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1. Introduction 

The problem analysed in this chapter is the discovery of interesting relations between 
variables in large databases.  
The databases are considered to contain transactions that each contain one or more items 
from a discrete set of items. The relations between the items are expressed in the form of 
association rules. The problem of searching for association rules has been denoted in the 
research literature as association rule mining. 
The initial association rule mining problem ignored any correlation between the transactions 

and searched for associations only between items inside a transaction (this case is called case 

intratransaction association rules mining). To search for associations between items across 

several transactions ordered on a dimension (usually time or space), intertransaction 

association rule mining has been used. 

We use the stock market database example to differentiate between intra- and inter- 

transaction analysis. If the database contains the price for each stock at the end of the trading 

day, an intratransaction association rule might be “If stock prices for companies A and B go up 

for one day, there is a probability of over c% that the price for company C will also go up the 

same day”. However, analysts might be more interested in rules like “If stock prices for 

companies A and B go up for one day, there is a probability of over c% that the price for 

company C will go up two days later.” This rule describes a relationship between items from 

different transactions, and it can be discovered only by using intertransaction analysis. 

The main part of association rules mining has been determined to be finding the frequent 
itemsets. 
A search algorithm that finds frequent intertransaction itemsets called InterTraSM will be 
presented, exemplified and analyzed in this chapter. It was first introduced in (Ungureanu  
& Boicea, 2008). This algorithm is an extension for the intertransactional case of the 
SmartMiner algorithm presented in (Zou et al., 2002). InterTraSM focuses on mining 
maximal frequent itemsets (MFI) – itemsets that are not a subset of any other frequent 
itemset. Once the MFI have obtained all the frequent itemsets can easily be derived, and 
they can then be counted for support in a single scan of the database. 
The remainder of this chapter is organized as follows. 

• Section 2 contains a formal definition for the problem of intertransaction association 
rules mining.  
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• Section 3 briefly describes other algorithms used for finding frequent intertransaction 
itemsets.  

• Section 4 introduces the InterTraSM algorithm for searching frequent intertransaction 
itemsets. It also contains a detailed example of its application, and an analysis of its 
complexity.  

• Section 5 presents an implementation of the InterTraSM algorithm, the experimental 
results obtained regarding its execution time, and a comparison with the performances 
of the algorithms from Section 3. 

• Section 6 concludes the chapter and proposes future research in this area.  

2. Problem description 

We consider I to be a set of literals {a1, a2, …, an}, also called items. 
In the original association rule mining problem a transaction T was defined as a set of items 
such that T ⊂  I. 
A database DB (also called transaction database or transactional database) was defined as a 
set of transactions with unique transaction IDs {T1, T2, …, Tn}. 
An association rule was defined as an implication of the form X→Y, where X and Y are 

distinct subsets of I (X ⊂  I, Y ⊂  I, X ∩ Y = Ø ). 

The two main measures used to characterize association rules are support and confidence. 
A rule X→Y has support s in a database DB if s% of the transactions from DB contain X∪ Y. 
A rule X→Y has confidence c in a database DB if c% of the transactions from DB that contain 
X also contain Y. 
The initial approach to association rule mining only considered rules between items from 
the same transaction. 
In practice though the transactions usually have some additional information attached to 
them, like the time when they occurred, the customers that purchased the items, or the 
geographical location. 
In order to characterize such contexts of when / where the transactions occurred, 
dimensional attributes have been introduced. They can be of any kind, as long as they can 
be associated with the transactions from the database in a meaningful way. 
In this paper we consider only the case when there is a single dimensional attribute which 
has an ordinal domain. Furthermore, the domain of the attribute can be divided into equal-
sized intervals, such that at most one transaction from the transaction database is associated 
with each interval, and that each transaction can be associated with an interval. 
Let df be the first interval and dl be the last interval from the domain that have an associated 
transaction. Then, without loss of generality, we can denote the first interval with  0 and the 
intervals that follow it with 1, 2, 3 and so on. We consider l to be the number of interval dl. 
We denote with D the domain of the attribute and with Dom(D) the set of intervals 
{0, 1, 2, …, l}. 
So for the intertransaction case we introduce the following 
Definition Transactional database. A transactional database is a database that contains 

