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1. Introduction

Evolutionary algorithms (EA, see for a general introduction Holland, 1975; Goldberg, 1989;
Davis, 1991; Back, 1996) are “probabilistic” optimization procedures. Differently from the
“deterministic” ones (yielding an unique and reproducibile solution for assigned input data),
EA are somewhat aleatory and not reproducible. Such methods are part of the heuristics
(Polya, 1971). To be pedantic the term algorithm should indicate some sequence of mathematical
operations producing a foreseeable result if applied to definite input data. There is a resounding
oxymoron in the terms evolutionary algorithm. This contradictory language is however diffuse;
as this one is not an erudite essay of epistemology, we prefer to be tolerant and fly over
on semantic questions. Really evolutionary methods have aleatory routes and also aleatory
conclusions in many cases (e.g. stock exchange estimate, weather forecast, etc.); in some cases
instead (it happens in crystallography), unique and certain results can be reached in spite of
the multiplicity of routes travelled.
Multi-parameter optimization problems are encountered in many fields: industrial process
planning, financial investments, environment control, hurricane evolution, and many others
(Weise, 2009). We shall however not consider the general aspects of EA but rather to treat
about a specific argument: the study of chemical structures based on X-ray diffraction. In this
field, as shown later, there is a lot of a priori and useful information so that the aleatority of
the procedure can be considerably attenuated. Evolutionary methods in crystallography are
better formulated as Constraint Satisfaction Problems (CSP, see Ionita et al., 2010).
Evolutionary methods have a future in crystallography, particularly in solving hard problems.
The structural elucidation from X-ray powder diffraction data is among these (section
4.1). However, procedures are not consolidated yet, there are numerous alternatives to be
considered for which the common sense and the experience, rather than the theory, could
have a role.
This article will not treat the EA in the crystallographic context in its generality; rather it
will summarize some ideas and strategies which yielded a specific procedure: it is a possible
route, not the only possible one. These procedures are now included in a general-purpose
computer program with numerous options for finding and refining crystal structures termed
TRY (Immirzi, 2007b). In its actual structure the EA procedure needs that many parameters
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are assigned by the user. Assigning them in a more automatic fashion could no doubt improve
the program versatility.
The effectiveness of EA in solving crystal structures by diffraction methods is improved if one
makes systematically use of the so called internal coordinates (i.c.) for describing structures,
instead of the more common cartesian coordinates. The i.c. were first considered, in diffraction
analysis, by Arnott & Wonacott (1966). A computer program performing least-square
refinement of i.c. (LALS, Linked Atom Least Square) was first issued (Smith & Arnott, 1978)
and later updated repeatedly (the last edition, WINLALS , was published by Okada et al.,
2003). LALS has been used mainly in studying polymers. Also Tadokoro (1975) discussed the
use of i.c. in polymer case.
Both Arnott (and disciples) and Tadokoro did however neglect a very important complication:
the mutual independency (non-redundancy) of i.c., being of great importance in all
crystallogaphic applications, and in particular in EA, as will be shown later.
Now a procedure for carrying-out a molecular building always using non-redundant i.c. has
been devised (Immirzi 2007a,b); it is very simple, practical, and perfectly analytical, runs
thoroughly, and eliminates the necessity of using exotic instruments in matrix manipulations
(pseudoinversion, diagonalization, etc.; note that the mathematic instruments employed are
those of Newton, Gauss, and Lagrange).

2. Crystalline matter and X-ray diffraction

Characterization of chemicals, both natural and synthetic, is done always looking at the
matter at the atomic scale. In 19th century, atoms were speculative entities and scientists
had not instruments for ascertaining their shape or position. Nevertheless, in the middle
of century, some of them (Kekulé, Le Bel, van’t Hoff and others), with evident attitude versus
the heuristics (without awareness of course as heuristics did not exist yet) were persuaded
about molecules (proposed many years before by Avogadro finding much skepticism); they
begun, with much imagination and using logical arguments, to give them definite shapes,
for instance the tetrahedral shape to methane and the hexagonal shape to benzene. Many of
these intuitions were demostrated later be perfectly exact. Today to ascertain the geometrical
structure of molecules is not more a work of imagination: it is an exact science. Structure is
a “property” of any pure substance, defined and reproducible, like colour, density, melting
temperature, etc.1

The discovery of X-ray diffraction by crystals by Laue in 1912 made possible to ascertain the
structure. In the crystalline state, necessarily solid, atoms are ordered: there is a small portion
of space, a parallelepiped, generally oblique, termed the unit cell, which repeats itself by
translation in three directions and generates the whole solid. If the disposition of atoms in the
cell is determined, the whole crystal is determined. Frequently there is also symmetry: only
a fraction of the unit cell is independent; the remainder if given by appropriate orthogonal
transforms. Edges and interaxial angles of the unit cell are collectively termed lattice constants.
Just order makes possible X-ray diffraction of crystal, whose study permits to guess the matter
at the atomic scale; resolution is of the order of 0.02 Å or better; consider that the separation of
bonded atoms is 1-2 Å. The size of molecules studied by X-ray diffraction was initially modest;
now studying 50-100 atom molecules is a common matter.

1 There are indeed exceptions: some substances exhibit more than one structure (polymorphism).
Crystalline minerals are frequently polymorphic.
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3. Molecules and molecular crystals

Molecules are finite assemblies of atoms joined by strong forces (chemical bonds). In
molecular crystals molecules are orderly assembled through well weaker non-bonding forces
(van der Waals forces, dipole-dipole forces, hydrogen bonds, etc.).2

Thanks to the repetition, crystals diffract X-ray radiation: when a beam of monochromatic
radiation strikes a crystalline sample many beams emerge and their intensities can be
one-by-one measured. The intensity of the diffracted beams is related to the molecular
structure (see below).3

In absence of symmetry, if V is the volume of the unit cell, λ the radiation wavelength, and 2ϑm

the highest angular deviation, there are altogether 3.35(V/λ3) sin3 ϑm different diffracted
beams (reflections). The above relationship indicates that the number of reflections raises as
sin ϑm/λ increases. The latter is an important parameter: the higher is sin ϑm/λ the higher
is the chance of success in a structural analysis, and the higher is the accuracy of the result.
Consider however that the intensity of the reflections decreases as ϑ angle increases and that
sin ϑm/λ may be limited by natural circumstances: there are materials which are intrinsecally
weakly diffracting; their structural study cannot be done accurately.

