
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800



17 

On the Recursive Minimal Residual Method 
with Application in Adaptive Filtering 

Noor Atinah Ahmad 
Universiti Sains Malaysia 

Malaysia 

1. Introduction 

Adaptive filters have become an integral part of adaptive signal processing and applied in 
diverse fields such as digital communications, speech recognition, control systems, radar 
and biomedical engineering. Since the adaptive filtering problem can be conveniently 
formulated as a stochastic quadratic minimization problem, a wide variety of adaptive 
filtering algorithms is derived based on numerical methods in unconstrained optimization 
theory. The class of iterative solvers for the adaptive filtering problem may be classified into 
the following categories: 
1. Stochastic gradient algorithm 
2.  Stochastic conjugate gradient based algorithm 
3. Direction set based algorithm 
While stochastic gradient method offers the easiest and reliable method, its performance is 

proven to be poor when the eigenvalue spread of the autocorrelation matrix is large. 

Conjugate gradient based method (Boray & Srinath, 1992, Chang & Wilson, 2000, Dien & 

Bhaya, 2006)  has been shown to give much better performance, however other issues arise. 

Finding the best estimate for gradient and search directions in the absence of the full 

knowledge of the autocorrelation matrix, and, in the presence of noise in the system is still 

an open question. Noisy estimates of gradient can easily lead to loss of conjugacy among 

search directions which may cause instability of the algorithm. A more recent advances can 

be found in (Chen, 1998) which involves a class of direction set based algorithm. The 

method generates a set of conjugate search directions using the method due to (Powell, 

1964) and (Zangwill, 1967). This class of algorithm is very promosing in that it allows for 

lower complexity variants which is of much improved performance compared to the 

celebrated Least Mean Square algorithm. 

This chapter describes the current development in a class of search algorithm for adaptive 
filtering which is based on the minimal residual (MR) method. The algorithms are related to 
the 3 classifications above in one way or another which will be described in detailed in this 
chapter. 

The development of MR  based adaptive filtering algorithms involves modification of the 

standard MR method for iterative solution of a system of linear equation Φ =x p . In the 

standard method, the approximate solution is updated along the current residual vector 
( ) ( )k k= −Φr p x , and, the stepsize is chosen so that the residual norm squared ( ) 2

1

2

k+−Φp x  
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is minimized. By doing so, an orthogonality condition ( ) ( )( ) 0
k T kΦ =r r# , where 

( ) ( )1k k+= −Φr p x# , is imposed, giving rise to conjugation of successive gradients. When the 

matrix Φ  is positive definite, the method can be shown to converge to the solution of the 

system.  

The standard MR method may also be performed using direction of search other than the 

residual vector. Suppose ( )k
d  is the k th direction of search which is not necessarily equal to 

( )k
r . The MR update equations take the form 

 

( ) ( )

( ) ( )

( ) ( ) ( )1

k T k

k k T k

k k k
k

α

α+

=

= +

r b

b b

x x d

 (1) 

where ( ) ( )k k= Φb d . The iteration in (1) guarantees ( ) ( ) ( )( ) ( )1 1
0

T
k T k k k+ += −Φ =r b p x b , i.e., (1) 

represents an orthogonal projection onto the subspace ( ){ } ( ){ }k k
span span≈ Φb d . For a 

direction of search ( )k
d , we no longer insist pairwise conjugation of successive residuals. 

Instead, the conjugacy condition ( ) ( )( )1
0

k T k+ Φ =r d  is imposed, i.e., we insist the new 

residual to be conjugated with the search direction ( )k
d . 

For adaptive filtering problem, the MR method is applied on the recursive normal equation 

n nΦ =x p , where nΦ  and np  are the autocorrelation matrix and cross correlation vector of 

the problem repectively, at the n th state.  As a direct consequence, the resulting MR based 

algorithm will involve recursively updated residual and search direction which are updated 

at every state n . Two forms of MR based algorithms are presented in this chapter: 
1. MR based algorithm with recursive residuals as the search direction 
2. MR based algorithms with search directions fixed along the Euclidean unit vectors. 
Choosing the current residual as the search direction leads to a stochastic gradient method 
where successive gradients are forced to be conjugated with respect to the current 
autocorrelation matrix of the adaptive least squares problem. As a result, we obtain a 
method whose convergence properties is very much similar and comparable to the 
conjugate gradient based methods. In other words, we achieve superior convergence rate 
compared to the standard stochastic gradient method. The superior convergence is achieved 
with a slightly reduced complexity compared to conjugate gradient based algorithms 
because the MR based method does not require the computation of conjugate directions.  
However, using residuals as search direction has its drawbacks. One of which is that it tends 
to produce higher misadjustment when the problem is ill conditioned. This problem is 
greatly improved when search directions are fixed along the Euclidean directions. Two 
different forms of MR based methods are considered, 

