
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322394857?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Dragos Calitoiu1 and Dan Milici2
1Carleton University

2Stefan cel Mare University
1Canada

2Romania

The problem of plastic anti-personal mine detection is well known. These devices are typically
75mm in diameter and between 25mm to 50mm in thickness. Some types contain no metal,
but their explosive (RDX, TNT) can be considered as a dielectric material with a dielectric
constant between 3.5 and 4.0. This electromagnetic property enables a radar to identify mines.
It is true that the radars operating “through the air” provide a high detection rate. However,
in the case of operating “into the ground”, the problems are significant and inherently reduce
performance. Target identification is done in the presence of the air-ground interface, which
usually produces a higher amplitude signal than an anti-personal mine Chignell (1998). This
context can justify why the difficulties of detecting anti-personal mines are formidable. A
family of search mobots controlled by a new algorithm proposed in this research could be a
solution1 for operating on the ground.
In this Chapter we2 address the general question of what is the best strategy to search
efficiently for randomly located objects (target sites). We propose a new agent based algorithm
for searching in an unpredictable environment. The originality of our work consists in
applying a non-cooperative strategy, namely the distributed Goore Game model, as opposed
to applying the classical collaborative and competitive strategies, or individual strategies. This
research covers both the destructive search and the non-destructive search. The first occurs
when the agent visits the target only one time. The latter can be performed in either of the two
cases - if the target becomes temporarily inactive or if it leaves the area.
The proposed algorithm has two versions: one when the agent can move with a step equal to
unity and the other when the step of the agent follows a Levy flight distribution. The second
version is inspired by the work of A.M. Reynolds et al. Reynolds (2006a;b; 2007; 2008a;b;
2009); Reynolds & Rhodes (2009); Rhodes & Reynolds (2007) where he braced the use of Levy
processes when resources are sparsely distributed within unpredictable environments.
The Chapter is organized as follows. The Goore Game is presented in the next section. In
Section 2 we introduce the terminology of the Learning Automata, methodology used for

1 The main application of our proposed algorithm is anti-personal mine detection. However, this research
can be extended to any type of exploration on ground or aerial using uninhabited aerial vehicle (on
Earth or for conducting planetary science missions).

2 The first author is also member of OPTIMOD Research Institute, Ottawa.

Modeling with Non-cooperative Agents:
Destructive and Non-Destructive Search

Algorithms for Randomly Located Objects

23

www.intechopen.com

implementing the behavior of the players for the Goore Game. The motivation due to Levy
flight for selecting the search step is described in Section 3. The proposed search algorithm and
the results of the simulations are presented in Section 4 (for destructive search) and Section 5
(for non-destructive search). Finally, Section 6 concludes the Chapter.

1. Goore game

Goore Game is an example of self-organization and self-optimization game studied in the field
of artificial intelligence. It was presented by Tsetlin in 1963 Tsetlin (1963) and analyzed in detail
in Narendra & Thathachar (1989) and Thathachar & Arvind (1997). The informal formulation
follows.
"Imagine a large room containing N cubicles and a raised platform. One person (voter) sits in each
cubicle and a Referee stands on the platform. The Referee conducts a series of voting rounds as follows.
On each round the voters vote either “Yes” or “No” (the issue is unimportant) simultaneously and
independently (they do not see each other) and the Referee counts the fraction, f , of “Yes” votes. The
Referee has a unimodal performance criterion G(f), which is optimized when the fraction of “Yes” votes
is exactly f0. The current voting round ends with the Referee awarding a dollar with probability G(f)
and assessing a dollar with probability 1 − G(f) to every voter independently. On the basis of their
individual gains and losses, the N voters then decide, again independently, how to cast their votes on
the next round. No matter how many players there are, after enough trials, the number of “Yes” votes
will approximate N f0."
Each player plays solely in a greedy fashion, voting each time the way that seems to give
the player the best payoff. This is somewhat unexpected. Greed affects outcomes in an
unpredictable manner: a player does not attempt to predict the behavior of other players.
Instead, each player performs by trial and error and simply preferentially repeats those actions
that produce the best result for that player.
The essence of the Goore Game is a random walk that is strongly biased toward the global
optimum. Some of the game’s features Oommen et al. (1999) which render it both non-trivial
and intriguing are:

• The game is a non-zero-sum game.