4. Structure and diffraction

It is possible to obtain crystal structures from X-ray diffraction data thanks to the mathematical
relationship between atomic positions and the intensities of the reflections. The latter, as
numerous as the volume of the unit cell is large (see above), are singled out by three integer
numbers: the Bragg indices (h, k, ℓ). Each is deviated from the incident direction by a
characteristic angle 2ϑ, an analytical function of the Bragg indices and of the lattice constants.
One must intercept these beams and measure intensity.
There are nowadays very sophisticated instruments (diffractometers), controlled by computers,
allowing, with a minimal human intervention and in a short time, a complete characterization
of a crystal: measurement of the lattice constants, diagnosis of symmetry, localization and
measurement of all reflections with their Bragg indices h, k, ℓ. If the unit cell contains N atoms,
and xj, yj, zj are the atomic coordinates (referred to the unit cell), the complex quantities

F(h, k, ℓ) =
N

∑
j=1

f j exp[2πi(h
xj

a
+ k

yj

b
+ ℓ

zj

c
)] (1)

are termed structure factors. The f j (atomic factors) are known real quantities which depend
on the chemical nature of the j-th atom and on sin ϑ/λ. The larger is the atomic number the
higher are f j. In every cases f j decreases as sin ϑ/λ increases.
The above relationship applies at 0 K; at higher temperature F’s are somewhat reduced
because of the thermal vibration. There are of course as many F(h, k, ℓ) as reflections.
Now the squared moduli of F(h, k, ℓ) should be orderly proportional to the measured
diffraction intensities I(h, k, ℓ). This occurs, of course, when the xj, yj, zj coordinates are the
true ones. To get the unknown crystal structure one must find all the xj, yj, zj rendering the

2 Not all crystalline materials are molecular . There also ionic crystals and extended covalent structures.
3 The deviation of diffracted beams from the incident direction obeys to the Bragg’s law. Geometry is

quite similar to the case of a reflecting mirror: diffracted beams can be considered as “reflected” by the
sample. For this reason they are frequently termed reflections
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|F(h, k, ℓ)|2 as close as possible to the I(h, k, ℓ). Introducing the residual

χ2 = ∑
hkℓ

[I(h, k, ℓ)− |F(h, k, ℓ)|2]2 (2)

one can assume that the solution is the one rendering χ2 a minimum. For this reason to
find a structure is to solve a global optimization problem. The above χ2, divided by the sum of
F2(h, k, ℓ) is the common R2 index, widely used as fitness function.

4.1 Single-crystals and polycrystalline samples

X-ray diffraction studies use either single-crystal samples or polycrystalline samples (powder,
fiber). In the second case things are more difficult because all diffracted beams having a given
2ϑ are overlapped. While the diffraction pattern of a single crystal is a three-dimensional
function I(h, k, ℓ) rich of information, the powder diffraction is an uni-dimensional function
I(2ϑ) with poor information.
Structural studies based on powder diffraction data meet the difficulty of measuring the
diffracted intensities one-by-one, singled out by the Bragg indices, in presence of overlap.
The difficulty can be overcome employing deconvolution techniques (see e.g. Harris, 1998) or,
alternatively, renouncing to the separation of reflections and considering the quasi-continous
function I(2ϑ) (Rietveld, 1967; Rietveld, 1969; Young, 1995) exploiting the so called full-pattern
powder profile analysys.
In this case, the measured diffraction intensities I(2ϑi) are compared with the computed ones
given by

Icalcd,i = ∑
k

F2
k Ω(2ϑi − 2ϑk) (3)

where the sum is extended to all the reflections whose Bragg 2ϑk fall near to the current 2ϑi point. In
equation (3) Ω(2ϑi − 2ϑk) is the peak function having a maximum for 2ϑi = 2ϑk. In full-pattern
profile analysis the residual χ2 considered is given by the expression

χ2 = ∑
2ϑi

[I(2ϑi)− Icalcd,i]
2

and the most used fitness index is Rwp = χ2/ ∑ I2(2ϑ)
Just because EA techniques need a reduced number of data they are attractive in studies based
on powder diffraction, particularly when the full-pattern profile analysis is performed. For
recent studies see Harris (1998), Feng (2006), Hanson (2007), Oganov (2006).
When a structure has been solved (at a coarse level) a second problem arises: to refine atomic
positions. This is a local optimization problem. Once again the goal is to find the minimum of
χ2 varying systematically atomic positions in the vicinity of the initial coarse values and adding
some parameters for expressing the thermal vibration.
While the local optimization is done using deterministic algorithms (typically a least-square
refinement) and proceeds, in most cases, without problems, the global optimizazion, even at
coarse level, is much more exacting.
The remainder of this chapter concerns only global optimization problems. In addition
we shall not treat the traditional solution methods but only some based on evolutionary
algorithms.
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5. The three-dimensional space and the problem space

Solving a structure of N atoms means finding N positions in the 3D space. Unfortunately
there are no algorithms for finding positions one by one (unless rather simple cases occurring
in inorganic chemistry). Atomic positions must be find simultaneously.
An alternative way to define the terms of problem is to refer to another space, the so called
problem space, having 3N dimensions instead of three. To catch a structure means to locate a
single point in this hyper-space. Simple to say, but very difficult to do. As explained later the
EA follow this crazy idea.
Small-medium size problems, are solved using deterministic algorithms, provided that the
available diffraction measurements are numerous, accurate, and complete (i.e. including all
the intensities with the diffraction angles ϑ lower than the assigned 2ϑm). For these methods,
not discussed in this article, there are many excellent textbooks (e.g. Giacovazzo et al., 2002;
Stout & Jensen, 1995).4 The EA are indicated instead in difficult cases: limited 2ϑm, poor
quality of data, low number of reflections.
One could ingenuously believe that all structural problems can be solved moving the
representative point systematically in the whole problem-space and examining all solutions.
Atomic coordinates are however real and continuous quantities; so points are infinite.
Well, even though finite (and coarse) intervals are considered to render the problem-space
discontinuous, one obtains astronomic numbers also in the simple cases (see later). The
systematic exploration of the whole problem-space is not a practical tool, unless some tricks
are adopted. Possible strategies are:

i) to reduce substantially the number of variables adopting other kinds of coordinates rather
than crystallographic (see section 6) and choosing coordinate systems for which a good
fraction of variables are predictable;

ii) to render the problem-space discontinuous;

iii) to reduce as much as possible the range of variation for each variable.