Method 1: MR iterations are performed along N  Euclidean directions independently, 

where N  denotes the filter order as well as the dimension of the problem.  
Method 2: MR projections are performed along the Euclidean directions cyclically. 
Method 1 and Method 2 are in fact closely related. While Method 1 solves the auxilliary 
system  using a direct method, Method 2 implements Gauss-Seidel  type iterations. Both 
methods are shown theoretically to be globally convergent. 
Other specific issues pertaining to computational complexity, misadjustment and sensitivity 
to eigenvalue spread is also discussed. Detailed simulation using several different 
configuration of the adaptive filtering problem will be provided to highlight these issues. 
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2. Recursive implementation of the MR method in adaptive filtering 

Before we discuss the algorithm, let us review the mathematical formulation for the 
adaptive filtering problem. For simplicity, we confine our discussion to the linear adaptive 
filtering problem. In almost all adaptive filtering problem, three fundamental signals are 
required, 
i. the input signal, 
ii. the desired signal 
iii. the output signal from an adaptive filter model. 
For linear adaptive filtering, we assume the adaptive filter model in the form of a linear 
model. The objective of an adaptive filtering process is to adapt the model coefficients so as 
to minimize a certain error criteria which is called the cost function. The most common form 
for the cost function is a least squares cost function. Its popularity is due to  a simple reason; 
the function has a single global minimum. 
A linear adaptive filtering problem is the following minimization problem, 

 ( ) ( )( )2min
N

n
n i T

n i
R i m

J s iλ −

∈ =
= −∑

x
x a x , (2) 

where ( )s i R∈  is the desired signal, and, ( ) T
iy i = a x  is the filter output at the i th sample 

instant. An example of an adaptive filtering system is depicted in Fig. 1. 

For a transversal finite impulse response (FIR) adaptive filter, vectors N
i R∈a  are formed by 

the input ( )u i , such that ( ) ( ) ( )1 1
T

i u i u i u i N= ⎡ − − + ⎤⎣ ⎦a A , and vector NR∈x  is an 

estimate of the filter coefficient vector. The quantity ( )T
i ie s i= −a x  is the error signal and x  

 

 
 

Fig. 1. Basic configuration for adaptive system identification 
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is updated by minimizing the sum of squared error cost function ( )nJ x . The constant 

weight [ ]0,1λ∈  is known as the forgetting factor and its role is to give more 

emphasis/weight on the more recent signals. 

For every system update, the adaptive least squares cost function is mathematically 

equivalent to the standard least squares problem. Consequently, the mathematical treatment 

of the problem is also similar. However, the time variation of  ( )nJ x  requires certain 

modification to take place. An advantage of the adaptive filtering problem is that system 

updating involves a rank-one update of the data matrix. This allows for the required 

modifications to be represented by  simple recursive formulas to update the cost function. 

Similar to the standard least squares problem, the adaptive least squares problem (2) can 

also be recast in the form of adaptive normal equations. With definitions 

1

T
n m

n m m n
λ −

+
⎡ ⎤= ⎢ ⎥⎣ ⎦

A a a aA ,  0 m n≤ <  

 

and, 

( ) ( ) ( ), 1 , ,
T

T n m
n n s m s m s nλ −⎡ ⎤= +⎢ ⎥⎣ ⎦

p A … , 

 

the minimization problem in (2) can be shown to be equivalent to solving the normal 

equation 

 n nΦ =x p  (3) 

 

where T
n n nΦ = A A . The data matrix nA  is rank-one updated during each system update 

and this leads to the following recursive formulas for nΦ  and np  (Haykin, 1991), 