transactions of the form t = (d, T), where d ∈  dom(D) and T ⊂  I. 
In practice we are not interested in associations between items from transactions for which 
the distance between the associated intervals is unlimited. The running time of an algorithm 
that searches for such associations can be prohibitive, and also the practical use of such 
associations is limited at best. The goal of our research is used to find previously unknown 
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correlations between items, but the idea is that there might be an intrinsic relation between 
the data that would come into light. Such a relation would ensure that future transactions 
from the same domain would exhibit the same properties. This would mean that we can use 
the discovered associations to take useful actions related to the domain. 
Research has therefore been focused on searching for associations between items from 
transactions for which the distance between the associated intervals has a maximum value w 
– we will also call this value the maximum span of the intertransaction association rules. 
Definition Sliding window. A sliding window W in a transactional database T represents a 

set of continuous intervals from the domain D, such that there exists in T a transaction 

associated to the first interval from W. Each interval is called a subwindow of the sliding 

window, and they are numbered corresponding to their temporal order d0, d1, …, dw. We 

also use the notation W[0], W[1], …, W[w] for the intervals of W and we say that w is the 

size of the sliding window. 

Definition Megatransaction. Let T be a transactional database, let I be the set of items  
{a1, a2, …, an} and let W be a sliding window with size w. A megatransaction M associated with 
the sliding window W is the set of all elements denoted with aij, such that ai belongs to the 
transaction associated with the interval W[j], for each corresponding value of 1≤i≤n, 0≤j≤w. 
The items from a megatransaction will be called from now on extended items. 
We denote with E the set of all the possible extended items  {a10, a11, ..., a1w, a20, ..., anw}. 
We call an intratransaction itemset a set of items A ⊂  I. 
We call an intertransaction itemset a set of extended items B ⊂  E such that B contains at least 
one extended item of the form ei0. 
Definition Intertransaction association rule. An intertransaction association rule has the form 
X → Y where: 
i.  X, Y ⊂  E 
ii.  X contains at least one extended item of the form ei0, 1≤i≤n. 
iii.  Y contains at least one extended item of the form eij, 1≤i≤n, j>0. 

iv.  X ∩ Y = ∅  

Let N be the total number of transactions, TXY be the set of transactions that contain the set 
X∪ Y  and TX be the set of transactions that contain X. 
Then the support of the rule is s = |TXY| / N and the confidence of the rule is 
c = |TXY| / |TX|. 
The research in this domain has been focused on finding association rules whose support and 

confidence are above some specified minimum thresholds. The support threshold indicates 

that the two itemsets appear together in the transactional database often enough so we can 

benefit in practice from finding an association between them, and the confidence threshold 

indicates a minimum degree of confidence for the association between the two itemsets. 

The problem of searching for intertransaction association rules has been divided into two 
parts: 

• finding the intertransaction itemsets that have the support above a specified minimum 
threshold (this itemsets are said to be frequent) 

• finding the association rules  
The second problem takes much less computational time than the first one, so it presents 

little interest for research. A solution has been discussed for example in (Tung et al., 2003). 

Our work (like most of the research in this area) has therefore focused on developing an 

algorithm for the first problem. 
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3. Related work 

Several algorithms for finding frequent intertransaction itemsets have been previously 
introduced, and some of them are presented in this chapter. Many of the algorithms for 
searching intertransaction association rules (including our algorithm InterTraSM that will be 
presented in the next chapter) are extensions for the intertransaction case of algorithms 
developed for searching intratransaction association rules. 