• Unlike the games traditionally studied in the AI literature (Chess, Checkers, etc.) the game
is essentially a distributed game.

• The players of the game are ignorant of all of the parameters of the game. All they know
is that they have to make a choice, for which they are either rewarded or penalized. They
have no clue as to how many other players there are, how they are playing, or even of
how/why they are rewarded/penalized.

• The stochastic function used to reward or penalize the players, after measuring their
performance as a whole, can be completely arbitrary, as long as it is uni-modal.

• The game can achieve a globally optimal state with N-players without having to explicitly
dictate the action to each player. The players self-organize and self-optimize based on the
reward function.

The Goore Game can be representative for many real-life scenarios as recruitment of motor
units Thathachar & Arvind (1997) (as working muscles) to perform a certain task, such as
exerting a force to lift a weight. In this setting, each motor unit contributes either a fixed
magnitude of force or none at all. Function of the specificity of the job, it will be mandatory to
recruit the correct number of motor units. If there are more motor units than actually needed,
this will exert more force than necessary. On contrast, if there are less motor units, they may

468 Search Algorithms and Applications

www.intechopen.com

not be able to perform the task at all. The problem is one of employing the right number of
working units to perform the task.
The game was initially studied in the general learning domain and was considered an
interesting pathological game. Recently, it was applied in QoS (Quality of Service) support
in wireless sensor networks Iyer & Kleinrock (2003), Chen & Varshney (2004), in controlling
wings with integrated check-valve electrostatic actuators Ho et al. (2002), and in cooperative
mobile robotics Cao et al. (1997), Tung & Kleinrock (1996).

2. Some fundamentals of learning automata

Due to the solid theoretical basis that has been established within the Learning Automata
(LA) field during the last decades, and particularly due to the results concerning games, we
decided to implement our searching algorithm using LA.
LA have been used Narendra & Thathachar (1989), Poznyak & Najim (1997), Lakshmivarahan
(1981) to model biological learning systems and to find the optimal action that is offered by
a Random Environment3. Learning is realized by interacting with the Environment and by
processing its responses to the actions that are chosen, while gradually converging toward
an ultimate goal. The environment evaluates the performance of LA and directs the learning
process performed by the LA. Thus, the LA’s overall performance is gradually improved. In
this respect, the process of learning is based on a learning loop involving two entities: the
Random Environment (RE) and the LA.
The RE offers to the automaton a set of possible actions {α1, α2, . . . , αr} to choose from. The
automaton chooses one of those actions, say αi , which serves as an input to the RE. Since the
RE is “aware” of the underlying penalty probability distribution of the system, depending on
the penalty probability ci corresponding to αi, it produces a response (β) to the LA that can be
a reward (typically denoted by the value β = 0), or a penalty (typically denoted by the value
β = 1). The reward/penalty information (corresponding to the action) provided to the LA
helps it to choose the subsequent action. By repeating the above process, through a series of
Environment-Automaton interactions, the LA finally attempts to learn the optimal action from
the Environment. The Learning process is presented in Figure 1.

Fig. 1. The Learning process as a loop of interactions between the LA and Environment.

3 The first author thanks Dr. John B. Oommen for introducing him in the field of Learning Automata.

469Modeling with Non-cooperative Agents:
Destructive and Non-Destructive Search Algorithms for Randomly Located Objects

www.intechopen.com

2.1 The continuous linear reward-inaction scheme

When the Goore Game was first investigated, Tsetlin utilized his so-called Tsetlin automaton
to solve it. Later, more research was done in the LA area and many families of LA proved to
solve the Goore Game efficiently. In our research, we are using a very fast LA: the continuous
Linear Reward-Inaction scheme (LRI) that was introduced by Norman Norman (1968). This
scheme is based on the principle that whenever the automaton receives a favorable response
(i.e., a reward) from the environment, the action probabilities are updated, whereas if the
automaton receives an unfavorable response (i.e., a penalty) from the environment, the action
probabilities are unaltered.
The probability updating equations for this scheme are characterized by a parameter θ (0 <