We shall suppose that the crystal under study is a molecular crystal with known composition
(chemical formula) and known interatomic connection (structural formula); consider that the
chemical formula is obtained by chemical analysis; structural formula is the result of a
number of physical observations (e.g. NMR, IR, UV spectroscopy) and chemical observations
(relations of the unknown substance to other already known).
Using diffraction techniques one can establish size, shape, and symmetry of the unit cell. From
the experimental density of crystals one obtains the atom content of the unit cell. Using the
diffractometers one obtains an appropriate number of diffracted intensities.

6. Coordinates

Structures are commonly described by using the crystallographic coordinates (c.c.) to define
atom positions. The c.c. (collectively indicated with pi) are 3N if atoms are N. This choice
is the most natural and also practical because the simple analytical relationship with the
structure factors F(h, k, ℓ), see equation (1).

4 Among deterministic methods we include the so called direct methods, actually the most used. Also
direct methods are somewhat probabilistc and aleatory, in modest amount however. Also using direct
methods the risk of finding false solutions exists.
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As a matter of fact, infinite alternative systems for describing structures are conceivable: if
new coordinates qi are introduced, so that one can transform from pi to qi and viceversa using
analytic and biunivocal relationships, the qi can be used as alternative stuctural variables. The
number of qi must be, of course, again 3N.5

Which are the alternative useful descriptions among the infinite possible ones? To reply it is
important to point out that atomic positions are not fully impredictable. The systematic study
of molecular crystals did demonstrate that atomic positions are not random quantities. Any
structural hypothesis must obey to the following rules:

i) atoms must be appropriately separated among them; for each atom pair distance is
anything but random: if the two atoms are chemically bound, atom separation is a
bond-length (b-l) and must be close to the sum of the atomic radii (see e.g. Cotton, 1999);
if not bound and spaced by three bonds or more, the distance must be higher than the sum
of the so called van der Waals radii (Bondi, 1964); the same applies when the two atoms
belong to different molecules (packing distances).

ii) the bond-angles (b-a) must be close to the “canonical” values prescribed by the rules of
orbital hybridation (see e.g. Cotton, 1999): angles close to 109.5◦ on carbon atoms with sp3

hybridation, close to 120◦ on carbon atoms with sp2 hybridation, etc. The examination of
“molecular models” suggest in much cases angles in rather restricted intervals.

iii) the molecular conformation must obey to the rules of stereochemistry: aromatic rings
must have D6d symmetry, the sequences C–C=C–C have to be planar, the torsion-angles
(t-a) about single bonds must have values close to those typical of ethane-like molecules
(-60, 60, 180◦), etc. These limitations can be thus “rigid” in some cases (double bonds),
“flexible” in other cases (single bonds).

The above restrictions for b-l, b-a, and t-a are of simple mathematical formulation if the
crystallographic coordinates pi are employed; there is however the disadvantage that the
restrictions (constraints) apply not to the pi themselves, but to a number of mathematical functions
of the pi. Indeed there are procedures for doing minimizations in presence of constraints:
the Lagrange method (Goldstein, 1980) with the drawback that only a few constraints can
be accounted for, while in molecular building there are numerous. Instead, introducing
alternative coordinates qi chosen with cleverness, it is possible to impose the above constraints
not on the functions but directly on the qi. If so happens one simply removes the qi from the
list of variables.

7. The internal coordinates. Eyring algorithm

It is customary studying complicate problem by means of the so called internal coordinates
(i.c.), used in performing molecular building in various other contexts (e.g. spectroscopy,
theoretical chemistry). The pioneer work (in chemistry) was that of Eyring (1932) who devised
the procedure later called Z-matrix . Really the idea is well older; it was skilfully described by
Lagrange (1796) who coined the term generalized coordinates. Lagrange studied not molecules
but machines; things are rather similar after all: Lagrange’s machines are made by rigid objects

5 3N coordinates are necessary for describing the crystal structure. If only the molecular structure is of
interest, the coordinates are 3N − 6 being six the rigid body coordinates (Goldstein 1980).
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connected to each other with limited freedom of movement; in molecules the rigid objects are
the chemical bonds and movements are limited to torsion and (in small amount) to bending.6

Eyring’s algorithm is simple, provided that there are neither rings nor polyhedra. The idea is
to build molecules first defining three atoms, (C1 , C2 , and C3 in Fig. 1) then inserting the
other atoms stepwise as function of three i.c. in each step: a b-l b, a b-a τ and a t-a ϑ. Of course,
in each step one must specify which atoms are to be considered.
Three i.c. are needed for starting a molecular building, viz. two b-l (b1, b2) and a b-a (τ3). It
is customary to put the 1st atom on the origin, the 2nd atom along x axis, the 3rd atom in the
x, y plane with y > 0.
Fig. 1 shows how the building starts (chbe command, green atoms) and the Eyring
construction (red atom). The construction of the 5th atom (blue) is discussed later.

