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Nonlinear Dimensionality Reduction Methods 
for Use with Automatic Speech Recognition 

Stephen A. Zahorian and Hongbing Hu 
Binghamton University, NY, 

 USA 

1. Introduction 

For nearly a century, researchers have investigated and used mathematical techniques for 
reducing the dimensionality of vector valued data used to characterize categorical data with 
the goal of preserving “information” or discriminability of the different categories in the 
reduced dimensionality data. The most established techniques are Principal Components 
Analysis (PCA) and Linear Discriminant Analysis (LDA) (Jolliffe, 1986; Wang & Paliwal, 
2003). Both PCA and LDA are based on linear, i.e. matrix multiplication, transformations. 
For the case of PCA, the transformation is based on minimizing mean square error between 
original data vectors and data vectors that can be estimated from the reduced 
dimensionality data vectors. For the case of LDA, the transformation is based on minimizing 
a ratio of “between class variance” to “within class variance” with the goal of reducing data 
variation in the same class and increasing the separation between classes.  There are newer 
versions of these methods such as Heteroscedastic Discriminant Analysis (HDA) (Kumar & 
Andreou, 1998; Saon et al., 2000). However, in all cases certain assumptions are made about 
the statistical properties of the original data (such as multivariate Gaussian); even more 
fundamentally, the transformations are restricted to be linear. 
In this chapter, a class of nonlinear transformations is presented both from a theoretical and 
experimental point of view. Theoretically, the nonlinear methods have the potential to be more 
“efficient” than linear methods, that is, give better representations with fewer dimensions. In 
addition, some examples are shown from experiments with Automatic Speech Recognition 
(ASR) where the nonlinear methods in fact perform better, resulting in higher ASR accuracy 
than obtained with either the original speech features, or linearly reduced feature sets. 
Two nonlinear transformation methods, along with several variations, are presented.  In one 
of these methods, referred to as nonlinear PCA (NLPCA), the goal of the nonlinear 
transformation is to minimize the mean square error between features estimated from 
reduced dimensionality features and original features. Thus this method is patterned after 
PCA. In the second method, referred to as nonlinear LDA (NLDA), the goal of the nonlinear 
transformation is to maximize discriminability of categories of data. Thus the method is 
patterned after LDA. In all cases, the dimensionality reduction is accomplished with a 
Neural Network (NN), which internally encodes data with a reduced number of 
dimensions. The differences in the methods depend on error criteria used to train the 
network, the architecture of the network, and the extent to which the reduced dimensions 
are “hidden” in the neural network. 
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The two basic methods and their variations are illustrated experimentally using phonetic 
classification experiments with the NTIMIT database and phonetic recognition experiments 
with the TIMIT database. The classification experiments are performed with either a neural 
network or Bayesian maximum likelihood Mahalanobis distance based Gaussian 
assumption classifier For the phonetic recognition experiments, the reduced dimensionality 
speech features are the inputs to a Hidden Markov Model (HMM) recognizer that is trained 
to create phone level models and then used to recognize phones in separate test data. Thus, 
in one sense, the recognizer is a hybrid neural network/Hidden Markov Model 
(NN/HMM) recognizer. However, the neural network step is used for the task of nonlinear 
dimensionality reduction and is independent of the HMM. It is shown that the NLDA 
approach performs better than the NLPCA approach in terms of recognition accuracy. It is 
also shown that speech recognition accuracy can be as high as or even higher using reduced 
dimensionality features versus original features, with “properly” trained systems. 

2. Background 

Modern automatic speech recognition systems often use a large number of spectral/ 
temporal “features” (i.e., 50 to 100 terms) computed with typical frame spaces on the order 
of 10 ms. Partially because of these high dimensionality feature spaces, large vocabulary 
continuous speech automatic speech recognition often have several million parameters that 
must be determined from training data (Zhao et al., 1999). In this scenario, the “curse of 
dimensionality” (Donoho, 2000) becomes a serious practical issue; for high recognition 
accuracy with test data, the feature dimensionality should be reduced, ideally preserving 
discriminability between phonetically different sounds, and/or large databases should be 
used for training. Both approaches are used. Despite growing computer size and computer 
storage densities, it should be noted that in principle the amount of data needed for 
adequate training grows exponentially with the number of features; for example, increasing 
dimensionality from 40 to 50, increases the need for more data by a factor proportional to 
k(50-40) = k10, where k is some number representing the average number of data samples 
distributed along each dimension, and almost certainly 2 or larger. Thus, for good training 
of model parameters, increasing dimensionality from 40 to 50, considered a modest increase, 
could easily increase the need for more data by a factor of 1000 or more. Therefore it seems 
unlikely that increased database size alone is a good approach to improved ASR accuracies 
by training with more and more features. 
In this chapter, some techniques are presented for reducing feature dimensionality while 
preserving category (i.e., phonetic for the case of speech) discriminability. Since the 
techniques presented for reducing dimensionality are statistically based, these methods also 
are subject to “curse of dimensionality” issues. However, since this dimensionality 
reduction can be done at the very front end of a speech recognition system, with fewer 
model parameters tuned than in an overall recognition system, the “curse” can be less of a 
problem. We first review some traditional linear methods for dimensionality reduction 
before proceeding to the nonlinear transformation, the main subject of this chapter. 