3.1 E-Apriori, EH-Apriori 

The classic algorithm for searching (intratransaction) association rules is Apriori, introduced 
in (Agrawal & Srikant, 1994). It uses the following fact: if an itemset that has k elements (also 
called a k-itemset) is frequent, then all its subsets, (k-1) itemsets, must also be frequent. 
The algorithm first determines all the frequent 1 - itemsets (all the frequent items in this 
case) by counting the support of all the items. 
Then, for each k>=2, the algorithms knows that the frequent itemsets must have all their 
subsets also frequent. The algorithm uses each combination of two itemsets with k-1 
elements to see if their reunion is a k-itemset for which all the subsets with k-1 elements are 
frequent itemsets. For all the k-itemsets that verify this property (these itemsets are called 
candidate itemsets) their support is counted in a single pass through the database. 
The algorithm stops when for a given k no frequent k-itemsets are found. 
In order to ensure that the same frequent itemset is not discovered multiple times (starting 
from different initial items) the algorithm assumes there is a lexical ordering between the 
items, and at any given steps it tries to add to the current itemset only items that are 
“greater” (using the lexical ordering) than the last added item. 
The E-Apriori (Extended Apriori) algorithm for the intertransaction case, introduced in (Lu 
et al., 2000), is an extension of the Apriori algorithm so it uses intertransaction itemsets 
containing extended items. A lexical order is given for the intratransaction items, and for all 
the extended items from the same interval the lexical order for the corresponding 
intratransaction items is used. It is also said that all the extended items from interval (i+1) 
are “greater” than all the extended items from interval i. 
It has been observed that the time for obtaining the frequent 2-itemsets has a big impact on 
the total running time, due to the fact that there are a large number of frequent 1-itemsets, 
which leads to a large number of candidate 2-itemsets which have to be analized. 
The EH-Apriori (Extended Hash Apriori) , also introduced in (Lu et al., 2000), uses a hashing 
technique to reduce the number of candidate 2-itemsets. As the support of the frequent 
extended items is computed, each possible 2-extended itemset is mapped to a hash table. Each 
bucket from the hash table indicates how many extended itemsets has been hashed to it. 

3.2 FITI 

Another algorithm for searching intertransaction association rules, initially introduced in 
(Tung et al., 2003) is called FITI (First Intra Then Inter). 
FITI uses the property that given a frequent intertransaction itemset, any subset for which 
the same interval is associated to all the extended items must correspond to a frequent 
intratransaction itemset. Using this property the algorithm first determines all the frequent 
intratransaction itemsets, and using them determines next all the frequent intertransaction 
itemsets – hence the name of the algorithm. 
We briefly describe the three phases of the FITI algorithm: 
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1. Find the frequent intratransaction itemsets (using any algorithm for intratransaction 
association rule mining, like Apriori). The itemsets will be stored in a special data 
structure called FILT (Frequent-Itemsets Linked Table). This consists of a hash table of 
itemsets where the nodes are linked with multiple types of connections. Each frequent 
itemset is associated a unique ID. 

2. The database is transformed into a set of encoded frequent-itemsets tables (FIT tables). 
The number of FIT tables is the maximum size of the frequent intratransaction itemsets 
discovered in phase 1, and each table corresponds to a particular size (from 1 to the 
maximum value). For any FIT table, corresponding to a size denoted with k, the records 
have the form {di, IDseti} where di represents a value of the dimensional attribute (an 
interval), and IDseti represents the set of IDs (defined in phase 1) of frequent 
intratransaction itemsets with size k that are found in the transaction associated with di. 

3. The frequent intertransaction itemsets are discovered using a level-wise process similar 
to the one used in Apriori: all the candidates with k elements are determined, their 
support is computed during one pass through the database and then using the frequent 
itemsets with k elements we go on to compute all the candidates with (k+1) elements. 