Fig. 1. Building a 5 atoms molecule

The Eyring’s machinery for attaching a new atom after a given sequence A, B, C, is as follows:
one computes the vector v with components b cos τ, b sin τ cos ϑ, b sin τ sin ϑ, the vector
product u = (B − A)× (C − B), and the orthogonal transformation matrix T aligning A and
B points along z′ and making y′C = x′C = 0; then adds to C atom the product T · v . The
analytical expression of T matrix is:

T =

∣
∣
∣
∣
∣
∣

xB − xA xC − xB ux

yB − yA yC − yB uy

zB − zA zC − zB uz

∣
∣
∣
∣
∣
∣

with each column normalized to length 1.
Besides the Eyring’s construction (setx) needing three variables b, τ, ϑ, another construction
is practical when atoms are inserted on tertiary carbon atoms of known chirality; this
construction (tetr) makes use of two b-a τ1, τ2 (instead of one b-a and one t-a); the advantage
is the restricted range of the b-a compared with the wide range of the t-a. The above 5-atom
skeleton (Fig. 1) has been built just with 3 constructions: chbe (for atoms C1–C2–C3, in
green), setx (for atom C4, in red), and tetr (for atom C5, in blue).
In Fig. 1 the three constructions are indicated “symbolically” according to a conventional
syntax (see later).
Of course six other variables must be added to the molecular i.c. for defining the actual
position and orientation of the molecule in the unit cell: three translations and three rotation
angles. Rototranslation i.c. can be less than six because of crystal symmetry.

6 This representation applies when bonds are considered rigid and bond-angles semirigid . This situation
applies in studying molecular crystals (at a coarse level). In other contexts (e.g. spectroscopy) things
are different.
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7.1 Redundant coordinates

A serious drawback encountered in building molecules using Eyring method is the possible
redundancy of the i.c. In simpler words they might be not independent. While independent
i.c. can be varied each in turn preserving the stuctural formula, this does not apply in case
of redundancy. When molecular building is performed within random search and genetic
procedures, the preservation of the structural formula is of basic importance. Also regarding
reduncancy there is nothing new after Lagrange; he said all the necessary: the generalized
coordinates are exactly the same thing.
As illustrated below, non-redundancy in molecular building can be fulfilled by selecting the
3N − 6 i.c. of a molecule with shrewdness among b-l, b-a, t-a, and also bending angles if necessary
(see later). Bending angles become necessary in two cases: cyclic molecules and polyhedric
molecules.

7.2 Cyclic molecules

A possible solution overcoming redundancy in cyclic molecules is shown in Fig. 2 considering
the case of cyclohexane.
Since the gi must be, at a molecular level, 3N − 6, considering N bond-lengths, only other
2N − 6 gi must be assigned, necessarily, angular. The method adopted (Immirzi, 2007a,b)
integrates Eyring’s procedure for building atoms C1, C2, . . . C5 (9 gi are employed altogether,
4 b-l, 3 b-a, and 2 t-a) with a new machinery for building atom C6 (proposed by Goto and
Osawa, 1989) using two b-l and one angle only, a so called bending angle (ϕ); with this
construction the molecule is bent about a line crossing two atoms separated by one bond
only. Such construction (termed flap) has been added to the above ones. The machinery for
computing C6 as a function of ϕ and the two b-l C1–C6 (g11) and C5–C6 (g12) is very simple
(see Immirzi, 2005a).
The construction shown in Fig. 2, termed flap resolves the problem for rings of any dimension
and also every polyciclic molecule (e.g. decaline, steroids, etc.) and resolves also intricate
multicyclic molecules like norbornane, pinene, spirocompounds, etc.

Fig. 2. Building a ring without redundancy, cyclohexane C6H6, (the blue atom is computed
by a flap instruction).

7.3 Polyhedric molecules

A possible solution overcoming redundancy in polyhedric molecules is shown in Fig. 3
considering the simplest polyhedron: the cubane C8H8, represented as a bare carbon atom
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Fig. 3. Building a polyhedric molecule without redundancy (cubane C8H8). The green atoms
are computed by chbe, the red atom by setx, the blue atoms are computed by flap, and
the yellow atom by cage.

skeleton. Remember that the gi must be, at the molecular level, 3 × 8 − 6 = 18 and 12 gi are
b-l. In order to build without redundancy one must use only 6 angles. Building the first 7
atoms can be done as indicated symbolically in the figure. After the 5th command one atom is
lacking, C8, and all the 6 angles have been used besides 9 over 12 bond-lengths. To complete the
molecule one can find x8, y8, z8 imposing C8 has assigned distances b16, b17, b18 from points
C4, C5, C7. This is a simple (and classical) problem of 2nd degree having an unique solution
provided that the polyhedron is convex. The command cage computes the lacking atom.
Note that cage allows modeling also giant polyhedra like the fullerenes.

8. Other constructions and symbolic building

Molecular and crystal building through internal coordinates is not used only in performing
structural analysis by EA. It can be used instead in all conventional procedures. In
particular for doing interactive modeling, trial-and-error calculation, and at last for doing
the least-square refinement of structures based on the i.c. themselves as optimized variables.
In the latter case the non-redundancy of the variables plays a crucial role since only in absence
of redundancy normal matrices are always non-singular.7

For these reasons all the mentioned constructions have been programmed devising an unique
subroutine (termed LAGR , an homage to Lagrange, the authentic, and ignored, discoverer of
the i.c.) performing the whole construction at each call. To simplify the input data preparation
LAGR has been structured so that the various constructions invoked are specified symbolically
according to a conventional syntax with one line of data for each construction step. Examples
of this syntax are indicated in the figures and in the input data for procedure validation (Tables
1 and 2).
Besides the mentioned four basic constructions needed for building molecules of any kind
(chbe, setx, tetr, flap, and cage, tetr is really not indispensable) there are numerous
other constructions, not strictly necessary but very useful. Among them there are phen

(building phenyl groups), metl (building a CH3 group) and others. LAGR subroutine
includes also the commands necessary for placing the built molecule in the unit cell, for doing
orthogonal transforms, for referring the molecule to its inertial axes, and others. A clever

7 A persuasive argument is that normal matrix needed for carrying out the least-square procedure is
computed evaluating the first-order partial derivatives of structure factors vs. the variables. Such
derivatives are computed wrong if the variables are not strictly independent to each other.
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usage of these commands brings to a further reduction of the effective number of i.c. by
imposition of local symmetry, i.e. the identity of structurally independent i.c. but chemically
indistinguishable. At last a number of special commands were implemented for the case of
linear polymers: to create regular helices and chains with glide-planes, to orient the chain
parallel to the crystallographic c edge, etc.