2.1 Principal Components Analysis (PCA) 

Principal Components Analysis (PCA), also known as the Karhunen-Loeve Transform (KLT),   
has been known of and in use for nearly a century (Fodor, 2002; Duda et al., 2001), as a linear 
method for dimensionality reduction. Operationally, PCA can be described as follows: 
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Let 
1 2

[ , ,..., ]T

n
x x xX  be an n-dimensional (column) feature vector, and 

1 2
[ , ,..., ]T

m
y y yY  be 

an m-dimensional (column) feature vector, obtained as the linear transform of X, using the n 

by m transformation matrix A, i.e. TY A X . 

Let ˆ X BY be an approximation to X . Note that ,X Y  and X̂  can all be viewed as (column) 

vector-valued random variables. The goal of PCA is to determine A and B, such that 

 2ˆ( )E X X  is minimized. That is,  X̂  should approximate X as well as possible, in a mean 

square error sense. As has been shown in several references (for example, Duda et al., 2001), 

this seemingly intractable problem has a very straightforward solution, provided X is zero 

mean and multivariate Gaussian.  The rows of transformation AT have been shown to be the 

eigenvectors of the covariance matrix of X, corresponding to the m largest eigenvalues of 

this matrix. The columns of B are also the same eigenvectors. Thus the “forward” and 

“reverse” transformations are transposes of each other. The components of Y are 

uncorrelated.  Furthermore the expected value of this normalized mean square error 

between original and re-estimated X vectors can be shown to equal the ratio of the sum of 

“unused” eignevalues to the sum of all eigenvalues. The columns of A are called the 

principal components basis vectors and the components of Y are called the principal 

components. 
If the underlying assumption of zero mean multivariate Gaussian random variables is 
satisfied, then this method of feature reduction generally performs very well. The principal 
components are also statistically independent for the Gaussian case. The principal components 
“account for” or explain the maximum amount of variance of the original data. Figure 1 shows 
an example of scatter plot of 2-D multivariate data and the resulting orientation of the first 
primary principal components basis vector. As expected this basis vector, represented by a 
straight line, is oriented along the axis with maximum data variation. 

 

Fig. 1. Scatter plot of 2-D multivariate Gaussian data and first principal components basis 
vector.  Line is a good fit to data. 
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Figure 2 depicts data which is primarily aligned with a U shaped curve in a 2-D space, and 
the resulting straight line (PCA) basis vector fit to this data. Since the original data is not 
multivariate Gaussian, the PCA basis vector is no longer a good way to approximate the 
data. In fact, since the data primarily follows a curved path in the 2-D space, no linear 
transform method, resulting in a straight line subspace, will be a good way to approximate 
the data with one dimension.  
 

 

Fig. 2. Scatter plot of 2-D multivariate Gaussian data and first principal components basis 

vector.  No straight line can be a good fit to this data. 

2.2 Linear Discriminant Analysis (LDA) 

Linear transforms for the purpose of reducing dimensionality while preserving 

discriminability between pre-defined categories have also long been known about and used 

(Wang & Paliwal, 2003),   and are usually referred to as Linear Discriminant Analysis (LDA). 

The mathematical usage of this is identical to that for PCA. That is TY A X , where X, Y are 

again column vectors as for PCA. 
The big difference is in how A is computed. For LDA, it has been shown that the columns of 

A correspond to the m largest eigenvalues of 1

W B


S S  , where SW is the within class covariance 

matrix  and SB  is  the between  class covariance matrix. 
Often SB is computed as the covariance of the category means; alternatively, it is sometimes 
computed as the “grand” covariance matrix over all data, ignoring category labels, identical 
to the covariance matrix used to compute PCA basis vectors. SW, the within class covariance 
matrix, is generally computed by first determining the covariance matrix for each category 

of data, and then averaging over all categories.  The explicit assumption for LDA is that the 
within class covariance of each category is the same, which is rarely true in practice. 
Nevertheless, for many practical classification problems, features reduced by LDA often are 
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as effective or even advantageous to original higher dimensional features. Figure 3 depicts 
2-D 2-class data, and shows the first PCA basis vector as well as the first LDA basis vector. 
Clearly, for this example, the two basis vectors are quite different, and clearly the projection 

of data onto the first LDA basis vector would be more effective for separating the two 
categories than data projected onto the first PCA basis vector. 
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Fig. 3. 2-D 2-class data, along with first LDA basis vector and first PCA basis vector.  The 

classes would be well separated by a projection onto the first LDA basis vector, but poorly 

separated by a projection onto the first PCA basis vector. 