For the discovery of frequent itemsets with two items FITI uses a hashing approach similar 
to the one used in EH-Apriori. 
For k>=2, the algorithm defines two kinds of combining two itemsets with k elements in 
order to generate a candidate itemset with (k+1) elements: 
a. an intratransaction join is performed between two itemsets who have (k-1) of their 

items identical, and the items that are different belong to the same interval of the sliding 
window 

b. a cross-transaction join is performed between two itemsets who have (k-1) of their items 
identical, and the items that are different belong to different intervals I1 and I2 of the 
sliding window. In order not to generate the same itemsets through both 
intratransaction and cross-transaction joins, the following restriction are placed for 
cross-transaction joins: 

- the first itemset must not have any items associated to interval I2 or any items 
associated to any interval after I1 

- the second itemset must not have any items associated to interval I1 or any items 
associated to any interval after I2 

-  any interval must have associated at most one extended item in both itemsets 

3.3 ITP-Miner 
The ITP-Miner algorithm, initially introduced in (Lee & Wang, 2007), tries to avoid the 
breadth first search approach of Apriori-like algorithms. In order to realize only one pass 
through the database the algorithm uses a special data structure called dimensional attribute 
list (dat-list) to store the dimensional attributes (the corresponding intervals in fact) 
associated to a frequent itemset. For a given frequent itemset A, if the megatransactions in 
which A appears start at the intervals t1, t2, …, tn then the associated dat-list is A(t1, t2, …, tn). 
The algorithm also assumes a lexical ordering of the intratransaction items, which leads to 
an ordering of the extended items in the way described for the E-Apriori and EH-Apriori 
algorithms. A convention is used that the extended items in a frequent itemset from a dat-
list are stored in increasing order (using the ordering previously described). 
The algorithm uses a structure called ITP-Tree that is a search tree that has dat-lists as 
nodes. The parent node of a dat-list a(t1, t2, …, tn) is the dat list b(u1, u2, …, um) where b is 
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obtained from a by removing the last extended item and m>=n. The root of an ITP-Tree is 

the empty itemset ∅  and the nodes on the same depth level are ordered in increasing order 

depending on the extended items from the itemset. 
The algorithm starts with determining the frequent items and their dat-lists, and for 
determining the frequent itemsets with more than one element it doesn't read the database 
again, but it works with the already determined dat-lists. 
A join between two frequent itemsets {u0(0), u1(i1), …, uk-1(ik-1)} and {v0(0), v1(j1), …, vk-1(jk-1)} 
is deemed possible if the first (k-1) extended items are identical and uk-1(ik-1) < vk-1(jk-1) using 
the given order relation. The unified itemset is then {u0(0), u1(i1), …, uk-1(ik-1), vk-1(jk-1)}- so it 
is the same principle of generating candidate itemsets as the one used for Apriori-like 
algorithms, only a DFS search is used instead of a BFS-search. 
The dat-list for a candidate itemset has for the set of dimensional attributes the intersection 
of the sets of dimensional attributes from the two itemsets used to generate it. The size of 
this set determines the support of the candidate itemset, and in this way it is determined if 
the itemset is frequent. 
The following pruning strategies are used by ITP-Miner to reduce the size of the search 
space: 

• pruning of infrequent itemsets with 2 elements: a hash table is used to check if a pair of 
frequent items can generate a frequent 2-itemset before the join is performed. A hash 
table H2 is created while finding the frequent items and their dat-lists 

• pruning of infrequent itemsets with k elements: before performing a join of 2 frequent 
itemsets with (k-1) elements, the hash table H2 is used to check if the two extended 
items that differ might represent a frequent itemsets with 2 elements (once again the 
property that any subset of a frequent itemset must also be frequent is used here) 

