
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

CORE Metadata, citation and similar papers at core.ac.uk

Provided by IntechOpen

https://core.ac.uk/display/322395036?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 

Modeling Identification of the Nonlinear  
Robot Arm System Using MISO NARX  

Fuzzy Model and Genetic Algorithm 

Ho Pham Huy Anh1, Kyoung Kwan Ahn2 and Nguyen Thanh Nam3 

1Ho Chi Minh City University of Technology, Ho Chi Minh City  
2FPMI Lab, Ulsan University, S. Korea 

3DCSELAB, Viet Nam National University 

Ho Chi Minh City (VNU-HCM) 
Viet Nam 

1. Introduction 

The PAM robot arm is belonged to highly nonlinear systems where perfect knowledge of 
their parameters is unattainable by conventional modeling techniques because of the time-
varying inertia, hysteresis and other joint friction model uncertainties. To guarantee a good 
tracking performance, robust-adaptive control approaches combining conventional methods 
with new learning techniques are required. Thanks to their universal approximation 
capabilities, neural networks provide the implementation tool for modeling the complex 

input-output relations of the multiple n DOF PAM robot arm dynamics being able to solve 
problems like variable-coupling complexity and state-dependency. During the last decade 
several neural network models and learning schemes have been applied to on-line learning 
of manipulator dynamics (Karakasoglu et al., 1993), (Katic et al., 1995). (Ahn and Anh, 2006a) 
have optimized successfully a pseudo-linear ARX model of the PAM robot arm using 
genetic algorithm. These authors in (Ahn and Anh, 2007) have identified the PAM 
manipulator based on recurrent neural networks. The drawback of all these results is 
considered the n-DOF robot arm as n independent decoupling joints. Consequently, all 
intrinsic coupling features of the n-DOF robot arm have not represented in its recurrent NN 
model respectively.  
To overcome this disadvantage, in this study, a new approach of intelligent dynamic model, 
namely MISO NARX Fuzzy model, firstly utilized in simultaneous modeling and 
identification both joints of the prototype 2-axes pneumatic artificial muscle (PAM) robot 
arm system. This novel model concept is also applied to (Ahn and Anh, 2009) by authors. 
The rest of chapter is organized as follows. Section 2 describes concisely the genetic 
algorithm for identifying the nonlinear NARX Fuzzy model. Section 3 is dedicated to the 
modeling and identification of the 2-axes PAM robot arm based on the MISO NAR Fuzzy 
model. Section 4 presents the experimental set-up configuration for MISO NARX Fuzzy 
model-based identification. The results from the MISO NARX Fuzzy model-based 
identification of the 2-axes PAM robot arm are presented in Section 5. Finally, in Section 6 a 
conclusion remark is made for this paper. 
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2. Genetic algorithm for NARX Fuzzy Model identification 

The classic GA involves three basic operations: reproduction, crossover and mutation. As to 
derive a solution to a near optimal problem, GA creates a sequence of populations which 
corresponds to numerical values of a particular variable. Each population represents a 
potential solution of the problem in question. Selection is the process by which chromosomes 
in population containing better fitness value having greater probability of reproducing. In this 
paper, the roulette-wheel selection scheme is used. Through selection, chromosomes encoded 
with better fitness are chosen for recombination to yield off-springs for successive generations. 
Then natural evolution (including Crossover and Mutation) of the population will be 
continued until a desired termination or error criterion achieved. Resulting in a final 
generation contained of highly fitted chromosomes represent the optimal solution to the 
searching problems. Fig. 1 shows the procedure of conventional GA optimization. 
It needs to tune following parameters before running the GA algorithm: 
D: number of chromosomes chosen for mating as parents 
N : number of chromosomes in each generation 
Lt: number of generations tolerated for no improvement on the value of the fitness before 
MGA terminated 
Le: number of generations tolerated for no improvement on the value of the fitness before 

the extinction operator is applied. It need to pay attention that e t
L L . 