2.3 Heteroscedastic Discriminant Analysis (HDA) 

Another linear transformation technique, related to linear discriminant analysis, but 
which accounts for the (very common) case where within class covariance matrices are 
not the same for all classes, is called Heterocscedastic Discriminant Analysis (HDA) (Saon 
et al., 2000). The process for HDA is described in some detail by Saon et al., and illustrated 
in terms of its ability to better separate (as compared to LDA) data in reduced 
dimensionality subspaces, when the covariance properties of the individual classes are 
different. 
HDA suffers from two drawbacks. There is no known closed form solution for minimizing 
the objective function required to solve for the transformation—rather a complex 
numerically based gradient search is required. More fundamentally, with actual speech 
data, HDA alone was found to perform far worse than LDA.  Nevertheless, if an additional 
transform, called the Maximum Likelihood Linear Transform (MLLT) (Gopinath, 1998) was 
used after HDA, then overall performance was found to be the best among the methods 
tested by Saon et al. However, ASR accuracies obtained with a combination of LDA and 
MLLT were nearly as good as those obtained with HDA and MLLT. A detailed summary of 
HDA and MLLT are beyond the scope of this chapter; however, these methods, either by 
themselves, or in conjunction with the nonlinear methods described in this chapter warrant 
further investigation. 
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3. Nonlinear dimensionality reduction 

If the data are primarily clustered on curved subspaces embedded in high dimensionality 
feature spaces, linear transformations for feature dimensionality reduction are not well 
suited. For example, the data depicted in Figure 2 would be better approximated by its 
position with respect to a curved U-shape line rather the straight line obtained with linear 
PCA. (Bishop et al. 1998) discusses several theoretical methods for determining these curved 
subspaces (manifolds) within higher dimensionality spaces. Another general method, and 
the one illustrated and explored in more detail in this chapter, is based on a “bottleneck” 
neural network (Kramer, 1991). This method relies on the general ability of a neural network 
with nonlinear activation functions at each node, with enough nodes and at least one hidden 
layer, to be able to determine an arbitrary nonlinear mapping. The general network 
configuration is shown in Figure 4. 

 

Fig. 4. Architecture of Bottleneck Neural Network. 

Presumably,  although not necessarily, with enough nodes in each of the hidden layers, and 
with “proper”  training,  the network will represent data at the outputs of the bottleneck layer 
as well as possible in a subspace with a number of dimensions equal to  the number of nodes 
in the bottleneck layer. If data lies along a single curved line in a higher dimensionality space, 
1 node in the bottleneck layer should be sufficient. If data lies on a curved surface embedded 
in a higher dimensionality space, 2 nodes in the bottleneck layer should be sufficient. 

3.1 Nonlinear Principal Components Analysis (NLPCA) 
If the bottleneck neural network is trained as an identity map, that is with outputs equal to 
inputs, and using a mean square error objective function, then the neural network can be 
viewed as performing nonlinear principal components analysis (NLPCA) (Kramer, 1991). 
Since the final NN outputs are created from the internal NN representations at the 
bottleneck layer, the bottleneck outputs can be viewed as the reduced dimensionality 
version of the data. This idea was tested using pseudo-random data generated so as to 
cluster on curved subspaces. 
NLPCA is first illustrated by an example depicted in Figure 5. For this case, 2-D pseudo 
random data was created to lie along a U shaped curve, similar to the data depicted in 
Figure 2. A neural network (2-5-1-5-2) was then trained as an identify map. The numbers in 
parentheses refer to the number of nodes at each layer, proceeding from input to output. All 
hidden nodes and output nodes had a bipolar sigmoidal activation function. After training 
with backpropagation, all data were transformed by the neural network. In Figure 5, the 
original data is shown as blue symbols, and the transformed data is shown by red. Clearly, 
the data have been projected to a curved U shaped line, as would be expected for the best 
line fit to the original data. 
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Fig. 5. Plot of input and output data for pseudo-random 2-D data.  The output data (red line) is 

reconstructed data obtained after passing the input data through the trained neural network. 

In Figure 6, NLPCA is illustrated by data which falls on a 2-D surface embedded in a 3-D 
space. For this case, 2-D data pseudo random data are created, but confined to lie on the 
surface of a 2-D Gaussian shaped surface, as depicted in the left panel of Figure 6. Then a 
neural network (3-10-2-10-3) was trained as an identity map. After training, the outputs of 
the neural network are plotted in the right panel of Figure 6. Clearly the neural network 
“learned” a 2-D internal representation, at the bottleneck layer, from which it could 
reconstruct the original data. 
 

 

Fig. 6. Input and output plot of the 3-D Gaussian before (left) and after (right) using neural 

network for NLPCA. 
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4. Nonlinear Discriminant Analysis (NLDA) 

Despite the apparent ability of a neural network to well represent data from reduced 
dimensions, as illustrated by the examples depicted in Figure 5 and Figure 6, for 
applications to machine pattern recognition, including automatic speech recognition, a 
nonlinear feature reduction analogous to linear discriminant analysis might be 
advantageous to NLPCA.  Fortunately, only a minor modification to NLPCA is needed to 
form NLDA. The same bottleneck network architecture is used, but trained to recognize 
categories rather than as an identity map. In the remaining part of this chapter, two versions 
of NLDA based on this strategy are described, followed by a series of experimental 
evaluations for the phonetic classification and recognition tasks. 

4.1 Nonlinear dimensionality reduction architecture 

In a previous work (Zahorian et al., 2007), NLPCA was applied to an isolated vowel 
classification task, and the nonlinear method based on neural networks was 
experimentally compared with linear methods for reducing the dimensionality of speech 

features. It was demonstrated that NLPCA which minimizes mean square reconstruction 
error from a reduced dimensionality space can be very effective for representing data 
which lies in curved subspaces, but did not appear to offer any advantages over linear 
dimensionality reduction methods such as PCA and LDA, for a speech classification task. 