 1
T

n n n nλ −Φ = Φ + a a , (4) 

 ( )1n n ns nλ −= +p p a . (5) 

The minimal residual method may be applied to the normal equation (2), where the 

approximations to the coefficient vector x  after the n th sample update is updated 

according to 

 

( ) ( )

( ) ( )

( ) ( ) ( )1

k T k

k k T k

k k k
k

α

α+

=

= +

r b

b b

x x d

 (6) 

 

where ( )k
d  is the k th direction of search and ( ) ( )k k

k= Φb d . By (6), the orthogonality 

condition ( ) ( )( )1
0

k T k+ Φ =r d  no longer holds since ( )1k+
r  is the residual vector at the next 

sample update. Instead, the orthogonal condition ( )( ) 0
kT Φ =r d#  is imposed, where 

( ) ( )1k k
k k

+= −Φr p x# . A relationship between  ( )1k+
r  and ( )k

r#  can be observed below, 
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( ) ( )

( ) ( )( )
( )

1 1
1 1

1 1

1 1 ,

k k
k k

k k
k k k k

k
k k

e

e

λ α

λ

+ +
+ +

+ +

+ +

= −Φ

= − Φ +

= +

r p x

r r a

r a#

 (7) 

 

where recursive formulas in (4) and (5) are used to simplify (7).  

By construction of the MR method, kα  is chosen so that ( ) ( )( )1
, 0

k k
k

+ Φ =r d# . Therefore, we 

have, 

 ( ) ( )( ) ( ) ( )( ) ( )( ) ( )( )1 1
1 1 1 1, , , ,

k k k k k k
k k k k k k k ke eλ+ +

+ + + +Φ = Φ + Φ = Φr d r d a d a d# . (8) 

 

Assuming, kd  is a descent direction, (8) implies that, as 1 0ke + → , the behaviour of the 

stochastic MR based adaptive filtering algorithm approaches that of its deterministic 

counterpart. 

3. Recursive minimal residual method as a form of stochastic gradient 
method 

When the search direction is set to be the residual vector, the MR method reduces to a 

gradient descent method. For adaptive filtering application, since the gradient is only 

available as a stochastic gradient estimation, the method becomes a form of a stochastic 

gradient method. What is unique about the MR based stochastic gradient method is in the 

computation of step size kα , chosen so that the orthogonality condition 

 ( ) ( )( )1
, 0

k k
k

+ Φ =r r# , (9) 

 

is satisfied . In other stochastic gradient method, the step size is a predetermined value 

which is chosen to be a number inside the open interval ( )max0,2 λ , where maxλ  denotes the 

maximum eigenvalue of the autocorrelation matrix kΦ . This choice guarantees global 

convergence of stochastic gradient method 

3.1 The Stochastic Pairwise Conjugate Gradient based algorithm (SPCG) 

The Stochastic Pairwise Conjugate Gradient based algorithm (SPCG) (Ahmad, 2008) is the 

first implementation of stochastic gradient method with MR step size. It was developed 

based on the idea in (Schraudolph & Graepel, 2002), where it was noted that the 

orthogonality condition ( ) ( )( )1
, 0

k k
k

+ Φ =r r#  , also implies pairwise conjugation of succesive 

gradients. It is well known that conjugate gradient method out performs gradient based 

method in most applications. Henceforth, by insisting pairwise conjugation of successive 

gradients, we will achieve a stochastic gradient method which performs comparable to the 

conjugate gradient based methods. 

The SPCG algorithm is summarized in Table 1. As shown in Table 1, the computational 

complexity of the SPCG algorithm is ( )2O N  which is still rather high for most practical 

application. The lower complexity versions are described in the next section 
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 × / ÷  +/ −  

Initialization: 
 

(1a) T
m m m=X a a  

(1b) ( )0
, , N

m m RΦ = ∈p x 0  

(1c) ( ) ( )0m
m m= −Φr p x ,  

(1d) ( ) ( )m m
m= Φb r  

 

For 1, ,k m N= + …  

 

         (2) ( )
( ) ( )

( ) ( )

k T k
k

k T k
α =

r b

b b
 

 

         (3) ( ) ( ) ( ) ( )1k k k kα+ = +x x r  

 

