regions are used for evaluation (see Wesenick & Kipp, 1996, for reliability of manual 
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transcriptions). The boundary deviation distributions obtained in this study also support the 
suitability of the standard ±20 ms search regions used in evaluation. 
Based on the given evidence and work already performed in the field of blind segmentation, 
we hypothesize that it is extremely difficult to construct a blind algorithm that analyzes the 
local properties of speech with universal decision parameters that could achieve notably 
higher segmentation accuracies than those already developed and reported in the cited 
literature and in this paper. In practice this would mean that grossly 70-80% of phone 
boundaries can be automatically and reliably detected and pinpointed in time by tracking 
changes in spectrotemporal features extracted from speech. The remaining 20-30% seem to 
be defined by changes that are too small to be detected unless the system really knows what 
type of signal changes it should look for in a given context. This may be the price that has to 
be paid with algorithms that do not learn from data or utilize expert knowledge from 
proficient language users. 
Finally, it should also be kept in mind that perfectly matching reference boundaries is not 
(always) the ultimate goal of speech segmentation. In the end, the purpose of the 
segmentation algorithm depends on the entire speech processing system in which it is 
implemented, and the most important evaluation method would be then to observe and 
measure the functionality of the system in its entirety. 
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