A summary of this work is presented in Section 4.5. In contrast, the nonlinear technique 
NLDA based on minimizing classification error was quite effective for improving 
accuracy. 

The general form of the NLDA transformer and its relationship to the HMM recognizer are 
depicted in Figure 7. NLDA is based on a multilayer bottleneck neural network and 
performs a nonlinear feature transformation of the input data. The outputs of the network 
are further (optionally) processed by PCA to create transformed features to be the inputs of 

an HMM recognizer. Note that in this usage, “outputs” may be from the final outputs or 
from one of the internal hidden layers. 
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Fig. 7. Overview of the NLDA transformation for speech recognition. 

The multilayer bottleneck neural network employed in NLDA contains an input layer, 
hidden layers including the bottleneck layer, and an output layer. The numbers of nodes 
in the input and output layers respectively correspond to the dimensions of the input 
features and the number of categories in the training target data. The targets were chosen 
as the 48 (collapsed) phones in the training data. The number of hidden layers was 
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experimentally determined as well as the number of nodes included in those layers. 
However, most typically three hidden layers were used. Two NLDA approaches were 
investigated as different layers of networks are used to obtain dimensionality reduced 
data. 

4.2 NLDA1 

In the first approach, which is referred to as NLDA1, the transformed features are 

produced from the final output layer of the network. This approach is similar to the use of 

tandem neural networks used in some automatic speech recognition studies (Hermansky 

& Sharma, 2000; Ellis et al., 2001). Figure 8 illustrates the use of network outputs in 

NLDA1. 

 
 

 
 

Fig. 8. Use of network outputs in NLDA1. 

4.3 NLDA2 

Since the activations of the middle layer represent the internal structure of the input 

features, in the second approach named NLDA2, the outputs of the middle hidden layer, 

with fewer nodes than the input layer, are used as transformed features to form reduced 

but more discriminative dimensions. Figure 9 illustrates the use of network outputs in 

NLDA2. These two versions of NLDA were experimentally tested, with and without PCA 

following the neural network transformer, with some variations of the nonlinearities in 

the networks. 

The dimensionality of the reduced feature space is determined only by the number of nodes 

in the middle layer. Therefore, an arbitrary number of reduced dimensions can be obtained, 

independent of the input feature dimensions and the nature of the training targets. A lower 

dimensional representation of the input features is easily obtained by simply deploying 

fewer nodes in the middle layer than the input layer. This flexibility allows dimensionality 

to be adjusted so as to optimize overall system performance (Hu & Zahorian, 2008; Hu & 

Zahorian, 2009; Hu & Zahorian, 2010). 

In contrast with NLDA1 where dimensionality reduction is assigned to PCA, for NLDA2, 

since the dimensionality reduction can be accomplished with the neural network only, the 

linear PCA is used specifically for reducing the feature correlation. 
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Fig. 9. Middle layer outputs used as dimensionality reduced features in NLDA2. 

4.4 Neural networks 

In optimizing the design of a neural network, an important consideration is the number of 

hidden layers and an appropriate number of hidden nodes in each layer. A neural network 

with no hidden layers can form only simple decision regions, which is not suitable for highly 

nonlinear and complex speech features. Although it has been shown that a neural network 

with a single hidden layer is able to represent any function with a sufficient number of hidden 

nodes (Duda et al., 2001), the use of multiple hidden layers generally provides a flexible 

configuration such as distributed deployment of hidden nodes, and diverse nonlinear 

functions for different layers. On the number of hidden nodes, a small number reduces the 

network’s computational complexity. However, the recognition accuracy is often degraded. 

The more hidden nodes a network has, the more complex a decision surface can be formed, 

and thus better classification accuracy can be expected (Meng, 2006). Generally, the number of 

hidden nodes is empirically determined by a combination of accuracy and computational 

considerations, as applied to a particular application. 

Another important consideration is selecting an activation function, or the nonlinearity of a 

node. Typical choices include a linear activation function, a unipolar sigmoid function and a 

bipolar sigmoid function as illustrated in Figure 10. 

The activation function should match the characteristic of the input or output data. For 

example, with training targets assigned the values of “0” and “1”, a sigmoid function with 

the outputs in the range of [0, 1] is a good candidate for the output layer. Most typically a 

mean square error, between the desired output and actual output of the NN, is the 

objective function that is minimized in NN training. As another powerful approach, the 

softmax function takes all the nodes in a layer into account and calculates the output of a 

node as a posterior probability. When the outputs of the network are to be used as 
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transformed features for the HMM recognition, a linear function or a softmax function is 

appropriate to generate the data with a more diverse distribution, such as one that would 

be well-modeled with a GMM. Moreover, equipped with various nonlinearities, the 

neural network is expected to have a stronger discriminative capability and thus it is 

enabled to cope with more complex data. 

 
 

 

 

Fig. 10. Illustrations of a linear activation function (left), a unipolar sigmoid function 

(middle) and a bipolar sigmoid function (right). 