          New sample update: 1k k+→a a , 

 

         (4a) 
( )

( )
1 2 : ,2 :

1 : 1,1 : 1

k

k

N N

N N

+

= − −

X

X
 

         (4b) ( ) ( )1 11,: T
k ku n+ +=X a  

          (4c) ( ) ( )1 1:,1 1,:
T

k k+ +=X X  

 

           (5) 1 1k k kλ+ +Φ = Φ + X  

 
 
 

           (6) ( ) ( )1
1 1 1

kT
k ke s k

+
+ += − +a x  

 

          (7) ( ) ( ) ( )1
1 1

k k k
k keλ αλ+
+ += − +r r b a  

 

          (8) ( ) ( )1 1
1

k k
k

+ +
+= Φb r  

EndFor 

(if 1m = ) 

 
1 
- 
 
- 
 
1 
 
 
 
 

2 1N +  

 
 

N  

 
 
 
 
- 
 

N  

- 
 

( )1
1

2
N N +  

 
 
 

N  

 

3 1N +  

 
2N  

 
 
 
 
 
 
 
 
 
 
 
 

( )2 1N −  

 
 

N  

 
 
 
 
 
 
 
 
 

( )1
1

2
N N +  

(considering 
symmetry) 

 

2 1N −  

 

2N  

 

( )1N N −  

Total 
 

(if 1λ = ) 

23 17
4

2 2
N N+ +  

2 7 3N N+ +  

( )21
3 13 3

2
N N+ −  

 

Table 1. The SPCG algorithm and calculation of the computational complexity 
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3.2 Low complexity SPCG 

The computational complexity of the SPCG algorithm is of ( )2O N , mainly due to the 

matrix-vector multiplication to compute ( ) ( )k k
k= Φb r . Lower complexity versions of SPCG 

algorithm introduced here are formed by making lower complexity approximation for 
( ) ( )k k

k= Φb r  as follows, 

 
( )

( ) ( ) ( )1

,

ˆ ˆ .

kT
k k

k k k
k

ε

λ ε−

=

= +

a r

b b r
 (10) 

The approximation above requires 3N multiplications instead of 2N  multiplication in the 

original version.  

Naturally, with the approximations introduced by (10), the conjugacy condition (9) is no 

longer fulfilled exactly. Instead, the stepsize kα  is calculated based on a slightly modified 

conjugacy (orthogonality) condition, which is ( ) ( )( )ˆ 0
k T k =r b# . From geometrical point of 

view (see Fig. 2), this new orthogonality condition will still result in an improvement to 
( ) 2
k

r . However the rate of convergence may be a bit compromised. This observation is 

verified in Theorem 1. 

Theorem 1: Convergence of Low complexity SPCG 

Let ( ) ( )2 2

2 2

k k
kv = −r r#  be the improvement factor in the low complexity SPCG iteration after 

the k th sample update. Then, 

i. 0kv ≥  for 1,2,k = …  

ii. The iterations result in slow convergence when the angle between ( )k
r  and ( )ˆ k

b  is close 

to 2π . 
 

 

Fig. 2. Geometrical interpretation on Low Complexity SPCG iteration 

Proof: 

i. ( ) ( ) ( )( ) ( ) ( )( )2

2

ˆ ˆ
T

k k k k k
k kα α= − −r r b r b# ( ) ( ) ( ) ( )2 2

2

2 2

ˆ ˆ2
k k T k k

k kα α= − +r r b b . 

        Substituting for kα  gives  

( ) ( )
( ) ( )( )

( )

2

2 2

2
2 2

2

ˆ

0
ˆ

k T k

k k
k

k
v = − = ≥

r b
r r

b

# . 
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ii. 

( )

( )

( ) ( )( )
( ) ( )

2 2

22
2 2 2

2 2 2

ˆ

1 1 cos
ˆ

k k T k

k
k k k

θ= − = −
r r b

r r b

#
, 

        where  
( ) ( )

( ) ( )
2

ˆ

ˆ

k T k

k k k
θ =

r b

r b
, is the angle between ( )k

r  and ( )ˆ k
b . When 2kθ π≈ , kv  is 

        small, hence resulting in slow convergence.  