9. General layout of a EA based procedure. Metaheuristic approach

The evolutionary (or genetic) algorithms for resolving global optimization problems are based
on the idea of finding the “true” solution starting from a number of more or less arbitrary
solutions and performing combinations of the variables analogous to the ones occurring in
the cellular reproduction.
There is an analogy between chromosomes and molecular structures. As a chromosome can
be described by a sequence of genes, a molecular structure can be described by a sequence of
structural variables. For these reasons the terms are used as synonyms.
In order to limit the aleatority of the procedure it is practical to follow the so called
metaheuristic approach (Weise, 2009) assuming that the gi vary as multiple of a small increments.
With this contrivance the i.c. (real and continuous quantities) become integer numbers
whose upper limit is limited by the range of excursion of the gi themselves. “Solutions” can
binary-coded using a finite number of bits. Consider anyway that the number of points in
the problem-space remains astronomic; for instance a 10-variable structure codified in 60-bits
may assume 260 ≈ 1018 values. If, for simplicity, a 5-gene case is considered, and 7, 6, 3, 4, 6
bits are dedicated to the 5 genes respectively, the binary code will be (braces groups the bits
of given g):

b6b5b4b3b2b1b0
︸ ︷︷ ︸

g1

b5b4b3b2b1b0
︸ ︷︷ ︸

g2

b2b1b0
︸ ︷︷ ︸

g3

b3b2b1b0
︸ ︷︷ ︸

g4

b5b4b3b2b1b0
︸ ︷︷ ︸

g5

9.1 Planning the complete structural building

It is propedeutical to write-up a complete schema for the structural building based on the
symbolic language.8 This important step is anything but “automatic”; rather it requires
much attention and cleverness. One must assign the non-redundant i.c. and prepare the full
list of the symbolic building commands which, using the aforementioned subroutine LAGR,
will provide the full structural building as function of the current i.c. This schema serves
not only for carrying out the EA procedure, but for all the numerous options of TRY program
(calculation of structure factor, model adjustment, crystal packing, least-square refinement,
geometrical computations, etc.). Among the symbolic instructions there is one indispensable
for carrying out the random search in the problem space, termed xcon, and discussed in
details later.

9.2 Binary encoding

Now the user must: i) decide which gi must be kept fixed and which varied (it is customary
to exclude the bond-lengths and, possibly, also the bond-angles); ii) assign to each variable
gi a convenient increment ∆gi (the gi will be varied by multiple of ∆gi), iii) assign to each

8 These schemas are familiar to people using the Eyring’s mechanism for molecular building. In the
present case things are a little bit more difficult for the variety of constructions, which are necessary to
avoid redundancy.
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variable gi how many bit (mi) are to be used in binary encoding. ∆gi and mi determine the
range of excursion of the gi (range it is exactly ∆gi × 2mi ).
It is evident that some common sense must be exerted in assigning ∆gi and mi with a
compromise between fine steps in exploring the problem-space and wide spanning intervals.
For instance, for a bond angle on a carbon atom one could assign ∆ = 1.0◦ and mi = 4; the
angle will span a sufficient interval of 16◦. Torsion angles (about single bonds), have instead
higher uncertainity; giving them e.g. 5 bits and ∆gi = 3◦ will permit a span of 64◦. A large
number of bits, e.g. 7 or 8, must be assigned to the molecular rotation angles: using m = 7 and
∆ = 2.8◦ will ensure a 360◦ span; with m = 8 the same is fulfilled for finer step: 1.4◦. Using
common sense is no doubt necessary; but also experience turns out to be useful.
In this mechanism the initial value of each variable g◦i (to be defined in the input data) plays
a role, since the values assumed by gi are (k = 1, 2 . . . 2m)

g◦i , g◦i − ∆gi, g◦i + ∆gi, g◦i − 2∆gi, g◦i + 2∆gi, g◦i − 3∆gi, . . .

Note however that the g◦i are not critical quantities, provided they are internal to the span
intervals.

10. Creating the initial population. Constraints

The first step of an evolutionary procedure is the creation of a population of tentative structures
by means of a Montecarlo method (using e.g. pseudo-random numbers).9

One must assign the size of the population desired (e.g. 100-300 items) and the selection
criteria (see below). Size and selection criteria control, in a very unforeseeable manner, the
duration of the search, from few minutes to days. Anyway the search can be in any moment
interrupted and restarted with new parameters, either creating a new list of solutions or
queuing to the existing one.
If K is the number of gj searched (K is of course well lower than 3N), the random search is
performed generating, for each tentative structure, K integer random numbers each in the
range 0 ÷ 2mj − 1 to obtain a random combination of gi. By using the cited subroutine LAGR,
the corresponding model is created. It is evident that most of these models will be unfeasible.
There are two alternatives: i) to retain all solutions, attaching to each solution a proper
“penalty function”, ii) to apply some selection criteria and reject immediately unfeasible
items. The latter has been chosen in our procedure to avoid endless populations. Much
experience is anyway necessary for calibrating the rejection parameters, actually under user
control.

10.1 Selection criteria. The xcon command

The computer program implemented in our laboratory includes the following selection
criteria (filters):

1) the 1st filter, most incisive and mandatory, is the one checking the connectivity of the trial
structure versus the known connectivity (remember that the chemical formula is supposed
known!). We define as connectivity a group of eight integer codes (connv) to be inserted

9 True random numbers should be preferable. Some hardware devices are produced, but we do not have
direct experience. Such devices should be of course very fast as billions random numbers are necessary.
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in the xcon command: the first is the number of atom-pairs separated by one bonds, the
second the same number for two bonds, etc. up to 8 bonds.10

2) the 2nd filter eliminates structures with unfeasible bond angles. Non bonded pairs must
have distances exceeding more than sepn2 (atoms separated by two bonds) or sepn3
(atoms separated by three or more bonds) the sum of covalent radii. Unrealistic structures
with acute bond angles can so be eliminated. (In few cases, eg. cyclobutane, acute angles
occur). The quantities sepn2 and sepn3 are supplied in the command xcon.