 : portion of chosen parents permitted to be survived into the next generation 

q: percentage of chromosomes are survived according to their fitness values in the extinction 
strategy 
The steps of MGA-based NARX Fuzzy model identification procedure are summarized as: 
Step 1. Implement tuning parameters described as above. Encode estimated parameters 

into genes and chromosomes as a string of binary digits. Considering that 

parameters lie in several bounded region k 

 
k k

w   for k=1,…,h. (1) 

The length of chromosome needed to encode wk is based on k and the desired accuracy k. 
Set i=k=m=0. 
Step 2. Generate randomly the initial generation of N chromosomes. Set i=i+1. 
Step 3. Decode the chromosomes then calculate the fitness value for every chromosome of 

population in the generation. Consider 
max

iF the maximum fitness value in the ith 

generation. 
Step 4. Apply the Elitist strategies to guarantee the survival of the best chromosome in 

each generation. Then apply the G-bit strategy to this chromosome for improving 
the efficiency of MGA in local search. 

Step 5.   
1. Reproduction: In this paper, reproduction is set as a linear search through roulette wheel 

values weighted proportional to the fitness value of the individual chromosome. Each 
chromosome is reproduced with the probability of   

1

j

N

j
j

F

F
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Fig. 1. The flow chart of conventional GA optimization procedure. 
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Fig. 2. The flow chart of the modified GA optimization procedure. 
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with j being the index of the chromosome (j=1,…,N). Furthermore, in order to prevent some 
strings possess relatively high fitness values which would lead to premature parameter 
convergence, in practice, linear fitness scaling will be applied. 
2. Crossover: Choose D chromosomes possessing maximum fitness value among N 

chromosomes of the present gene pool for mating and then some of them, called  best 
chromosomes, are allowed to survive into the next generation. The process of mating D 

parents with the crossover rate pc will generate (N-) children. Pay attention that, in the 
identification process, it is focused the mating on parameter level rather than on 
chromosome level. 

3. Mutation: Mutate a bit of string ( 0 1 ) with the mutation rate Pm.  

Step 6. Compare if 1

max max

i iF F  , then k=k+1, m=m+1 ; otherwise, k=0 and m=0. 

Step 7. Compare if k=Le, then apply the extinction strategy with k=0. 
Step 8. Compare if m=Lt, then terminate the MGA algorithm; otherwise go to Step 3. 
Fig. 2 shows the procedure of modified genetic algorithm (MGA) optimization. 

3. Identification of the 2-Axes PAM robot arm based on MISO NARX fuzzy 
model 

3.1 Assumptions and constraints  

Firstly,  it  is  assumed  that  symmetrical  membership functions  about  the  y-axis will  
provide  a  valid fuzzy model. A symmetrical rule-base is also assumed. Other constraints 
are also introduced to the design of the MISO NARX Fuzzy Model (MNFM). 

 All  universes  of  discourses  are  normalized  to  lie  between  –1  and  1 with  scaling 
factors external to the DNFM used to give appropriate values to the input and output 
variables. 

 It is assumed that the first and last membership functions have their apexes at –1 and 1 
respectively.  This  can  be  justified  by  the  fact  that  changing  the  external scaling 
would have similar effect to changing these positions. 

 Only triangular membership functions are to be used. 

 The number of fuzzy sets is constrained to be an odd integer greater than unity. In 
combination with the symmetry requirement, this means that the central membership 
function for all variables will have its apex at zero. 

 The  base  vertices  of membership  functions  are  coincident with  the  apex  of  the 
adjacent membership  functions. This ensures the value of any input variable is a 
member of at most two fuzzy sets, which is an intuitively sensible situation. It also 
ensures that when a variable’s membership of any set is certain, i.e. unity, it is a 
member of no other sets. 

Using  these  constraints  the  design  of  the  DNFM input and output membership  
functions  can  be  described using two parameters which include the number of 
membership functions and the positioning of the triangle apexes. 

3.2 Spacing parameter 
The second parameter specifies how the centers are spaced out across the universe of 
discourse.  A  value  of  one  indicates  even  spacing,  while  a  value  larger  than  unity 
indicates  that  the membership functions are closer together in the center of the range and 
more  spaced  out  at  the  extremes  as  shown  in  Fig.3. The  position  of  each center  is  
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calculated  by  taking  the  position  the  centre would  be  if  the  spacing were even  and  by  
raising  this  to  the  power  of  the  spacing  parameter. For example, in the case where there 
are five sets, with even spacing (p =1) the center of one set would be at 0.5.  If  p  is  modified  
to  two,  the  position  of  this  center moves  to  0.25.  If the spacing parameter is set to 0.5, 
this center moves to (0.5)0.5 = 0.707 in the normalized universe of discourse. Fig. 3 presents 
Triangle input membership function with spacing factor = 0.5. 
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Fig. 3. Triangle input membership function with spacing factor = 0.5. 