Slow convergence observed in the case of  Theorem 1 part (ii) can be remedied by restarting 

the algorithm with exact values of ( )ˆ k
b . Note that, when exact values of ( )ˆ k

b  is used, we will 

obtain the improvement factor corresponds to the SPCG algorithm, i.e.,  

( ) ( )( )
( )

( ) ( )

( )

2

2 2

2 2

k T k
k T k

k
k

k k
k

v
Φ

= =
Φ

r b r r

b r

. 

Thus, restarting will result in a convergence rate comparable to the original SPCG 
algorithm.  

Introducing restart will automatically increase the computational complexity of the 

algorithm because the autocorrelation matrix and the cross-correlation vector need to be 

updated during each sample update. However, if restarting is performed after every N  

sample updates at least, this will keep the number of multiplications at ( )O N  per sample 

update. The autocorrelation matrix and the cross-correlation vector can be updated for 

every block of M  according to 

 ( ) ( )1 1kMk M k Mλ+ +Φ = Φ +Φ# ,          ( ) ( )1 1kMk M k Mλ+ += +p p p#  (11) 

where       ( )1
1

M
T

kM j kM jk M
j

+ ++
=

Φ = ∑ a a# ,       ( )1
1

M

kM j kM jk N
j

s+ ++
=

= ∑p a# . 

(Choose M N≥  to keep the number of multiplications  ( )O N  per sample update, at most).  

3.3 Simulation results 
Simulations are based on an adaptive system identification configuration shown in Fig. 1. 
The unknown plant is a finite impulse response filter of order 10. A white Gaussian input 

signal of variance 2 1σ = is passed through a colouring filter with frequency response 

( )
2

1

1

1
H z

z

α
α −
−

=
−

 (Farhang-Bouroujeny, 1999), where 1α < . The parameter α  controls the 

eigenvalue spread, or the spectral condition number of the input autocorrelation matrix, 
where 0α =  gives uncorrelated sequence (white) with eigenvalue spread 1≈ . The 
performance of the algorithm is studied based on the propogation of the ensemble average 

of the mean error norm ( ) 2
*

2

k −x x , where *x  is the Wiener solution. The ensemble average 

is formed by 200 independent runs.  
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In the first part of our simulation (see Fig. 3), we demonstrate the superior performance of 

the MR based stochastic gradient method, i.e., the SPCG algorihm compared to the well-

known stochastic gradient algorithm, that is, the Least Mean Square (LMS) algorithm. In 

addition, we also show that the SPCG algorithm is comparable in performance compared to 

a conjugate gradient based adaptive filtering algorithm (referred to as the CG-CLF 

algorithm (Dien & Bhaya, 2006). The SPCG algorithm is also shown to be more superior 

when the eigenvalue spread is high (with 0.5α = ) (see Fig. 4). Increased eigenvalue spread 

also results in a slight increase in the magnitude of the weight error norm, which implies an 

increase in misadjustment. Infact our simulation shows that this problem is evident in LMS 

and CG-CLF as well. 
In the second part of this simulation (Fig. 5 and Fig. 6), we investigate the effect of. In the 
simulation with lower complexity approximations (10). As expected, periodic restarting of 
the algorithm is required in order to achieve convergence rate comparable to the original 
version. It is interesting to see that the low complexity approximation (with restart) results 
in a slightly better misadjustment compared to the original SPCG. 

4. Recursive MR method with euclidean search direction 

Consider minimizing the squared norm residual 
2 2

2 2
= −Φr p x  by applying the MR 

iterations along N  Euclidean directions simultaneously and independently, thus 

 ( ) ( ) ( ) ( )1

1

N
ik k k

i kk
i

+

=
= + Ψ = + Ψ∑x x e x , (12) 

 

 

Fig. 3. Comparative performance between SPCG, LMS and CG-CLF for high eigenvalue 

spread. The LMS weight error norm is produced for two different stepsizes, 0.06μ =  and 

0.006μ = . 
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Fig. 4. Comparative performance between SPCG, LMS and CG-CLF for high eigenvalue 
spread. 