3) the 3rd filter checks the connections of the trial molecule with the neighbour (in molecular
crystals no connections should be present; in linear polymer, instead, two connections take
place); the number of external connections (linkno) is also assigned in xcon command.
Connection are illegal if distance is lower than the sum of covalent radii augmented by
tolnk, also supplied in xcon.

4) the 4th filter consists in computing the lattice energy, again rejection occurs if energy
exceeds the assigned threshold, chosen by the user at the beginning of search.

5) the 5th filter is based on the R2 index defined as the residual χ2 (equation 2) divided by the
sum of intensities. the tentative solution is rejected if R2 exceeds an assigned value. Also
for R2 the threshold is chosen by the user.

Parameters sepn2, sepn3, tolnk, linkno and connv are defined in command xcon. Note
that the same filters apply also in the subsequent breeding (see later).
It is evident the importance of assigning the above values cum grano salis, avoiding both excess
or lack of severity. Indeed the ratio accepted-structures / generated-structures leans to be low
(e.g. 10−5); the conformational freedom of the molecule has of course a critical role.

10.2 Optimizing of the initial population

We have introduced (as an optional) the local optimization of the random solutions found with
the above procedure. Each random solution is a point in the (discontinuous) problem-space.
The idea is to examine the nearest points in the problem-space and find points possibly more
promising, based e.g. on R2 index. In a K-dimension problem space points are 3K − 1, a value
prohibitively high if K is large.
On belief that the local optimizazion is a good idea (experience seems to confirm) we have
exploited a trick: to assign a reasonable value to the number of neighbouring points P to be
examined, say 500-1000, and select, at random, P points among the 3K − 1 ones.11 With this
contrivance the duration of an optimization step is reasonable.

11. Genetic combinations

The heart of the genetic procedure is the systematic combination (breeding) of the solutions
belonging to the initial population following the rules of genetics. In this context two kinds of

10 Establishing the connectivity codes is rather bothering, but the problem is easily resolved using TRY.
One considers a dummy unit cell without symmetry and with large lattice constants. If the molecule is
well constructed and displayed on the monitor the eight connection codes will appear on the top of the
screen. Keep note and insert in xcon.

11 For each integer p running from 1 to P one computes a real random number in the range 0-1, multiply
it by 3K and truncate. The point to be considered is given by the digits of the product above written in the
basis 3. If desired 5 or 7 points can be considered instead 3.
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combinations are considered: the cross-over and the mutation. A cross-over (binary combination)
consists of an interchange of a selected gene belonging to the two mating items; a mutation
(unary combination) is the change of a single bit (chosen at random) belonging to the bit-string.
Considering a 9-gene example and a cross-over between genes g2, g7 one obtains:

Parent sequence (father): g1 g2 g3 g4 g5 g6 g7 g8 g9
Parent sequence (mother): g′1 g′2 g′3 g′4 g′5 g′6 g′7 g′8 g′9
Child sequence: g1 g′7 g3 g4 g5 g6 g′2 g8 g9
Mutated sequence: g1 g′7 g3 g∗4 g5 g6 g′2 g8 g9

the symbol ∗ has been used for a mutation (the g4 has been chosen by chance). In each case a
new sequence is born for each crossover, two if also a mutation takes place. If the crossover
takes place for all the pairs of K genes, K × (K + 1)/2 new strings occur; twice as many if also
mutation is done.
Of course if two feasible structures are coupled, it is not warranted that child structures are
meaningful. The above described “filtering” could be used again to eliminate unfeasible
structures. At present the structures having R2 higher than an assigned limit or a lattice
energy higher than an assigned limit are eliminated. The limits, of course, should be fixed
using experience. The new selected structures, anyway, are added to the initial ones.
The crossover can be done either considering a single gene, selected at random, or considering
all genes; in the last case there are K combinations, for each pair of mated structures. When the
genetic combination is ended the population of solution is extended by an amount depending
on the used filters. The new population will be again sorted using an appropriate figure like
the R2 index.
Examining the sorted list one observes, frequently, that the first solutions happen to be very similar
to each other. That is no doubt an indication of success. If this is not the case a good idea is
to repeat the breeding as many times as it is necessary. If however the breeding has resulted
ineffectual in finding new solutions, it is better to repeat the whole process in more appropriate
conditions. The exploration of a wide fraction of the problem-space is no doubt essential for
the success.

12. Procedure validation

For testing purposes two already reported structures (single-crystal X-ray diffraction studies,
molecular models are shown in Fig. 4) have been considered using published data. Only
the reflections having d > 1.2 Å have been considered to show that the method needs few
reflections and that resolution can be modest.
The first test concerns the steroid equilin (a 20-atom molecule, ignoring hydrogen atoms) with
restricted conformational freedom (Sawicki et al. 1999), the second test considers sucrose,
a 23-atom molecule with high conformational freedom (Hynes et al., 1991). The latter was
already considered in the first publication describing the method (Immirzi et al., 2008); the
analysis has been repeated however in more challenging conditions. The input data for
doing the two tests are given in Table 1 and Table 2; many comments are added for reader’s
convenience.
All computations were done using the program TRY (Immirzi, 2007) and assuming fixed
bond-lengths in both cases, also fixed bond-angles in the case of equilin. The computing
scheme is the simplest one: no hydrogen atoms, isotropic thermal vibration (an unique Biso),
unitary weight factors. In both cases the EA procedure consists of three phases: i) formation of
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the initial population, ii) improvement of solutions looking at adjacent points, iii) breeding by
cross-over and mutation. The reliability of the resulting structures has been tested performing
some cycles of full-matrix least-square refinement optimizing the same i.c. considered in the
EA phase. The resulting R indices are, of course, not competitive with the ones published
because of the crude simplicity of the followed computation scheme and because of the
reduced number of reflections. The LS convergency is anyway excellent.

(a) Equilin (b) Sucrose

Fig. 4. Molecular models of the two test molecules: equilin and sucrose. Bond angles (τn) are
shown. Torsion angles (ϑn) are listed in Tables 1 and 3.