3.3 Designing the rule base 

As  well  as  specifying  the  membership  functions,  the  rule-base  also  needs  to  be 
designed.  Again idea presented by Cheong in was applied.  In specifying a rule base, 
characteristic spacing parameters for each variable and characteristic angle for each output 
variable are used to construct the rules.   
 Certain characteristics of the rule-base are assumed in using the proposed construction 
method:  

 Extreme outputs more usually occur when the inputs have extreme values while mid-
range outputs generally are generated when the input values are mid-range.  

 Similar combinations of input linguistic values lead to similar output values.  
Using  these  assumptions  the  output  space  is  partitioned  into  different  regions 
corresponding  to  different  output  linguistic  values. How the space is partitioned is 
determined by the characteristic spacing parameters and the characteristic angle. The angle  
determines  the  slope  of  a  line  through  the  origin  on  which  seed  points  are placed. 
The positioning of the seed points is determined by a similar spacing method as was used to 
determine the center of the membership function. 
Grid points  are  also  placed  in  the  output  space  representing  each  possible combination  
of  input  linguistic  values. These are spaced in the same way as before. The  rule-base  is  
determined  by  calculating which  seed-point  is  closest  to  each  grid point. The output 
linguistic value representing the seed-point is set as the consequent of the antecedent 
represented by the grid point. This is  illustrated  in  Fig. 4a, which  is  a  graph showing  
seed  points  (blue  circles)  and  grid-points (red circles). Fig. 4b shows the derived rule 
base. The lines on the graph delineate the different regions corresponding to different 
consequents. The parameters for this example are 0.9 for both input spacing parameters, 1 
for the output spacing parameter and 45° for the angle theta parameter. 
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Fig. 4a. The Seed Points and the Grid Points for Rule-Base Construction 

 

 

Fig. 4b. Derived Rule Base. 

3.4 Parameter encoding 

To run a MGA, a suitable encoding for each of the parameters and bounds for each of them 
needs to be carefully decided.  For  this  task  the  parameters  given  in Table 1 are  used 
with  the  shown  ranges  and  precisions. Binary encoding is used as it is felt that this allows 
the MGA more flexible to search the solution space more thoroughly. The  numbers  of  
membership  functions  are  limited  to  the  odd  integers  inclusive between (3 – 9) in case 
MGA-based PAM robot arm Inverse and Forward TS fuzzy model and between (3–5) in case 
MGA-based PAM robot arm Inverse and Forward NARX Fuzzy model identification. 
Experimentally, this was considered to be a reasonable constraint to apply. The advantage 
of doing this is that this parameter can be captured in just one to two bits per variable. 
For the spacing parameters, two separate parameters are used.  The  first,  within  the range  
[0.1– 1.0],  determines  the magnitude  and  the  second,  which  takes  only  the values –1 or 
1, is the power by which the magnitude is to be raised. This determines whether  the  
membership  functions  compress  in  the  center  or  at  the  extremes. Consequently, each 
spacing parameter obtains the range [0.1 – 10]. The precision required for the magnitude is 
0.01, meaning that 8 bits are used in total for each spacing parameter. The scaling for the 
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input variables is allowed to vary in the range [0 – 100], while that of the output variable is 
given the range [0 – 1000]. 
 

Parameter Range Precision No. of Bits 

Number of Membership Functions 3-9 2 2 

Membership Function Spacing 0.1 – 1.0 0.1 7 

Membership Function -1 - 1 2 1 

Rule-Base Scaling 0.1 – 1.0 0.01 7 

Rule-Base Spacing -1 - 1 2 1 

Input Scaling 0 - 100 0.1 10 

Output Scaling 0 - 1000 0.1 17 

Rule-Base Angle 0 - 2π π/512 11 

Table 1. MGA-based Inverse and Forward NARX Fuzzy Model Parameters used for 
encoding. 

3.5 Inverse and forward MISO NARX fuzzy models of the 2-Axes PAM robot arm 

The newly proposed Inverse and Forward MISO NARX Fuzzy model of the PAM robot arm 

presented in this paper is improved by combining the extraordinary predictive and adaptive 

features of the Nonlinear Auto-Regressive with eXogenous input (NARX) model structure. 