θ < 1) and can be simplified to be as below Norman (1968):

p1(t + 1) = p1(t) + (1 − θ) × (1 − p1(t))
if α(t) = α1, and β(t) = 0
p1(t + 1) = θ × p1(t)
if α(t) = α2, and β(t) = 0
p1(t + 1) = p1(t)
if α(t) = α1 or α2, and β(t) = 1

(1)

Note that if action αi is chosen, and a reward is received, the probability pi(t) is increased, and
the other probability pj(t) (i.e., j �= i) is decreased. If either α1 or α2 is chosen, and a penalty is

received, P(t) is unaltered.
Equation (1) shows that the LRI scheme has the vectors [1, 0]T and [0, 1]T as two absorbing
states - one of which it converges to. Therefore, the convergence of the LRI scheme is
dependent on the nature of the initial conditions and probabilities.

3. Levy flight

The solution presented in this research has two components: the first one is motivated by
the strategy involving distributed control; the second one is inspired by the moves made
by the animal world. In the previous sections, we introduced the Goore Game and its
implementation with LA. In this section, we present the inspiration from the animal world.
Animals move for various reasons: to search for sources of food that are not accessible in the
immediate vicinity of the animal, to search for a mate, to avoid predators, to visit a watering
hole or to search for a site on which to lay eggs Reynolds & Rhodes (2009). The complexity of
the searching strategy depends on the knowledge about the environment. If the environment
is unchanging or wholly predictable, animals may develop knowledge of where to locate
resources and exploit that knowledge. However, where resource availability is unknown or
unpredictable (and this is the scenario investigated in our research), animals have to conduct
non-oriented searches with little or no prior knowledge of where resources are distributed.
Consequently, the capability to locate resources efficiently will minimize the risk of starvation
and potentially minimize exposure to competitors and predators.
The first suggestion that movement patterns of some biological organisms may have Levy
flight characteristics came from Shlesinger and Klafter Shlesinger & Klafter (1986). These
particular movements consist in random sequences of independent flight-segments whose
lengths, l, are drawn from a probability distribution function, having a power-law tail

p(l) ≈ l−µ, (2)

where 1 < µ < 3.

470 Search Algorithms and Applications

www.intechopen.com

Over recent years, theoretical and field studies provided evidence that many organisms adopt
Levy flight4 movement pattern when they are searching for resources. Honeybees (Apis
mellifera), Drosophhila, aphid, microzooplankton, wandering albatross (Diomedea exulans)
are a few examples Reynolds (2006a)-Reynolds (2008a), Benhamou (2008).
In general, individual random Levy-flight searching strategies are less efficient than an
equidistant (Archimedian) spiral search. However, such a spiral search can only work if
navigation and target detection are precise enough geometrically to ensure that all areas are
explored and the intervening regions are not missed. In the scenario when the objective of
the search is missed, there is no second chance of encountering it because the trajectory is
an ever-expanding spiral. A.M. Reynolds mentioned in Reynolds (2008b) that adopting a
spiral-search pattern would be disastrous if the navigation and detection systems are even
slightly erroneous. A systematic spiral-searching strategy can only be used initially, when
cumulative navigational errors are relatively small but should be abandoned in favour of a
random looping-searching strategy at latter times.
For the completeness of our analysis, we present now the comparison between individual
Brownian search and Levy flight search. For many years, the Brownian motion was the most
used model for describing non-oriented animal movement Kareiva & Shigesda (1983)-Okubo
& Levin (2002). An individual trajectory through space is regarded as being made up
of a sequence of distinct, randomly oriented move step-lengths drawn from a Gaussian
distribution. The main difference between the Brownian walk and the Levy flight is due to
what (or who) decides the length of the movements5. In the Brownian walk, it is considered
that the scale of the movement is defined by the organism; in contrast, in the Levy flight, the
larger scale of the movement is determined by the distribution of the targets (food or prey).
This difference explains why Levy flight is more flexible and suitable for the scenario when
the animal has to adapt to the environmental changes.
The last conclusion encourages exploring the maximization of search efficiency. All of the
above comments on searching strategies are presented in the context of individuals. However,
we propose an algorithm that is collective and has a distributed control: it is able to coordinate
independent searching agents, in a des-centralized fashion.
Until now, in addition to the individual models of search for food, the collective models used
were developed in a collaborative and competitive manner (see Particle Swarm Optimization,
where an entire swarm - flock of birds, school of fish, herd of insects - has a collaborative6

effect of searching for food). To the best of our knowledge, this is the first research to present
a search algorithm using non-cooperative players.