3.4 EFP-Growth 

We will now summarize the EFP-Growth algorithm, initially presented in (Luhr et al., 2007). 
The algorithm uses the pattern-growth property and it is an adaptation for the 
intertransaction case of the FP-Growth algorithm described in (Han et al., 2000). The 
algorithm uses an EFP-Tree (Extended Frequent Pattern Tree) which is an adaptation for the 
intertransaction case of the FP-Tree used in the FP-Growth algorithm. 
The EFP-Tree is composed of intraitem nodes ordered by descending frequency, and each 
node can have zero or one interitem subtree which is a FP-Tree where the frequency 
ordering of the interitems is conditioned on the intraitem parent node. 
The construction of the EFP-Tree is done in three passes over the database. 
The frequency of the extended items is computed in the first pass and the frequent 
intraitems and interitems are found. 
In the second pass the intraitem tree is built and for each transaction the infrequent 
intraitems are removed and the frequent items are sorted in decreasing order of frequency. 
Also the conditional frequencies for the interitems are computed (the frequencies only in the 
transactions in which the intraitems appear). 
In the third pass the interitem sub-trees are build. 
The trees are build by passing through each transaction of the database, and for each item 
encountered by going one step lower in the tree (or creating a new descendent node with 
the new item if it doesn't exist) and increasing the support with 1. When the first interitem is 
reached the processing passes to the interitem subtree corresponding to the current 
intraitem node. 
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After the EFP-Tree is built the algorithm computes the association rules using the pattern 
growth property. A divide and conquer strategy is used to construct trees conditioned on 
known frequent base rules and to take the dot product of the frequent items in the 
conditional tree and the conditional base itemset to produce new rules, which in turn will 
become the conditional base for the new set of rules to be mined. 
The algorithm uses two types of conditional trees: 

• a conditional EFP-Tree that is used to find the intraitems and interitems that can be 
used to extend the present intraitem rule suffix 

• a FP-Tree of the interitems inherited by the conditional base 

4. The InterTraSM algorithm 

4.1 Theoretical presentation 

We will present in this chapter the InterTraSM algorithm for mining intertransaction 
association rules, which was first introduced in (Ungureanu & Boicea, 2008). The algorithm 
is an adaptation for the intertransaction case of the SmartMiner algorithm for finding 
(intratransaction) association rules, which was introduced in (Zou et al., 2002). 
The InterTraSM algorithm (like the SmartMiner algorithm which it extends) searches for 
maximal frequent itemsets (itemset which are frequent, but for which no superset of them is 
also frequent) using a depth first search. Then all the frequent itemsets are derived from the 
maximal frequent itemsets (MFI). 
The algorithms consists of a series of steps, each of which is applied to a node of a search tree. 
We will describe next what data is available for each node and how that data is processed. 
We identify a node with X:Y, where X (the head) is the current set of extended items that has 
been discovered to form a frequent itemset, and Y (the tail) is the set of extended items that 
still has to be explored to find all the maximal frequent itemsets that contain X is a subset. 

The starting node of the algorithm is identified by ∅ :E (the empty set and the set of all 

possible extended items). 
As in the SmartMiner algorithm, we also use some additional data attached to each node to 
help our algorithm: 
- we define the transaction set T(X) to represent all the transactions from the database 
that contain the itemset X. For the starting node (where X is the empty set) the transaction 
set is the entire database, and we will show how T(X) is obtained for each subsequent node 
- if we denote with M the known frequent itemsets (the itemsets determined to be 
frequent before we start processing of the current node) and with N = X : Y the current node, 
then the tail information of M to N is the parts from Y (the tail of the node) that can be 
inferred from M. For the processing of a given node the algorithm we use the tail 
information for the frequent itemsets discovered previously. 
The entry data for a node consists then of: 
- the transaction set T(X) 
- the tail Y 
- the tail information for the node that has been obtained so far (also called global tail 

information, or Ginf). This information is passed from the parent node, and it contains 
the itemsets that have been previously discovered to be frequent in T(X) 

The exit data for a node consists of: 
- the updated global tail information Ginf 
- the local maximal frequent itemsets discovered are the node and its descendants 
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The data processing at the level of a node from the search tree is described below: 
1. count the support for each item from Y in the transaction set T(X) 
2. remove the infrequent items from Y 
3. while Y has at least one element 

4. if there is an item in Ginf with the size equal to the length of the tail, the itemset  
containing all the items from the tail has already found to be frequent in previous 
processing steps, so we can skip to step 12 

5. select an item ai from Y 
6. the head of the next state Si+1 will be Xi+1 = X ∪  {ai} 
7. the tail of the next state Si+1 will be Yi+1 = Y \ {ai} 
8. the global tail information for Si+1 is computed by projecting on 