The resulting model established a nonlinear relation between the past inputs and outputs 

and the predicted output, the system prediction output is combination of system output 

produced by real inputs and system historical behaviors. It can be expressed as: 

           ˆ 1 ,..., , ,...,
a d b d

y k f y k y k n u k n u k n n       (2) 

Here, na and nb are the maximum lag considered for the output, and input terms, 

respectively, nd is the discrete dead time, and f represents the mapping of fuzzy model. 

The structure of the newly proposed MISO NARX TS fuzzy model is that this MISO NARX 

TS fuzzy model interpolates between local linear, time-invariant (LTI) ARX models as 

follows: 

Rule j: if  z1(k) is  A1,j  and … and zn(k) is  An,j then 

      
1 1

ˆ
n n

j j j

i i d
i i

a b

y k a y k i b u k i n c
 

        (3) 

where the element of z(k) “scheduling vector” are usually a subset of the x(k) regressors that 
contains the variables relevant to the nonlinear behaviors of the system, 

           1 ,..., , ,...,
a d b d

Z k y k y k n u k n u k n n       (4) 

while the fj(q(k)) consequent function contains all the regressor  q(k)=[X(k) 1], 

      
1 1

( )
n n

j j j

j i i d
i i

a b

f q k a y k i b u k i n c
 

        (5) 

www.intechopen.com



Modeling Identification of the Nonlinear 
Robot Arm System Using MISO NARX Fuzzy Model and Genetic Algorithm 

 

11 

 
 

 

 

Fig. 5. Block diagrams of The MGA-based 2-Axes PAM robot arm Inverse MISO Fuzzy 
Model Identification. 
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Fig. 6. Block diagrams of The MGA-based 2-Axes PAM robot arm Forward MISO Fuzzy 
Model Identification. 
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  ˆ jy k c  (6) 

with the z(k) contains all inputs of the NARX model: 

             1 ,..., , ,...,
a d b d

Z k X k y k y k n u k n u k n n        (7) 

Thus the difference between NARX fuzzy model and Fuzzy TS model method is that the 
output from Inverse TS fuzzy model is linear and constant, and the output from Inverse 
NARX fuzzy model is NARX function. But they have same fuzzy inference structure (FIS). 
The block diagrams presented in Fig. 5a and Fig. 5b illustrate the difference between the 
MGA-based PAM robot arm Inverse MISO TS Fuzzy model and the MGA-based PAM robot 
arm Inverse MISO NARX Fuzzy model identification. Forwardly, the block diagrams 
presented in Fig. 5b and Fig.5c illustrate the difference between the MGA-based PAM robot 
arm Inverse MISO NARX11 Fuzzy model identification and Inverse MISO NARX22 Fuzzy 
model identification. 
Likewise, the block diagrams presented in Fig. 6a and Fig. 6b illustrate the difference 
between the MGA-based PAM robot arm Forward MISO TS Fuzzy model and the MGA-
based PAM robot arm Forward MISO NARX Fuzzy model identification. Forwardly, the 
block diagrams presented in Fig. 6b and Fig.6c illustrate the difference between the MGA-
based PAM robot arm Forward MISO NARX11 Fuzzy model identification and Forward 
MISO NARX22 Fuzzy model identification. 

4. Identification of inverse and forward MISO NARX fuzzy models  

The schematic diagram of the prototype 2-Axes PAM robot arm and the block diagram of 
the experimental apparatus are shown in Fig.7 and Fig. 8. 
  

 

Fig. 7. General configuration of 2- axes PAM robot arm 
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Fig. 8. Working principle of the 2-axes PAM robot arm. 

In general, the procedure which must be executed when attempting to identify a dynamical 
system consists of four basic steps (Fig. 9). 
To realize Step 1, Fig. 10 presents the PRBS input applied simultaneously to the 2 joints of 
the tested 2-axes PAM robot arm and the responding joint angle outputs collected from both 
of them. This experimental PRBS input-output data is used for training and validating not 
only the Forward MISO NARX Fuzzy model (see Fig. 10a) but also for training and 
validating the Inverse MISO NARX Fuzzy model (see Fig. 10b) of the whole dynamic two-
joint structure of the 2-axes PAM robot arm. 
PRBS input and Joint Angle output from (40–80)[s] will be used for training, while PRBS 

input and Joint Angle output from (0–40)[s] will be used for validation purpose. The range 
(4.3 – 5.7) [V] and the shape of PRBS voltage input applied to the 1st joint as well as the range 
(4.5 – 5.5) [V] and the shape of PRBS voltage input applied to rotate the 2nd joint of the 2-axes 
PAM robot arm is chosen carefully from practical experience based on the hardware set-up 