4. Destructive search

This section contains details regarding the algorithm and the corresponding results associated
to the destructive search.

4 Strictly speaking, the pattern identified should be named Levy walk because it contains continuous
movements rather than discrete jumps. However, we are following the literature that uses Levy flight
and Levy walk synonymously.

5 The main consequence of this difference can be evaluated in swarms or flocks Cai et al. (2007);
Viswanathan et al. (1996; 1999). In t steps, a Brownian-walker unit visits t/ ln(t) new sites whereas
a Levy flight unit visits t. However, in t steps, a swarm of N Brownian-walker units visit t ln(N/ ln(t))
new sites whereas a swarm of N Levy flight units visit Nt.

6 Examples of wolves making choices in how to search an area for food can be applied to optimize
autonomous vehicles in search of data Plice et al. (2003).

471Modeling with Non-cooperative Agents:
Destructive and Non-Destructive Search Algorithms for Randomly Located Objects

www.intechopen.com

4.1 The algorithm for the destructive search

The algorithm contains two types of actions that each LA can select: Action 1 means “move”,
whereas Action 2 means “stay”. The “search” process can be added to each of these actions,
namely we can have Action 1 as “move” and “search”, and Action 2 as only “stay” or Action 1
as only “move”, and Action 2 as “stay” and “search”.
The formal procedure is presented below:

Initialization:
Randomly distribute N agents is the area of radius R1;
Randomly associated to each agent a probability Pi1;
Set Flag_i_move=0 for each agent;

FOR j = 1 TO Nr_iter DO:
Moving the agents:
For each agent i DO:
Generate a random number Mi;
IF Mi < Pi1 THEN DO:
Flag_i_move=1;
Randomly rotate the agent;
Compute Dij the distance between the agent and the rest of N − 1 ;
IF (neighborhood is empty) AND (Dij < R2) AND (neighborhood is unvisited)
THEN (MOVE 1 Step);
END IF;
END IF;
END DO;

Feedback from Referee:
Compute f = ∑(Flag_i_move) for all N agents;
Compute G(f);

Updating probabilities for agents
FOR each agent DO:
Generate a random number Si;
IF (Si < G(f)) THEN:
IF (f lag_i_move = 1) THEN increase Pi1
ELSE decrease Pi1;
END IF;
END IF;
END DO;
Set Flag_i_move=0 for each agent;

END DO;

Remarks:

• As we mentioned earlier, our proposed algorithm can be applied on two versions, function
of how the resources are distributed in the environment.

1. Version 1: the movement step is equal to unity.

472 Search Algorithms and Applications

www.intechopen.com

2. Version 2: the movement step follows a Levy flight distribution described by l ∈ [1; 5]
and µ = 2).

• A comment can be made regarding the order of actions to be taken. From the decision
point of view, if the condition Mi < Pi1 is satisfied, the agent will select Action 1 (in our
case, the agent is allowed to move). The agent will be rewarded by the Referee (in general,
by the Environment) function of the decision taken. The second step after making the
decision is to see if he has an empty space unvisited where to move AND if he satisfies the
distance condition: his distance to the farthest neighbor agent must be less than R2. If these
conditions are satisfied, the agent can move on the field. We presented these aspects in
detail to make it easier for the reader to understand the difference between the decision of
selecting Action 1 (to move) and the real process on the field. The probabilities are updated
only function of the decision and not of the real move on the field. It is true that it is possible
to test a new version of the algorithm, namely version 3, where the Flag_i_move becomes
equal to unity only after the movement step is completely done, namely (MOVE 1 STEP)
AND (Flag_i_move). However, the distance condition is very powerful and will affect the
convergence provided by the GG algorithm. The version 3 can succeed if the settings θ (the
constant involved in updating probabilities), N, R1 and R2 are carefully selected.