Yi+1  the itemsets that contain ai 
9. recursively call the algorithm for the node Ni+1 = Xi+1 : Yi+1 

The returned values will be Mfii the local maximal frequent itemsets found at the 
node Ni+1. The global tail information Ginf is updated to include Mfii and then it is 
projected on the remaining tail. The members subsumed by Mfii are marked as 
deleted 

10. Y = Yi+1 
11.  end while 
12. Mfi = ∪  (aiMfii) 
13. return Mfi and the current updated value of Ginf 
The InterTraSM algorithm uses extended items instead of the intratransaction items used by 
SmartMiner. Also for the first level nodes we select while starting from the root node we 
choose only extended items which have 0 as the associated interval – because each 
intertransaction association rule must contain at least one extended item with interval 0 in 
the head of the rule. 
We next analyse the complexity of the InterTraSM algorithm. 
We consider the following variables that affect the complexity of the algorithm: 
- |D| - the number of intervals for the domain D. This is equal to the number of 

intertransactions from the database 
- W – the size of the sliding window 
- |L1| - the number of frequent intratransaction items 
The processing for a node from the search tree is divided in the following parts: 
1. Determining the support in T(X) for each element from Y 

The number of megatransaction from T(X) is limited to |D| and the number of 
elements from Y is limited to |L1|xW, so the number of operations for this step is 
O(|D|x|L1|xW). 

2. Preparing the entry data for each sub-node, calling each sub-node recursively (without 
taking into account the processing inside the sub-nodes) and computing the exit data 
using the data returned by the subnode – the complexity is O(|L1|xW). 

We conclude that the maximum complexity for a node is O(|D|x|L1|xW), but the maximum 
average complexity on all nodes will be lower since both the number of transactions in T(X) 
and the number of items in Y decrease while we descend into the search tree. 

4.2 An example 

We will next present a detailed example of the execution steps of the algorithm. 
We consider first a set of items {a, b, c, d}. 
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We consider next the following transactional database: with 5 transactions: 
T0 a,b 
T1 a,c 
T2  c 
T3 a,b 
T4  c,d 
We consider the maximum span of the intertransaction association rules we want to 
discover to be 1 (so the size of the sliding window will be w=1). 
We will work then with the following 5 megatransactions: 
M0: a0, b0, a1, c1 

M1: a0, c0, c1 
M2: c0, a1, b1 
M3: a0, b0, c1, d1 

M4: c0, d0 
The minimum support threshold for the rules we want to discover is s=0.4 (40%). 
We have E = {a0, b0, c0, d0, a1, b1, c1, d1} 

The entry node N0 of the algorithm has X = , Y = E, Ginf = ∅  and  

T(X) = {M0, M1, M2, M3, M4}. 
We start by computing the support for each item from Y in T(X) (step 1 for node N0) 
We find that s(a0)=3, s(b0)=2, s(c0)=3, s(d0)=1, s(a1)=2, s(b1)=1, s(c1)=3, s(d1)=1. 
The frequent extended items are the ones who have the support value at least 2 (40% of the 
total transactions). 
When we remove the infrequent items (step 2 for node N0) we remain with {a0, b0, c0, a1, c1}. 
We select a0 to be X1 - the head of the next node N1, and the tail Y1 will be {b0, c0, a1, c1}. Ginf 

will be ∅  and T(X1) = {M0, M1, M3}. 

We call the algorithm recursively for node N1. 
We compute the support for the items from Y1 in T(X1) (step 1 for node N1) 
We find that s(b0)=2, s(c0)=1, s(a1)=1,  s(c1)=3. 
When we remove the infrequent items (step 2 for node N1) we remain with { b0, c1} 

We next select b0 to be X2 - the head of the next node N2, the tail Y2 will be { c1}, Ginf = ∅  

and T(X2) = {M0, M3}. We call the algorithm recursively for node N2. 
We compute the support for the items from Y2 in T(X2) (step 1 for node N2) 
We find that s(c1)=2. Since there is only one element in the tail and it is frequent we can only 

select c1 as the head for the next node N3 and the tail will be empty, so N3 will return ∅  as 