The weights of the neural network are estimated using the backpropagation algorithm to 

minimize the distance between the scaled input features and target data. The update of 

the weights in each layer depends on the activation function of that layer, thus the 

network learning can be designed to perform different updates when dissimilar activation 

functions are used. In addition, a difficulty in neural network training is that the input 

data has a wide range of means and variances for each feature component. In order to 

avoid this, the input data of neural networks is often  scaled so that all feature components 

have the same mean (zero) and variance (so that range of values is approximately ± 1). 

4.5 Investigation of basic issues 

Before performing a series of time consuming phonetic recognition experiments involving 

the entire TIMIT database, extensive neural network training, and HMM training and 

evaluation, a more limited set of phonetic classification experiments was conducted using 

only the vowel sounds extracted from NTIMIT,  the telephone version of TIMIT. Note that 

unlike phonetic recognition experiments, for the case of classification, the timing labels in 

the database are explicitly used for both training and testing. Thus classification is “easier” 

than recognition, and accuracies typically higher, since phone boundaries are known in 

advance and used. In this first series of experiments, classification experiments were 

conducted using PCA, LDA, NLPCA, and NLDA2 transformations, as well as the original 

features. 

The 10 steady-state vowels /ah/, /ee/, /ue/, /ae/, /ur/, /ih/, /eh/, /aw/, /uh/, and 

/oo/ were extracted from the NTIMIT database (see section 5.1) and used. 

All the training sentences (4620 sentences) were used to extract a total of 31,300 vowel 
tokens for training. All the test sentences (1680 sentences) were used to extract a total of 
11,625 vowel tokens for testing. For each vowel token, 39 DCTC-DCS features were 
computed using 13 DCTC terms and 3 DCS terms. 
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For all cases, including original features, and all versions of the transformed features, a 

neural network classifier with 100 hidden nodes and 10 output nodes, trained with 

backpropagation, was used as the classifier. In addition, a Bayesian maximum likelihood 

Mahalanobis distance based Gaussian assumption classifier (MXL) was used for 

evaluation. 

For the neural network transformation cases, the first and third hidden layers had 100 nodes 

(empirically determined). The number of hidden nodes in the second hidden layer was 

varied from 1 to 39, according to the dimensionality being evaluated. For the case of 

NLDA2, the network used for dimensionality reduction was also a classifier. For the sake of 

consistency, the outputs of the hidden nodes from the bottleneck neural network were used 

as features for a classifier, using either another neural network or the MXL classifier. 1 In 

these initial experiments, the bottleneck neural network outputs were not additionally 

transformed with PCA. 

4.5.1 Experiment 1 

In the first experiment, all training data were used to train the transformations including 

LDA, PCA, NLPCA, and NLDA2, and the classifiers. Figure 11 shows the results based on 

the neural network and MXL classifiers for each transformation method in terms of 

classification accuracy, as the number of features varies from 1 to 39. 

For both the neural network and MXL classifiers, highest accuracy was obtained with 

NLDA2, especially with a small numbers of features. For the MXL classifier, NLDA2 
features result in approximately 10% higher classification accuracies as compared to all 
other features. For both the neural network and MXL classifiers, accuracy with NLPCA 
features was very similar to that obtained with linear PCA. For reduced dimensionality 

features and/or a MXL classifier, the NLDA2 transformation was clearly superior to 
original features or any of the other feature reduction methods. However, with a neural 
network classifier and much higher dimensionality features, all feature sets perform 

similarly in terms of classification accuracy. 
As just illustrated, dimensionality reduction is not necessarily advantageous in terms of 

accuracy for classifiers trained with enough data and the “right” classifier. However, for the 

case of complex automatic speech recognition systems, there is generally not enough 

training data.  

4.5.2 Experiment 2 

To simulate lack of training data, another experiment was conducted. In this experiment, the 
training data was separated into two groups, with about 50% in each group. One group of 
data (group 1) was used for “training” transformations while the other data (group 2) was 
used for training classifiers. In contrast to experiment 1 for which all the training data was 
used for both the training of transformations and classifiers,  for  experiment 2, a fixed 50% 
of the training data was used for “training” transformations and a variable percentage, 
ranging from 1% to 100% of the other half of the training data, was used for training 
classifiers. 

                                                 
1 It was, however, experimentally verified that classification results obtained directly from the 
bottleneck neural network were nearly identical to those obtained with this other network. 
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Fig. 11. Classification accuracies of neural network (top panel) and MXL (bottom panel) 

classifiers with various types of features. 

The results obtained with the neural network and MXL classifiers using 10% of the group 2 

training data (that is, 5% of the overall training data) are shown in Figure 12. The numbers 

of features evaluated are 1, 2 4, 8, 16 and 32. For both the neural network and MXL 

classifiers, NLDA2 clearly performs much better than the other transformations or the 

original features. However, the advantage of NLDA2 decreases with an increasing number 

of features, and as the percentage of group 2 data increases (not shown in figure). 