4.2 Simulation results

In this subsection, we present four families of simulations: one obtained with Version 1 of the
algorithm and three obtained with different settings of Version 2 of the algorithm (namely
three different values for the length of the movement step). We depict only the graphical
results obtained after enough iterations that are not allowed more movements, for each
version of the proposed algorithm. However, we present in Table 1 the area covered by N=10
agents (players) in four settings: Version 1 and Version 2 with the same µ = 2 and l = 2, l = 3
and l = 4. Each setting was run 25 simulations. In each of these settings, we used N = 10
agents, with R1 = 10 and R2 = 40. All the agents are LRI with θ = 0.1. The performance

criterion G(·) used by the Referee is G(x) = 0.9 × e−
(0.7−x)2

0.0625 , as presented in Figure 2. The
reader can see that the maximum was covered from Version 1; the increase in the length of the
movement decreases the total area covered by the agents.
In Figure 3 (left), we present the result corresponding to Version 1 of the algorithm, namely
when the movement step is equal to unity. In Figures 3 (right) and 4 we present the results
corresponding to Version 2 of the algorithm, namely when the movement step follows a Levy
flight with l = 2 in the first graph, with l = 3 in the second graph, and l = 4 in the third
graph. The exponent of the distribution is always µ = 2. The reader can observe the size of the
steps as being very close to the agents that cannot move. Many of them have a probability P1

equal to unity. Thus, they can move from the point of view of the decision maker. However,
the distance constraint will not allow them to realize the movement on the field.

5. Non-destructive search

This section contains details regarding the algorithm and the corresponding results associated
to the non-destructive search.

5.1 The algorithm

As in previous section, the algorithm contains two types of actions that each LA can select:
Action 1 means “move”, whereas Action 2 means “stay”. The “search” process can be added

473Modeling with Non-cooperative Agents:
Destructive and Non-Destructive Search Algorithms for Randomly Located Objects

www.intechopen.com

Iteration Version1 l = 2 l = 3 l = 4
1 218 516 406 381
2 196 337 535 455
3 185 584 370 428
4 147 608 471 526
5 132 490 569 412
6 190 510 366 524
7 134 511 411 368
8 180 703 625 534
9 184 433 452 429

10 197 582 462 331
11 138 443 638 486
12 129 569 556 280
13 332 389 441 510
14 127 450 435 441
15 165 525 502 400
16 168 300 540 538
17 218 302 521 394
18 235 422 364 504
19 217 430 588 385
20 225 372 417 597
21 252 441 474 544
22 247 501 391 346
23 130 432 624 373
24 111 568 405 430
25 113 428 383 360

Mean 182.80 473.84 477.84 439.04
Standard Deviation 52.98 97.71 86.90 79.96

Table 1. Destructive Search: The area covered by N=10 agents in four settings: Version 1
(l = 1) and Version 2 (with the same µ = 2 and l = 2, l = 3 and l = 4). Each setting was run
25 simulations. The average and the standard deviation are presented.

to each of these actions, namely we can have Action 1 as “move” and “search”, and Action 2 as
only “stay” or Action 1 as only “move”, and Action 2 as “stay” and “search”.
The formal procedure is presented below:

Initialization:
Randomly distribute N agents is the area of radius R1;
Randomly associated to each agent a probability Pi1;
Set Flag_i_move=0 for each agent;

FOR j = 1 TO Nr_iter DO:
Moving the agents:
For each agent i DO:
Generate a random number Mi;
IF Mi < Pi1 THEN DO:

474 Search Algorithms and Applications

www.intechopen.com

Iteration Version1 l = 2 l = 3 l = 4
1 876 822 716 613
2 848 757 766 589
3 1031 1017 745 623
4 1024 906 564 516
5 1021 993 752 796
6 766 834 782 528
7 928 750 572 606
8 1140 897 533 451
9 873 1006 882 374

10 1042 934 860 666
11 903 762 803 476
12 898 921 779 363
13 947 893 654 475
14 855 1086 857 434
15 1261 674 604 553
16 1062 950 643 697
17 1016 680 575 509
18 1112 831 727 610
19 983 955 1096 674
20 1178 499 716 365
21 1029 879 694 649
22 1011 958 740 573
23 908 987 619 594
24 1107 828 791 629
25 852 876 762 402

Mean 986.84 867.8 729.28 550.6
Standard Deviation 118.44 129.75 123.48 113.05

Table 2. Non-Destructive Search: The area covered by N=10 agents in four settings: Version 1
(l = 1) and Version 2 (with the same µ = 2 and l = 2, l = 3 and l = 4). Each setting was run
25 simulations. The average and the standard deviation are presented.