 
 

 

Fig. 5. Low complexity approximation requiring restart in order to achieve performance 
comparable to SPCG (small eigenvalue spread) 
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Fig. 6. Low complexity approximation compared to SPCG with large eigenvalue spread. 

where ( )i
kΨ  is the i th entry of the 1N ×  vector kΨ , and, [ ]0 0 1 0

T
i =e A A , with 1 

appearing in the i th place. The stepsizes ( )i
kΨ  are calculated by insisting that ( )1

0
k T

i
+ Φ =r e ,  

for all 1, ,i n= … . For a symmetric n n×  matrix Φ , the procedure above gives rise to a 

system of linear equations in ( )i
kΨ  of the form 

 2
k kΦ Ψ = Φr , (13) 

which solves as  

 1
k k

−Ψ = Φ r  (14) 

In other words, 

 ( )1
1k k k k k

−
+ = −Φ + Φ = − =r b x r r r 0 . (15) 

Eqn (15) implies that the procedure described above results in finite termination to the exact 
solution after a single step. 

4.1 Simultaneous update: The auxiliary equation 
Applying the procedure above on the adaptive least squares normal equation (3), leads to 
the auxiliary normal equation 

 ( )2 k
k k kΦ Ψ = Φ r . (16) 

Rather than solving it directly, we adopt an alternative procedure as follows.  First consider 
the equivalent equation, 
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 ( )2 kT T
k k k k kΨ Φ Ψ = Ψ Φ r . (17) 

Now, we split 2
k k= ΦQ  as, 

 2
k k k k k= Φ = + +Q L D U , (18) 

where kD  is a diagonal matrix consisting of the main diagonal of kQ , and, matrices kL  and 

kU  are the strict lower and upper triangular parts of kQ  respectively. This procedure 
transfoms the alternative auxilliary equation to 

( )kT T T
k k k k k k k k k kΨ Ψ + Ψ Ψ + Ψ Ψ = ΦL D U r . 

Consider the value of T
k k kΨ ΨL : 

It is straightforward to see that the entries of k kΨL  are given as 

 [ ]1 0k kΨ =L , (19) 

 [ ] ( ) ( ) ( )( ) ( ) ( )1 1
,

2 2

i i
j j j i ji T

k k k k k k ki
j j

− −

= =
Ψ = Ψ Φ Φ = Ψ∑ ∑L Q , 2, ,i N= …  (20) 

where ( ),i j
kQ  is the entry of kQ  in the i th row and j th column. Thus 

( ) ( ) ( )1
,

2 1

N i
j i jiT

k k k k k k
i j

−

= =
Ψ Ψ = Ψ Ψ∑ ∑L Q . 

Switching the order of summation leads to, 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1
,

2 1

1
,

1

1
,

1

.

N i
j i jiT

k k k k k k
i j

N N
j i ji

k k k
j i j

N N
j j ii T

k k kk k k
j i j

−

= =

−

= =

−

= =

Ψ Ψ = Ψ Ψ

= Ψ Ψ

= Ψ Ψ = Ψ Ψ

∑ ∑

∑ ∑

∑ ∑

L Q

Q

Q U

 (21) 

The last line of (21) is obtained by using the fact that 2
k k= ΦQ  is symmetric. Using (18), we 

are now able to write (17) as 

 ( ) ( )2
kT T

k k k k k kΨ + Ψ = Ψ ΦD L r , (22) 

Hence, the solution to the auxilliary equation is also the solution to 

 ( ) ( )2
k

k k k k+ Ψ = ΦD L r  (23) 

or equivalently, 

 ( ) ( )2
k

k k k k+ Ψ = ΦD U r  (24) 
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By reducing (16) to (23) or (24), we have in fact  reduced the problem to a lower/upper 
triangular system which can be solved by forward/back substitution.  

4.2 Cyclic updates: Gauss-seidel iterations 

An alternative MR based method is derived by performing MR iterations along the 
Euclidean directions cyclically. In other words, the current weight vector is updated as 
follows, 

( ) ( )1k k
k

+ = + Ψx x , 

where the i th components of the stepsize vector kΣ , namely ( )i
kΣ , is the minimizer of 

( ) ( )( ) 2

2

k i
k k ii−Φ + Ψp x e , i.e.,  

( )
( ) ( )

( )( ) ( )( )
1

k T i
i i k

k T
i i

k k

− Φ
Ψ =

Φ Φ

r
,  1, ,i N= …  

with 

( ) ( ) ( ) ( )
1

k k i i
i i k k−= − Ψ Φr r , 

( )i
kΦ  - the i th row of kΦ . 