4.6 Category labels for discriminatively based transformations 

For all discriminatively based transformations, either linear or nonlinear, an implicit 

assumption is that training data exists which has been labeled according to category. For the 

case of classification, such as the experiments just described, this labeled data is needed 

anyway,  for both training and test data, to conduct classification experiments; thus the need 

for category labeled data is not any extra burden. However, for other cases, such as the 

phonetic recognition experiments described in the remainder of this chapter, there may or 

may not be easily available and suitable labeled training data. This issue of category labels is 

described in more detail in the following two subsections. 
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Fig. 12. Classification accuracies of neural network (top panel) and MXL (bottom panel) 

classifiers using 10% of group 2 training data for training classifier. 

4.6.1 Phonetic-level targets 

The training of the neural network (NLDA1 and NLDA2) requires category information for 

creating training targets. For the case of databases such as TIMIT, the data is labeled using 

61 phone categories, and the starting point for training discriminative transformations 

would seem to be these phonetic labels.  In the neural network training, these are referred to 

as targets. Ideally, the targets are uncorrelated, which enables quicker convergence of 

weight updates. The targets can also be viewed as multidimensional vectors, with a value of 

“1” for the target category and “0s” for the non-target categories. 

Figure 13 illustrates a sequence of phoneme training targets for the TIMIT database using 48 

phoneme categories. These vectors have 48 dimensions and each vector consists of only one 

peak value to indicate the category. Note that, in the TIMIT case, other reasonable choices 

for targets would be 61 (the number of phone label categories), or 39 (the number of 

collapses phone categories). However, empirically, the choice of 48 categories, with only 

some phones combined, seemed to be the best choice for both neural network training 

targets and for the creation of HMM phone models. 
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Fig. 13. Training target vectors of the neural network. 

4.6.2 State-level targets 

Due to the nonstationarity of speech signals, a speech signal varies even in a very short time 
interval (e.g. a phoneme). For speech recognition tasks, instead of phone level training 
targets, state (as in hidden states of an HMM) dependent targets could be advantageous in 
training a versatile network for more highly discriminative speech features.  However, the 
boundaries between states in a phoneme are likely to be indistinct;  even more importantly, 
from a practical perspective is that, unlike phonemes, the (HMM) state boundaries are 
unknown in advance of training. Thus the estimation of state boundary information is 
required. This boundary information may be in error due to the nature of unclear state 
boundaries and the lack of a reliable estimation approach. Therefore, in the discriminative 
training process, “don’t cares” were used to account for this lack of precision in determining 
state boundaries. In the neural network training process, the errors of output nodes 
corresponding to “don’t cares” are not computed and thus these “don’t cares” have no effect 
on weight updates. 
The state training targets with “don’t cares” uses “don’t care” states for each phoneme 
model, so that one neural network trained with the targets can generate state dependent 
outputs. As illustrated in Figure 15, the phone-specific training targets in Figure 14 are 
expanded to 144 dimensions by duplicating the phoneme specific target by the required 
number of the states. In the training process, for each point in time, one state target is 
considered as a “1,” and the other two state targets for that point in time are considered as a 
“don’t care,” and the state targets for all other categories are considered as “0” value targets. 
As time progresses during a phone, the “1” moves from state 1 to state 2, to state 3. 
 

 

Fig. 14. Illustration of a phoneme level target. 
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Fig. 15. Illustration of the state level training targets with “don’t cares.” The -1 values are 

used to denote “don’t cares.” 

Two approaches are used to determine state boundaries. The first approach uses a fixed 

state length ratio for all phonemes, with typically about the first 1/6 of each phoneme 
considered as state 1, the central 2/3 as state 2, and the final 1/6 as state 3 (assuming a 3- 
state model for each phoneme). The second approach determines state boundaries using the 

HMM-based Viterbi alignment based on already trained HMMs.  As illustrated in one of the 
experiments presented later, the state dependent targets were shown to perform better than 
phone level targets. The simpler approach of using fixed ratios for state boundaries was as 
good as using the Viterbi alignment approach. 

5. Evaluation of feature reduction methods with phonetic recognition 
experiments 

Given the high dimensionality of speech feature spaces used for automatic speech recognition, 

typically 39 or more, it is not feasible to visualize the distribution of data in feature space. It is 
possible that a reduced dimensionality subspace obtained by linear methods, such as PCA or 
LDA, forms an effective, or at least adequate subspace for implementing automatic speech 
recognition systems with a reduced dimensionality feature space.  Note that if PCA or LDA do 

perform well, these methods would be preferred to the nonlinear methods, due to the much 
simpler implementation methods and the corresponding need for less data. However, it is also 
possible that one of the nonlinear methods for feature reduction is more effective, that is 

enable higher ASR accuracy, than any of the linear methods. The comparisons of these various 
methods can only be done experimentally. 