Flag_i_move=1;
Randomly rotate the agent;
Compute Dij the distance between the agent and the rest of N − 1 ;
IF (neighborhood is empty) AND (Dij < R2)
THEN (MOVE 1 Step);
END IF;
END IF;
END DO;

Feedback from Referee:
Compute f = ∑(Flag_i_move) for all N agents;
Compute G(f);

475Modeling with Non-cooperative Agents:
Destructive and Non-Destructive Search Algorithms for Randomly Located Objects

www.intechopen.com

Fig. 2. The function G(x) = 0.9 × e−
(0.7−x)2

0.0625 has its maximum value for x=0.7.

Fig. 3. Destructive Search: (Left)The simulation made with Version 1. (Right) The simulation
made with Version 2: Levy flight with µ = 2 and l = 2.

Updating probabilities for agents
FOR each agent DO:
Generate a random number Si;
IF (Si < G(f)) THEN:
IF (f lag_i_move = 1) THEN increase Pi1

ELSE decrease Pi1;
END IF;
END IF;
END DO;
Set Flag_i_move=0 for each agent;

476 Search Algorithms and Applications

www.intechopen.com

Fig. 4. Destructive Search: (Left) The simulation made with Version 2: Levy flight with µ = 2
and l = 3. (Right) The simulation made with Version 2: Levy flight with µ = 2 and l = 4.

END DO;

Remarks:

• As we mentioned earlier, our proposed algorithm can be applied on two versions, function
of how the resources are distributed in the environment.

1. Version 1: the movement step is equal to unity.

2. Version 2: the movement step follows a Levy flight distribution described by l ∈ [1; 5]
and µ = 2).

• Again, a comment can be made regarding the order of actions to be taken. The steps are
the same as in the previous section. However, the difference from the destructive search
consist in the freedom to mode into an already visited empty space.

6. Simulation results

In this section, we present four families of simulations: one obtained with Version 1 of the
algorithm and three obtained with different settings of Version 2 of the algorithm (namely
three different values for the length of the movement step). We depict only the graphical
results obtained after enough iterations that are not allowed more movements, for each
version of the proposed algorithm. However, we present in Table 2 the area covered by N=10
agents (players) in four settings: Version 1 and Version 2 with the same µ = 2 and l = 2, l = 3
and l = 4. Each setting was run 25 simulations. In each of these settings, we used N = 10
agents, with R1 = 10 and R2 = 40. All the agents are LRI with θ = 0.1. The performance

criterion G(·) used by the Referee is G(x) = 0.9 × e−
(0.7−x)2

0.0625 , as presented in the previous
section. The reader can see that the maximum was covered from Version 1; the increase in the
length of the movement decreases the total area covered by the agents.

477Modeling with Non-cooperative Agents:
Destructive and Non-Destructive Search Algorithms for Randomly Located Objects

www.intechopen.com

In Figure 5 (left), we present the result corresponding to Version 1 of the algorithm, namely
when the movement step is equal to unity. In Figures 5 (right) and 6 we present the results
corresponding to Version 2 of the algorithm, namely when the movement step follows a Levy
flight with l = 2 in the first graph, with l = 3 in the second graph, and l = 4 in the third
graph. The exponent of the distribution is always µ = 2. The reader can observe the size of the
steps as being very close to the agents that cannot move. Many of them have a probability P1

equal to unity. Thus, they can move from the point of view of the decision maker. However,
the distance constraint will not allow them to realize the movement on the field.

Fig. 5. Non-Destructive Search: (Left) The simulation made with Version 1. (Right) The
simulation made with Version 2: Levy flight with µ = 2 and l = 2.