MFI. No more items remain in the tail to be processed, so the node N2 will return MFI = {c1} 
After N2 returns, the Ginf for N1 will be updated to be {c1}. 
Since the remaining value of the tail is {c1}, according to step 4 for N1 we can skip to step 12. 
The node N1 will return MFI= {b0c1} 
After node N1 returns, the Ginf for node N0 is updated to {b0c1} 
We next return to step 3 and we select another item from the remaining tail {b0, c0, a1, c1} 
We select item b0 to be X4, Y4 will be {c0, a1, c1}, Ginf for node N4 will be the projection of 
Ginf on Y4 - {c1}, T(X4) = {M0, M3}. 
We next call the algorithm recursively for node N4. 
We compute the support for the items from Y4 in T(X4) (step 1 for node N4) 
We find that s(c0)=0, s(a1)=1,  s(c1)=2. 
When we remove the infrequent items (step 2 for node N4) we remain with {c1}. 
According to step 4 we can skip to step 12. 
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The node N4 will return MFI = ∅  

We next return to step 3 and we select another item from the remaining tail {c0, a1, c1}. 
We select item c0 to be X5, Y5 will be {a1, c1}. Ginf for node N5 will be the projection of Ginf 
on Y5 - {c1}. T(X5) = {M1, M2,M4}. 
When call the algorithm recursively for node N5, no frequent items are found in the tail. 
We next return to step 3 and we select another item from the remaining tail {a1, c1}. 
We select item a1 to be X6, Y6 will be {c1}. Ginf for node N6 will be the projection of Ginf on 
Y6 - {c1}. T(X6) = {M1, M3}. 
When call the algorithm recursively for node N6, no frequent items are found in the tail. 
We then return to step 3, but since the condition in step 4 is verified we go to step 12. 
Node N0 returns MFI = {a0b0c1, c0, a1}. 
So the exit data of the algorithm, the maximal frequent itemsets are MFI = {a0b0c1, c0, a1}. 

5. Experiments and results 

We have developed an implementation of the algorithm in C, using a structure similar to 
that from the SmartMiner algorithm. We used C in order to better control the memory usage 
and execution speed of the algorithm. 
The traditional form of input data for algorithms that search for frequent itemsets is a series of 
transactions containing items and having associated domain intervals. We have instead used 
an orthogonal view of the input data. We have first determined the frequent items, and then 
for each frequent item we have used a bitset containing one bit for each megatransaction from 
the database. The bit is 1 if the item appears in the megatransaction and 0 if it does not appear. 
The program was benchmarked under a Windows XP operating system, on a PC with Intel 
Pentium 4 processor with a speed of 3GHz and memory of 1GB. The code has been written 
and compiled using Visual Studio 2003. 
We have used both real and artificial data to test the performance of our algorithm. 
The real data consists of two datasets, WINNER and LOSER, similar to those described in (Lee 
& Wang, 2007). They have been obtained from the values of 10 stock exchange indices  for the 
trading days between January 1, 1991 to December 31, 2005: ASX All Ordinaries Index (ASX), 
CAC40 Index (CAC), DAX Index (DAX), Dow Jones Index (DOW), FTSE 100 INDEX (FTS), 
Hang Seng Index (HSI), NASDAQ Index (NDQ), Nikkei 225 Index (NKY), Swiss Market Index 
(SMI) and Singapore ST Index (STI). In the WINNER set a transaction for a trading day 
contains the stock indices whose value rises for the day, while in the LOSER set a  transaction 
for a trading day contains the stock indices whose value falls for the day. 
For both the WINNER and LOSER datasets we have used the sliding window size to be 4 
(the maximum span of the intertransaction association rules). We have varied the minimum 
support threshold value from 4% to 12% and the results are presented in Fig. 1 and Fig. 2. 
The same data sets (obtained from the same stock indices for the same period) were also 
used to evaluate the ITP-Miner algorithm in (Lee & Wang, 2007). The same sliding window 
size was used and the minimum support varied between the same values, while the 
program was run on a processor with similar properties to the one we used using Microsoft 
Visual C++ 6.0. We have observed a difference of an order of magnitude between the 
execution times, especially larger when the minimum support threshold decreases (and 
there are more frequent itemsets to be found). For example for the LOSER data set when the 
minimum support threshold is set at 4% InterTraSM takes less than 6 seconds, while the 
authors reported that ITP-Miner takes about 100 seconds. 
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Fig. 1. Execution time vs minimum support, WINNER data set, w=4 