5.1 TIMIT database  

The database used for all experiments reported in the remainder of this chapter is TIMIT. 
The TIMIT database was developed in the early 1980’s for expediting acoustic-phonetic ASR 

research (Garofolo et al., 1993; Zue et al, 1990). It consists of recordings of 10 sentences from 
each of 630 speakers, or 6300 sentences total.  Of the text material in the database, two 
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dialect sentences (SA sentences) were designed to expose the specific variants of the 
speakers and were read by all 630 speakers. There are 450 phonetically-compact sentences 
(SX sentences) which provide a good coverage of pairs of phones. Each speaker read 5 of 

these sentences and each text was spoken by 7 different speakers. A total of 1890 
phonetically-diverse sentences (SI sentences) were selected from existing text sources to add 
diversity in sentence types and phonetic contexts. Each speaker read 3 of these sentences, 
with each text being read only by a single speaker. All sentences are phonetically labeled 

with start and stop times for each phoneme. 
The database is further divided into a suggested training set (4620 sentences, 462 speakers) 
and suggested test set (1680 sentences, 168 speakers). The training and test sets are balanced 
in terms of representing dialect regions and male/female speakers. Although a total of 61 
phonetic labels were used in creating TIMIT, due to the great similarity   of many of these 
phonemes (both from a perception point of view and acoustically), most ASR researchers, 
ever since the work reported by Lee and Hon (Lee & Hon, 1989) have combined these very 
similar sounding phones, and collapsed the phone set to 39 total. Similarly, most researchers 
have not used the SA sentences for ASR experiments, since the identical phonetic contexts 
(every speaker read the same sentences for the SA sentences), were thought be non 
representative of everyday speech.2 Most, but not all researchers, have used the 
recommended training and test sets. For all ASR experiments reported in this chapter, the 
SA sentences were removed, the recommended training and test sets were used, and the 
phone set was collapsed to the same 39 phones used in most ASR experiments with TIMIT. 
The NTIMIT database, used for the classification experiments described in section 4.5, is the 
same one as TIMIT, except the data was transmitted over phone lines and re-recorded. Thus 
NTIMIT is more bandlimited (approximately 300Hz to 3400 Hz), more noisy, but has the 
identical “raw” speech. 

5.2 DCTC/DCSC speech features 

For both training and testing data, the modified Discrete Cosine Transformation 
Coefficients (DCTC) and Discrete Cosine Series Coefficients (DCSC) (Zahorian et al. 1991; 
Zahorian et al., 1997; Zahorian et al., 2002; Karnjanadecha & Zahorian, 1999) were 
extracted as original features. The modified DCTC is used for representing speech spectra, 
and the modified DCSC is used to represent spectral trajectories. Each DCTC is 
represented by a DCSC expansion over time; thus the total number of features equals the 
number of DCTC terms times the number of DCSC terms.  The number of DCTCs used 
was 13, and number of DCS terms was varied from 4 to 7, for a total number of features 
ranging from 52 to 91. These numbers are given for each experiment. Additionally, as a 
control, one experiment was conducted with Mel-frequency Cepstral Coefficients 
(MFCCs) (Davis & Mermelstein, 1980), since these MFCC features are most typically used 
in ASR experiments. A total of 39 features including 13 MFCC features, delta terms, and 
delta-delta terms were extracted from both the training and test data. 

5.3 Hidden Markov Models (HMMs) 

Left-to-right Markov models with no skip were used and a total of 48 monophone HMMs 
were created from the training data using the HTK toolbox (Verion 3.4) (Young et al., 2006). 

                                                 
2With all else identical, the use of SA sentences typically improves ASR accuracy by about 2%. 
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The bigram phone information extracted from the training data was used as the language 
model. Various numbers of states and mixtures were evaluated as described in the 
following experiments. In all cases diagonal covariance matrices were used. For final 
evaluations of accuracy, some of these 48 monophones were combined to create the 
“standard” set of 39 phone categories. 

5.4 Experiment with various reduced dimensions 

The first experiment was conducted to evaluate the two NLDA versions with various 
dimensions in the reduced feature space with and without the use of PCA. As input 
features, 13 DCTCs, computed with 8 ms frames and 2 ms spacing, were represented with 6 
DCSCs over a 500 ms block, for a total of 78 features (13 DCTCs x 6 DCSCs). The 48-
dimensional outputs of the neural network were further reduced by PCA in NLDA1, while 
the dimensionality reduction was controlled only by the number of nodes in the middle 
layer in NLDA2. The features which were dimensionality reduced by PCA and LDA alone 
were also evaluated for the purpose of comparison. Figure 16 shows recognition accuracies 
of dimensionality reduced features using 1-state and 3-state HMMs with 3 mixtures per 
state. Note that the NLDA1 features without the PCA process are always 48 dimensions. 
Compared to the PCA and LDA reduced features, the NLDA1 and NLDA2 features 
performed considerably better for both the 1-state and 3-state HMMs. 
For the case of 3-state HMMs, the transformed features reduced to 24 dimensions resulted in 
the highest accuracy of 69.3% for NLDA1. A very similar accuracy of 69.2% was obtained 
with NLDA2 using 36-dimensional features. The recognition accuracies were further 
improved by about 3% with PCA reduced dimensionality features versus the NLDA 
features for most cases, showing the effectiveness of PCA in de-correlating the network 
outputs. The accuracies obtained with the original 78 features, and 3 mixture HMMs, are 
approximately 58% (1 state models) and 63% (3 state models). 