The following scheme summarizes the essential data for the two tests.

equilin sucrose
reflections considered (d > 1.2 Å) 715 589
number of non-hydrogen atoms 20 23
number of internal coordinates 60 68
varied internal coordinates 15 28
bits used in binary encoding 75 123
random structures generated 50 × 103 141 × 106

initial population 300 150
lowest R2 index after search 0.43 0.74
lowest packing energy -3Kcal -11Kcal
search duration 3 min. 29 hr.
mated structures 20 30
resulting R2 after breeding 0.39 0.43

Note how the formation of initial population is performed in a very short time in the former
case (75-bit encoding), and longer time in the latter (123 bit encoding).
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Equilin by Sawicki 1999
6.5429 9.0345 23.894 0 0 0 ! lattice constants
C=C O=O ! atomic species
4 0.72080 56.55 4 4 6 ! 3 non-operative codes + crystal extension
-x+1/2, -y, z+1/2, ! symmetry (P2_12_12_1 space group)
-x, y+1/2, -z+1/2, *
! here begin lines processed by LAGR subroutine
xcon 0.10 0.10 0.10 0 23 36 39 30 22 16 12 7
! 1st ring (aromatic) C1-C2-C3-C4-C5-C10 (conventional geometry)
chbe C1 C2 C3 1.40 1.40 1.20
setx C1 C2 C3 C4 1.40 1.20 0.0
setx C2 C3 C4 C5 1.40 1.20 0.0
setx C3 C4 C5 C10 1.40 1.20 0.0
! 2nd ring (cyclohexene) C6-C7-C8-C9
setx C2 C1 C10 C9 1.52 1.20 1.80
setx C1 C10 C9 C8 1.52 g1 g2
setx C10 C9 C8 C7 1.33 g3 g4
flap C8 C7 C5 C6 1.52 1.52 g5
! 3rd ring: (cyclohexane)
setx C1 C10 C9 C11 1.54 g6 g7
setx C10 C9 C11 C12 1.54 g8 g9
setx C9 C11 C12 C13 1.54 g10 g11
flap C9 C8 C13 C14 1.54 1.49 g12
! 4th ring (cyclopentane)
setx C9 C8 C14 C15 1.54 g13 g14
setx C8 C14 C15 C16 1.54 g15 g16
flap C15 C16 C13 C17 1.52 1.52 g17
tert C12 C14 C17 C13 C18 1.54
! O atoms
setx C5 C4 C3 O19 1.36 1.20 1.80
trig C13 C17 C16 O20 1.22 0
iner C1 Q31 20 0 ! refer the 20-atom molecule to inertial axes
rtax 1 C1 20 g18 ! Rx rotation
rtax 2 C1 20 g19 ! Ry rotation
rtax 3 C1 20 g20 ! Rz rotation
move C1 20 g21 g22 g23 0 ! translation
end
1.0800 1.6900 1.2000 0.0800 1.7000 ! starting values
1.0900 -0.6400 1.0900 1.7800 1.0600 ! for i.c.
0.5450 1.2700 1.2200 1.7700 1.0200 !
1.6600 1.7200 -0.9521 -0.5334 -0.5628
2.0146 3.5320 9.8812
*
*
180 -90 180 50 1.0 1 ! screen projection and scale
5.2 5.2 ! B-iso ! thermal parameters
0.0 0.0 ! B-33 ! anisotropic component of ditto
! the following 15 lines define the g(i) kept variable in EA
! and the binary-encoding scheme: no. of bit and step; span intervals
! (sp) are also given as comments
2 4 0.028 0 0 ! sp for C1-C10-C9-C8 t-a =45deg
4 4 0.028 0 0 ! sp for C10-C9-C8-C7 t-a =45deg
5 4 0.028 0 0 ! sp for C8-C7-C5-C6 t-a =45deg
7 4 0.028 0 0 ! sp for C1-C10-C9-C11 t-a =45deg
9 4 0.028 0 0 ! sp for C10-C9-C11-C12 t-a =45deg

11 4 0.028 0 0 ! sp for C9-C11-C12-C13 t-a = 45deg
14 4 0.028 0 0 ! sp for C9-C8-C14-C15 t-a = 45deg
16 4 0.028 0 0 ! sp for C8-C14-C15-C16 t-a = 45deg
17 4 0.028 0 0 ! sp for C15-C16-C13-C17 flap =45deg
18 7 0.028 0 0 ! sp for Rx rotation = 360deg
19 7 0.028 0 0 ! sp for Ry rotation = 360deg
20 7 0.014 0 0 ! sp for Rz rotation = 360deg
21 5 0.200 0 0 ! sp for Tx translation = 6 A
22 6 0.200 0 0 ! sp for Ty translation = 12 A
23 7 0.200 0 0 * ! sp for Tz transl. = 25 A
0 1.0 10.0 0.1 1.0 1.0 1.0 1.0 0.8 1.0 0.0
EQUILIN.DAT ! file containing the F2hkl