7. Conclusions

This paper presents a new agents-based algorithms which can be used for identifying efficient
search strategies for locating objects (e.g. mines) distributed over large areas. The originality of
our work consists in applying a non-cooperative non-zero sum game, namely the distributed
Goore Game model. As opposed to the classical collaborative and competitive strategies, the
agents are not aware of the actions of the other agents.
We investigated two methods, namely the destructive search and the non-destructive search.
The proposed algorithm has two versions: one when the agent can move with a step equal to
unity and the other when the step of the agent follows a Levy flight distribution. The latter
version is inspired by the work of Reynolds, motivated by biological examples. We present
the area covered in each simulation function of the length of the movement step. The reader
can evaluate the benefit of each version.
In the case of the non-destructive search, the reader can observe a trade off between the
maximum of area covered and the freedom to search far from the initial center. The Version
1 of the algorithm covers the greatest area. However, the Version 2 of the algorithm is able to
search after targets at a greater distance from the initial center.
In the case of the destructive search, the reader can observe that the Version 2 of the algorithm
covers the greatest area. Increasing l will stabilize the variation of the searching area (the
standard deviation is decreasing).

478 Search Algorithms and Applications

www.intechopen.com

Fig. 6. Non-Destructive Search: (Left)The simulation made with Version 2: Levy flight with
µ = 2 and l = 3. (Right) The simulation made with Version 2: Levy flight with µ = 2 and
l = 4.

The future direction of this research are: i) producing a sensitivity analysis of the search
problem, namely how the area covered by the agents depends on N, R1, R2 and G and ii)
comparing the benefits of destructive vs. non-destructive search algorithms.

8. References

Benhamou, S. (2008). How many animals really do the Levy walk? reply, Ecology Vol. 89(No.
8): 2351–2352.

Cai, X., Zeng, J., Cui, Z. & Tan, Y. (2007). Particle Swarm Optimization using Levy probability
distribution, L.Kand, Y.Liu and S. Zeng (Eds): ISICA 2007, LNCS 4683 pp. 353–361.

Cao, Y., Fukunaga, A. & Kahng, A. (1997). Cooperative mobile robotics: Antecedents and
directions, Autonomous Robots Vol. 4(No. 1): 1–23.

Chen, D. & Varshney, P. (2004). QoS support in wireless sensor networks: A survey, The 2004
International Conference on Wireless Networks (ICWN 2004) pp. 227–233.

Chignell, R. (1998). MINREC - a development platform for anti-personel mine detection
and recognition, Detection of abandoned land mines, Conference publication no. 458, IEE,
Edinburg, U.K., pp. 64–76.

Ho, S., Nassef, N., Pornsin-Sirirak, N., Tai, Y.-C. & Ho, C.-M. (2002). Flight dynamics of small
vehicles, ICAS CONGRESS, Toronto, Canada.

Iyer, R. & Kleinrock, L. (2003). Qos control for sensor networks, IEEE International Conference
on Communications Vol. 1: 517–521.

Kareiva, P. & Shigesda, N. (1983). Analysis insect movement as a correlated random walk,
Oecologia Vol. 56: 234–238.

Lakshmivarahan, S. (1981). Learning Algorithms Theory and Applications, Springer-Verlag,
Berlin.

Narendra, K. & Thathachar, M. (1989). Learning Automata: An Introduction, Prentice-Hall Inc.,
Upper Saddle River, NJ.

479Modeling with Non-cooperative Agents:
Destructive and Non-Destructive Search Algorithms for Randomly Located Objects

www.intechopen.com

Norman, M. F. (1968). On linear models with two absorbing barriers, Journal of Mathematical
Psychology Vol. 5: 225–241.

Okubo, A. & Levin, S. (2002). Diffusion and ecological problems: modern perspectives,
Springer-Verlag, New-York.

Oommen, B., Granmo, O. & Pederson, A. (1999). Using stochastic AI techniques to achieve
unbounded resolution in finite player Goore game and its applications, Proceedings of
IEEE-CIG’07, the 2007 IEEE Symposium on Computational Intelligence and Games, IEEE,
Hawaii, pp. 161–167.

Plice, L., Pisanich, G. & Young, L. (2003). Biologically inspired behavioural strategies
for autonomous aerial explorers on Mars, Proceedings of the 2003 IEEE Aerospace
Conference, Big Sky 1: 1–304.