5.5 NLDA1 and NLDA2 experiment with various HMM configurations 

The aim of the second experiment is a more thorough evaluation of NLDA1 and NLDA2 
using a varying number of states and mixtures in HMMs. The 78 DCTC/DCSCs (computed 
as mentioned in previous section) were reduced to 36 dimensions based on the results of the 
previous experiment. The 48 phoneme level targets were used in the training of the network. 
The features which are the direct outputs of the network without PCA processing were also 
evaluated. 
Figure 17 shows accuracies using 1-state and 3-state HMMs with a varying number of 
mixtures per state. NLDA2 performed better than NLDA1 for all conditions--approximately 
2% higher accuracy. The NLDA2 transformed features resulted in the highest accuracy of 
73.4% with 64 mixtures, which is about 1.5% higher than the original features for the same 
condition. The use of PCA improves accuracy on the order of 2% to 10%, depending on the 
conditions. Although not shown explicitly by the results depicted in Figure 17, it was also 
experimentally determined that for NLDA1,  highest accuracies were obtained using a 
nonlinearity in the output nodes of the NN for training, but replacing this with a linear node 
for transforming the features for use with the HMM. In contrast, for NLDA2, best 
performance was obtained with the nonlinearities used for both training and final 
transformations. The superiority of the NLDA transformed features is more significant 
when a small number of mixtures are used. For example, the NLDA2 features modeled by 3-
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state HMMs with 3 mixtures resulted in an accuracy of 69.4% versus 63.2% for the original 
features. 
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Fig. 16. Accuracies of NLDA1 and NLDA2 with various dimensionality reduced features 

based on 1-state (top panel) and 3-state HMMs (bottom panel). The NLDA1 features without 

PCA are always 48 dimensions. 
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Fig. 17. Accuracies of the NLDA1 and NLDA2 features using 1-state (top panel) and 3-state 

HMMs (bottom panel) with various numbers of mixtures. 
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These results imply that the middle layer outputs of a neural network are able to better 

represent original features in a dimensionality-reduced space than are the outputs of the 

final output layer. The configuration of HMMs can be largely simplified by incorporating 

NLDA. 

5.6 Experiments with large network training 

The results of the previous experiment showed large performance advantages for NLDA2 

over NLDA1 and the original features, when using either a small number of features, or a 

“small” HMM. However, if all original features were used, and a 3- state HMM with a large 

number of mixtures were used, there was very little advantage of NLDA2, in terms of 

phonetic recognition accuracy. Therefore, an additional experiment was performed, using 

the state level targets with “don’t cares,” as mentioned previously, and a very large neural 

network for transforming features. The state targets were formed using either a constant 

length ratio (ratio for 3 states: 1:4:1) or a Viterbi forced alignment approach, as described in 

Section 4.5. The expanded neural networks had 144 output nodes and were iteratively 

trained. For both NLDA1 and NLDA2, the networks were configured with 78-500-36-500-

144 nodes, going from input to output. 
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Fig. 18. Recognition accuracies of the NLDA dimensionality reduced features using the state 
level targets. “(CR)” and “(FA)” indicate the training targets obtained with the constant 
length ratio and forced alignment respectively. 
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As shown in Figure 18, both NLDA1 and NLDA2 using the expanded targets lead to a 
significant increase in accuracy. The NLDA2 accuracies are typically about 2% higher than 
NLDA1 accuracies. The use of forced alignment for state boundaries resulted in the highest 
accuracy of 75.0% with 64 mixtures. However, the best result using the much simpler 
constant ratio method is only marginally lower at 74.9%. Similar experiments, with all 
identical conditions except using either phone level targets, or state level targets without 
“don’t cares” resulted in about 2% lower accuracies. These results imply that the use of 
“don’t cares” is able to reduce errors introduced by inaccurate determination of state 
boundaries.  
Comparing these results with those from Figure 17, the NLDA2 features in a reduced 36-
dimensional space achieved a substantial improvement versus the original features, 
especially when a small number of mixtures were used. These results show the NLDA 
methods based on the state level training targets are able to form highly discriminative 
features in a dimensionality reduced space. 

5.7 MFCC experiments 

For comparison, 39-dimensional MFCC features (12 coefficients plus energy with the delta 
and acceleration terms) were reduced to 36 dimensions with the same configurations and 
evaluated. The results followed the same trend, but the accuracies were about 4% lower than 
those of the DCTC-DCSC features for all cases, for example, 70.7% with NLDA2 using 
forced alignment and 32 mixtures. 

6. Conclusions 

Nonlinear dimensionality reduction methods, based on the general nonlinear mapping 
abilities of neural networks, can be useful for capturing most of the information from high 
dimensional spectral/temporal features, using a much smaller number of features. A neural 
network internal representation in a “bottleneck” layer is more effective than the 
representation at the output of a neural network. The neural network features also should 
be linearly transformed with a principal components transform in order to be effective for 
use by a Hidden Markov Model. For use with a multi-hidden-state Hidden Markov Model, 
the nonlinear transform should be trained with state-specific targets, but using “don’t 
cares,” to account for imprecise information about state boundaries. In future work, linear 
transforms other than principal components analysis, such as heteroscedastic linear 
transforms followed by maximum likelihood linear transforms,  should be explored for post 
processing of the nonlinear transforms. Alternatively, the neural network architecture 
and/or training constraints could be modified so that the nonlinearly transformed features 
are more suitable as input features for a Hidden Markov Model. 
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