Table 1. Input data for equilin test
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Sucrose by Hynes (1991)
10.8631 8.7044 7.7624 90 102.94 90 ! lattice constants
C=C O=O H=H ! atomic species
8 1.5418 56.55 4 4 4 ! 3 dummy codes and cell extension
-x, 1/2+y, -z, * ! symmetry (P2_1 space group)
! here begin lines processed by LAGR subroutine
xcon 0.30 0.30 0.40 0 24 36 43 36 32 30 26 17 ! connections
chbe C16 C15 C14 1.521 1.521 g1 ! build piranose
setx C16 C15 C14 C13 1.521 g2 g21
setx C15 C14 C13 C12 1.521 g3 g22
flap C15 C16 C12 O5 1.427 1.427 g23
setx C16 O5 C12 O1 1.427 g4 g24 ! O atom bridge to furanose
setx C16 C15 C14 O3 1.427 g5 g25 ! O3
setx C13 C14 C15 O4 1.427 g6 g26 ! O4
setx C15 C14 C13 O2 1.427 g7 g27 ! O2
setx C14 C15 C16 C17 1.521 g8 g28 ! lateral CH2OH group
setx C15 C16 C17 O6 1.427 g9 g29
setx C13 C12 O1 C19 1.427 g10 g30 ! build furanose
setx C12 O1 C19 C20 1.521 g11 g31
setx O1 C19 C20 C21 1.521 g12 g32
setx C19 C20 C21 C22 1.521 g13 g33
flap C21 C22 O19 O8 1.427 1.411 g34
setx O8 C19 C20 O9 1.427 g14 g35 ! O lateral to furanose
setx C19 C20 C21 O10 1.427 g15 g36 ! O lateral to furanose
setx C19 O8 C22 C23 1.521 g16 g37 ! lateral CH2OH
setx O8 C22 C23 O11 1.427 g17 g38
setx C21 C20 C19 C18 1.521 g18 g39 ! lateral CH2O
setx C20 C19 C18 O7 1.427 g19 g40
iner C1 Q50 23 0 ! compute the inertial axes and orient accordingly
rtax 1 C1 23 g41 ! overall Rx rotation
rtax 2 C1 23 g42 ! overall Ry rotation
rtax 3 C1 23 g43 ! overall Rz rotation
move C1 23 g44 0 g45 0 ! translation
end ! i.c. starting values follow

1.1072 1.0725 1.1207 1.1010 1.0771 1.1249 1.0982 1.1219 1.1124
1.1381 1.0818 1.0225 1.0285 1.1583 1.1181 1.0999 1.1284 1.1479
1.1137 0.0000 -0.5680 0.5729 1.2994 -0.6819 -1.7724 -1.7409 1.7851
1.7344 -0.6413 1.3017 1.6018 -0.8762 -0.3520 1.7662 1.5806 -1.5559

-1.3286 0.7047 1.4875 0.7208 0.7006 -0.1187 0.5964 2.4590 3.1670
*
-90 0 0 50 1.0 1 ! molecular orientation, and image scale factor
1.3 1.3 1.3 ! Isotropic thermal parameters
0.0 0.0 0.0 ! anisotropic component of ditto
! binary-encoding scheme for g(i): no. of bit and step; span intervals (sp) after !
4 3 0.00500 0 0 ! sp for O5-C12-O1 b-a = 4 deg
10 3 0.00500 0 0 ! sp for C12-O1-C19 b-a = 4 deg
11 3 0.00500 0 0 ! sp for O1-C19-C20 b-a = 4 deg
21 3 0.02812 0 0 ! sp for C16-C15-C14-C13 t-a = 22.4 deg
22 3 0.02812 0 0 ! sp for C15-C14-C13-C12 t-a = 22.4 deg
23 3 0.02812 0 0 ! sp for C15-C16-C12-O5 flap = 22.4 deg
24 3 0.02812 0 0 ! sp for C16-O5-C12-O1 t-a = 22.4 deg
25 3 0.02812 0 0 ! sp for C16-C15-C14-O3 t-a = 22.4 deg
26 3 0.02812 0 0 ! sp for C13-C14-C15-O4 t-a = 22.4 deg
27 3 0.02812 0 0 ! sp for C15-C14-C13-O2 t-a = 22.4 deg
28 4 0.02812 0 0 ! sp for C14-C15-C16-C17 t-a = 44.8 deg
29 4 0.02812 0 0 ! sp for C15-C16-C17-O6 t-a = 44.8 deg
30 7 0.02812 0 0 ! sp for C13-C12-O1-C19 t-a = 358 deg
31 7 0.02812 0 0 ! sp for C12-O1-C19-C20 t-a = 358 deg
32 7 0.02812 0 0 ! sp for O1-C19-C20-C21 t-a = 358 deg
33 3 0.02812 0 0 ! sp for C19-C20-C21-C22 t-a = 22.4 deg
34 3 0.02812 0 0 ! sp for C21-C22-C19-O8 flap = 22.4 deg
35 4 0.02812 0 0 ! sp for O8-C19-C20-O9 t-a = 44 deg
36 4 0.02812 0 0 ! sp for C19-C20-C21-O10 t-a = 44 deg
37 4 0.02812 0 0 ! sp for C19-O8-C22-C23 t-a = 44 deg
38 4 0.02812 0 0 ! sp for O8-C22-C23-O11 t-a = 44 deg
39 4 0.02812 0 0 ! sp for C21-C20-C19-C18 t-a = 44 deg
40 4 0.02812 0 0 ! sp for C20-C19-C18-O7 t-a = 44 deg
41 8 0.01400 0 0 ! sp for Rx rotation = 358 deg
42 8 0.01400 0 0 ! sp for Ry rotation = 358 deg
43 8 0.01400 0 0 ! sp for Rz rotation = 358 deg
44 5 0.17000 0 0 ! sp for Tx translation = 5.5 A
45 5 0.13600 0 0 * ! sp for Tz translation = 4.4 A
0 3.0 10.00 0.25 0.80 0.20 0.10 0.70 0.005 0.0 0.0 ! powder data
SUC1.dat ! file contaning F2hkl

Table 2. Input data for sucrose test
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13. Conclusions

The power of evolutionary algorithms in resolving difficult crystal structures from diffraction
data has been discussed evidencing the convenience of basing the approach on internal
coordinates. A specific procedure has been implemented, having the following main features:
i) it is based on internal coordinates (this reduces considerably the number of variables
and their uncertainty); ii) it uses discretized coordinates and binary structure encoding
(metaheuristic approach); iii) the procedure is designed as a constraint satisfaction problem
so incorporating the numerous a priori information available; the constraints are considerd
both in the initial step of the procedure (formation of the initial population of solutions based
on Montecarlo methods) and in the subsequent steps (breeding of the population).
The ideas above afforded a Fortran-language computer program suitable for any kind of
molecular structure and available free of charge. The evolutionary procedure has been
inserted into a general-purpose program, entirely based on internal coordinates. The program,
presently tested on known structures (in difficult conditions), runs well. It has however the
disadvantage of needing numerous parameters (presently assigned by the user) which could
be assigned automatically in more evolute versions of the program.
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