Poznyak, A. & Najim, K. (1997). Learning Automata and Stochastic Optimization,
Springer-Verlag, Berlin.

Reynolds, A. (2006a). On the intermittent behavior of foraging animals, Europhysics Letters
Vol. 75(No. 4): 517–520.

Reynolds, A. (2006b). Optimal scale-free searching strategies for the location of moving
targets: New insights on visual cued mate location behaviour in insects, Physics
Letters A Vol. 360: 224–227.

Reynolds, A. (2007). Avoidance of specific odour trails results in scale-free movement
patterns and the execution of an optimal searching strategy, Europhysics Letters Vol.
79: 30006–30011.

Reynolds, A. (2008a). How many animals really do the Levy walk? comment, Ecology Vol.
89(No. 8): 2347–2351.

Reynolds, A. (2008b). Optimal random Levy-loop searching: new insights into the searching
behaviours of central-place foragers, Europhysics Letters Vol. 82(No. 2): 20001–20006.

Reynolds, A. (2009). Adaptive Levy walks can outperform composte Brownian walks in
non-destrcutive random searching scenarios, Physica A Vol. 388: 561–564.

Reynolds, A. & Rhodes, C. (2009). The Levy flight paradigm: random search patterns and
mechanisms, Ecology Vol. 90: 877–887.

Rhodes, C. & Reynolds, A. (2007). The influence of search strategies and homogeneous
isotropic turbulence on planktonic contact rates, Europhysics Letters Vol.
80: 60003–60012.

Shlesinger, M. & Klafter, J. (1986). Growth and Form, H.E.Stanley and N.Ostrowski (Eds),
Martinus Nijhof Publishers, Amsterdam.

Thathachar, M. & Arvind, M. (1997). Solution of Goore game using models of stochastic
learning automata, Journal of Indian Institute of Science (No. 76): 47–61.

Tsetlin, M. (1963). Finite automata and the modeling of the simplest forms of behavior, Uspekhi
Matem Nauk Vol. 8: 1–26.

Tung, B. & Kleinrock, L. (1996). Using finite state automata to produce self-optimization and
self-control, IEEE Transactions on parallel and distributed systems Vol. 7(No. 4).

Viswanathan, G., Afanasyev, V., Buldyrev, S., Murphy, E., Prince, P. & Stanley, H. E. (1996).
Levy flight search patterns of wandering albatrosses, Nature Vol. 381: 413–415.

Viswanathan, G., Buldyrev, S., Havlin, S., da Luz, M. G., Raposo, E. P. & Stanley, H. E. (1999).
Optimizing the success of random searches, Nature Vol. 401: 911–914.

480 Search Algorithms and Applications

www.intechopen.com

Search Algorithms and Applications

Edited by Prof. Nashat Mansour

ISBN 978-953-307-156-5

Hard cover, 494 pages

Publisher InTech

Published online 26, April, 2011

Published in print edition April, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Search algorithms aim to find solutions or objects with specified properties and constraints in a large solution

search space or among a collection of objects. A solution can be a set of value assignments to variables that

will satisfy the constraints or a sub-structure of a given discrete structure. In addition, there are search

algorithms, mostly probabilistic, that are designed for the prospective quantum computer. This book

demonstrates the wide applicability of search algorithms for the purpose of developing useful and practical

solutions to problems that arise in a variety of problem domains. Although it is targeted to a wide group of

readers: researchers, graduate students, and practitioners, it does not offer an exhaustive coverage of search

algorithms and applications. The chapters are organized into three parts: Population-based and quantum

search algorithms, Search algorithms for image and video processing, and Search algorithms for engineering

applications.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Dragos Calitoiu and Dan Milici (2011). Modeling with Non-cooperative Agents: Destructive and Non-

Destructive Search Algorithms for Randomly Located Objects, Search Algorithms and Applications, Prof.

Nashat Mansour (Ed.), ISBN: 978-953-307-156-5, InTech, Available from:

http://www.intechopen.com/books/search-algorithms-and-applications/modeling-with-non-cooperative-agents-

destructive-and-non-destructive-search-algorithms-for-randomly-

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