 

 

Fig. 2. Execution time vs minimum support, LOSER data set, w=4 

The synthetic data was created using the generator described in (Luhr et al., 2007), 
gracefully provided to us by its authors. 
The generation of data is a process with two steps: 
- first a set of candidate frequent intertransaction itemsets is created 
- then this set is used to populate with items the transactions from the dataset 
We have generated two artificial datasets, representing sparse and dense data. This was the 
same method used in (Luhr et al., 2007) to evaluate the performances of the FITI and EFP-
Tree algorithms. 
The characteristics of the artificial data created are influenced by some parameters that 
guide the generation process. These parameters have the following values for the two 
artificial datasets we produced: 
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Parameter name Sparse  dataset Dense  dataset 

Number of intratransactions 500 200 

Size of the intertransaction pool 50 200 

Average length of intratransactions 5 25 

Maximum length of intratransactions 10 50 

Average length of intertransactions 5 8 

Maximum length of intertransactions 10 20 

Maximum number of unique items 500 100 

Maximum interval span of intertransactions 4 6 

Table 1. Values of parameters used in the generation of the synthetic data sets 
 

 

Fig. 3. Execution time vs minimum support, sparse data set, w=4 
 

 

Fig. 4. Execution time vs sliding window size, sparse data set, minsup = 1% 

We have compared the performance of InterTraSM and the performance of EFP-Growth for 
synthetic data sets created with the same parameters by the same generator (probably not 
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identical data sets since the actual generation is random, but the data sets have the same 
characteristics). 
For the synthetic sparse data set: 
- we have varied the minimum support threshold  from 1.6% to 0.6%, with the sliding 

window size set to 4 – the results are in Fig. 3. 
- we have varied the sliding window size from w=0 to w=10 while we have kept a fixed 

minimum support threshold of 1% - the results are in Fig. 4. 
 

 

Fig. 5. Execution time vs minimum support, dense data set, w=6 

 

 

Fig. 6. Execution time vs sliding window size, dense data set, minsup = 10% 

For the synthetic dense data set: 
- we have varied the minimum support threshold  from 13% to 8%, with the sliding 

window size set to 6 – the results are in Fig. 5. 
- we have varied the sliding window size from w=0 to w=10 while we have kept a fixed 

minimum support threshold of 10% - the results are in Fig. 6. 

www.intechopen.com



Search Algorithms and Applications 

 

384 

Since the execution times observed here are all under 1 second and the execution times 
reported in (Luhr et al, 2007) on a similar processor have values of tens or evens hundreds of 
seconds, even considering for the different implementation environments we can conclude 
that InterTraSM generally performs at least an order of magnitude better than EFP-Growth. 

6. Conclusion 

We have approached in this paper the issue of searching for intertransaction association 
rules. We have presented the theoretical description of the problem and we have discussed 
the differences from the classical (intratransaction) association rule mining. We have 
presented some previous algorithms and then we have focused on InterTraSM - which uses 
a depth first search strategy and unlike the previous algorithms introduced it searches for 
maximal frequent itemsets. This reduces the number of support counting operations that 
need to be performed. Experiments performed with similar data and on similar processors 
with the ones used in previous algorithms show a difference of at least an order of 
magnitude in favour of InterTraSM. 
In the future the algorithm should be applied on more real data sets and the performance 
should be measured. Also some interestingness measures for intertransaction association 
rules should be applied and the results should be analysed. 
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