using proportional valve to control rotating joint angle of both of PAM antagonistic pair. 
The experiment results of 2-axes PAM robot arm position control prove that experimental 
control voltages u1(t) and u2(t) applied to both of PAM antagonistic pairs of the 2-axes PAM 

robot arm is to function well in these ranges. Furthermore, the chosen frequency of PRBS 
signal is also chosen carefully based on the working frequency of the 2-axes PAM robot arm 
will be used as an elbow and wrist rehabilitation device in the range of (0.025 – 0.2) [Hz]. 
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5. Experiment results 

Three different identification models were carried out, which include MGA-based 2-axes 
PAM robot arm’s MISO UUdot fuzzy model identification, MGA-based 2-axes PAM robot 
arm’s MISO NARX11 fuzzy model identification, and MGA-based PAM 2-axes robot arm’s 
MISO NARX22 fuzzy model identification, respectively. 
 

 

Fig. 9. MISO NARX Fuzzy Model Identification procedure 
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Fig. 10a. Forward MISO NARX Fuzzy Model Training data obtained by experiment. 
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Fig. 10b. Inverse MISO NARX Fuzzy Model Training data obtained by experiment. 

5.1 MGA-based 2-axes PAM robot arm forward MISO NARX fuzzy model identification 
The identification procedure bases on the experimental input-output data values measured 
from the 2-axes PAM robot arm. Table 1 tabulates fuzzy model parameters used for 
encoding as optimized input values of MGA optimization algorithm. The range (3–5) 
permits the variable of number of membership functions obtaining 2 different odd values 
would be chosen by MGA (3 and 5). Block diagrams in Fig.5a, Fig.5b and Fig.5c illustrate the 
MGA-Based 2-axes PAM robot arm’s forward MISO Fuzzy model identification. 
The fitness value of MGA-based optimization calculated based on Eq. (8) is presented in Fig. 
11 (with population = 40 and generation = 150).  

 4 2 1

1

1
ˆ10 .( ( ( ) ( )) )

M

j j
k

F y k y k
M





   (8) 

This Figure represents the fitness convergence values of both Forward Fuzzy models of both 
joints of the 2-axes PAM robot arm corresponding to three identification methods. This Figure 
shows that the fitness value of  Forward MISO UUdot fuzzy model falls early at 10th 
generation into a local optimal trap equal 1050 with joint 1 and 1250 with joint 2. The reason is 
that UUdot fuzzy model can’t cover nonlinear features of the 2-axes PAM robot arm implied 
in input signals U [v] and Udot [v/s]. On the contrary, the fitness value of Forward MISO 
NARX fuzzy model obtains excellently the global optimal value (equal 2350 with joint 1 and 
12600 with joint 2 in case of Forward MISO NARX11 fuzzy model and equal 9350 with joint 1 
and 10400 with joint 2 in case of Forward MISO NARX22 fuzzy model). The cause is due to 
novel Forward MISO NARX fuzzy model combines the extraordinary approximating capacity 
of fuzzy system with powerful predictive and adaptive potentiality of the nonlinear NARX 
structure implied in Forward NARX Fuzzy Model. Consequently, resulting Forward MISO 
NARX11 and Forward MISO NARX22 fuzzy model as well cover excellently most of nonlinear 
features of the 2-axes PAM robot arm implied in input signals U(z)[v] and Y(z-1) [deg]. 
Consequently, the validating result of the MGA-based identified 2-axes PAM robot arm’s 
Forward MISO NARX fuzzy model presented in Fig. 12 also shows a very good range of 

error (< [ 5o ] with joint 1 and < [ 1o ] with joint 2 in case of Forward MISO NARX11 fuzzy 
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Fig. 11. Fitness Convergence of MGA-based Forward MISO Fuzzy Model optimization of 
the 2-axes PAM robot arm 
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Fig. 12. Validation of MGA-based Forward MISO Fuzzy Model of the 2-axes PAM robot arm 

model and <[ 3o ] with joint 1 and <[ 2.5o ] with joint 2 in case of Forward MISO NARX22 

fuzzy model). These results are very impressive in comparison with Forward MISO UUdot 

fuzzy model (error > [ 10o ] for both joints. 