The choice of ( )i
kΨ  guarantees  

 ( ) ( ) ( ) ( ) 0
k T k T i

k ii i kΦ = Φ =r e r . (25) 

Note that, by this construction, 

( ) ( ) ( ) ( )

1

i
j jk k

i k k
j=

= − Ψ Φ∑r r , 

and, applying (25) gives, 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )
1

1

0

.

T
i

j jk T i i ik T
i k k k k k

j

i
j j Ti ik T

k k k k
j

=

=

⎛ ⎞
Φ = = Φ − Ψ Φ Φ⎜ ⎟⎜ ⎟

⎝ ⎠

= Φ − Ψ Φ Φ

∑

∑

r r

r

 

Thus, 

 ( )
( ) ( )

( )

1
1

2
1

2

k T
k

k

k

Φ
Ψ =

Φ

r
. (26) 

For 2, ,i N= … , 
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 ( ) ( ) ( ) ( ) ( ) ( )1 2

21

i
j ji i T ik

k k k k k
j

−

=

⎧ ⎫⎛ ⎞⎪ ⎪Ψ = Φ − Ψ Φ Φ⎜ ⎟⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭
∑r . (27) 

Eqns. (26) and (27) can be written in the compact matrix form as 

 ( )k
k k k k kΨ = Φ − ΨD r L , (28) 

where kD  and kL  are defined as in (18). The form of  (28) resembles the iteration procedure 
of the Gauss-Seidel method applied on the transformed auxilliary equation (17), but with 

1k−Ψ = 0 . The equivalent equation for the Gauss-Seidel method would be 

 ( )
1

k
k k k k k k k−Ψ = Φ − Ψ − ΨD r L U . (30) 

4.3 Simulation results 
We use the same adaptive filtering configuration to study the performance of MR based 
algorithm with euclidean direction of search. We compare the two algorithms with the 
SPCG algorithm to study their performance with respect to eigenvalue spread. When the 
eigenvalue spread is small (Fig. 7), the SPCG results in lower misadjustment compared to 
the MR methods with Euclidean direction search. However, for large eigenvalue spread 
(Fig. 8), SPCG shows a significant increased in misadjustment while the other MR methods 
appear unaffected by the increased in eigenvalue spread.  

5. Future developments 

In this chapter we have described two different types of recursive MR method for adaptive 
filtering. The methods defer by the choice of search directions. The first method is a 
stochastic gradient method with a stepsize determined using the MR stepsize formula that 
guarantees conjugacy of successive gradients. In the second method, search directions are 
chosen to be N  Euclidean unit vectors in NR , with two different approaches in performing 
projections onto the row space of Φ .  
Here’s a summary of the performance of these methods: 
i. The SPCG algorithm is proven to be superior compared to the traditional least mean 

square stochastic gradient method. We have also described a procedure  to modify the 
SPCG algorithm so as to achieve complexity comparable to LMS algorithm. 

ii. A common problem in most gradient based algorithm which is also evident in the 
SPCG algorithm is the poor performance when eigenvalue spread of the autocorrelation 
matrix is high. This problem is removed when the search direction is switched towards 
the Euclidean directions. Our results clearly show that the performance of recursive MR 
methods are unaffected by the increase in eigenvalue spread. 

The two key issues that will be the focus of our research in the efforts to bring further 
improvements to the recursive MR methods are i) providing low complexity variants, ii) 
improving misadjustments especially when the eigenvalue spread of the problem is high. 
Research and investigations on block implementations of these algorithms are  currently 
under way. We are also looking at a class of potential new preconditioners for the adaptive 
least squares problem in general. These preconditioners are in the form of recursive 
incomplete QR factorization preconditioners based on different orthogonalization 
techniques such as Gram-Schmidt, Givens rotations and Householder method. 
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Fig. 7. SPCG compares with MR based algorithms with Euclidean direction of search (small 
eigenvalue spread) 

 

 

Fig. 8. SPCG compares with MR based algorithms with Euclidean direction of search (large  
eigenvalue spread) 
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