These results assert the outstanding potentiality of the novel proposed MISO NARX fuzzy 
model not only in modeling and identification but also in advanced control application  
as well. 
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5.2 MGA-based 2-axes PAM robot arm Inverse MISO NARX fuzzy model identification 

The identification procedure bases on the experimental input-output data values measured 
from the 2-axes PAM robot arm. Table 1 tabulates fuzzy model parameters used for 
encoding as optimized input values of MGA optimization algorithm. The range (3–5) 
permits the variable of number of membership functions obtaining 2 different odd values 
would be chosen by MGA (3 and 5). Block diagrams in Fig.6a, Fig.6b and Fig.6c illustrate the 
MGA-Based 2-axes PAM robot arm’s Inverse MISO Fuzzy model identification. 
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Fig. 13. Fitness Convergence of MGA-based Inverse MISO Fuzzy Model optimization of the 
2-axes PAM robot arm 

The fitness value of MGA-based optimization calculated based on equation (8) is presented 
in Fig. 13 (with population = 40 and generation = 100). This Figure represents the fitness 
convergence values of both Inverse Fuzzy models of both joints of the 2-axes PAM robot 
arm corresponding to three different identification methods. This Figure shows that the 
fitness value of  Inverse MISO UUdot fuzzy model falls early (at 8th generation with joint-1 
and 48th generation with joint-2) into a local optimal trap equal 5250 with joint 1 and 7480 
with joint 2. The reason is that UUdot fuzzy model seems impossible to learn nonlinear 
features of the 2-axes PAM robot arm implied in input signals U [deg] and Udot [deg/s]. On 
the contrary, the fitness value of Inverse MISO NARX fuzzy model obtains excellently the 
global optimal value (equal 485000 with joint 1 and 676000 with joint 2 in case of Inverse 
MISO NARX11 fuzzy model and equal 235000 with joint 1 and 98400 with joint 2 in case of 
Inverse MISO NARX22 fuzzy model). The cause is due to proposed Inverse MISO NARX 
fuzzy model combines the extraordinary approximating capacity of fuzzy system with 
powerful predictive and adaptive potentiality of the nonlinear NARX structure implied in 
Inverse NARX Fuzzy Model. Consequently, MGA-based Inverse MISO NARX11 and 
Inverse MISO NARX22 fuzzy model as well cover excellently all of nonlinear features of the 
2-axes PAM robot arm implied in input signals U(z)[deg] and Y(z-1) [V]. 
Consequently, the validating result of the MGA-based identified 2-axes PAM robot arm’s 
Inverse MISO NARX fuzzy model presented in Fig. 14 also shows a very good range of error 
(< [ 0.1[ ]V ] with joint 1 and < [ 0.05[ ]V ] with joint 2 in case of Inverse MISO NARX11 

fuzzy model and < [ 0.15[ ]V ] with joint 1 and < [ 0.3[ ]V ] with joint 2 in case of Inverse 

MISO NARX22 fuzzy model). These results are very impressive in comparison with Inverse 
MISO UUdot fuzzy model (error > [ 1[ ]V ] with joint 1 and > [ 0.5[ ]V ] with joint 2 

respectively). 
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Fig. 14. Validation of MGA-based Inverse MISO Fuzzy Model of the 2-axes PAM robot arm 

These results assert the outstanding potentiality of the novel proposed Forward and Inverse 
MISO NARX fuzzy model not only in modeling and identification of the 2-axes PAM robot 
arm but also in advanced control application of nonlinear MIMO systems as well. 

6. Conclusion 

In this study, a new approach of MISO NARX Fuzzy model firstly utilized in modeling and 
identification of the prototype 2-axes pneumatic artificial muscle (PAM) robot arm system 
which has overcome successfully the nonlinear characteristic of the prototype 2-axes PAM 
robot arm and resulting Forward and Inverse MISO NARX Fuzzy model surely enhance the 
control performance of the 2-axes PAM robot arm, due to the extraordinary capacity in 
learning nonlinear characteristics and coupled effects as well of MISO NARX Fuzzy model. 
Results of training and testing on the complex dynamic systems such as PAM robot arm show 
that the newly proposed MISO NARX Fuzzy model which is trained and optimized by 
modified genetic algorithm presented in this study can be used in online control with better 
dynamic property and strong robustness. This resulting MISO NARX Fuzzy model is quite 
suitable to be applied for the modeling, identification and control of various plants, including 
linear and nonlinear process without regard greatly changing external environments. 
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