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1. Introduction 

The mankind achieved an astonishing technological development through centuries of 
innovation, creation and continuous improvement. The history of engineering is the 
inherent component of the civilization. Moreover, outstandingly important lessons for 
further development can be studied in the history of engineering. The investigations of the 
recent complex engineering knowledge, experience, analytical and computational tools may 
serve to explain the technical progress and facilitate the future development. For this 
purpose this chapter will present how the evolutionary algorithms can simulate the 
developing complexity of engineering reasoning that in reverse can back-trace the primitive 
origins of modern technical products. The chapter will resume the evolutionary algorithms 
as well as the evolutionary optimization and design processes based on innovative and 
creative activities with the aim to define their potentialities in discovering the evolution of 
engineering products. More so when adding to the whole process the touch of randomness 
introduced in form of mutation operator the algorithm gains the property to converge to the 
global optimum within multi-modal search space. Both of these processes crossover and 
mutation have been present in the natural evolution for eons of time. From an algorithmic 
perspective crossover and mutation enable adaptation of the population of feasible solutions 
to the imposed environment conditions of the search spaces. The chapter will concentrate on 
the multi-objective optimization problems taking for example the NSGA-II algorithm (Deb, 
2001). The result will be obtained as the population of optimal solutions distributed along the 
Pareto frontier. Using constraint domination condition and constrained tournament selection 
operator the evolution of the object under consideration will be explained. Normally 
engineering relies on the design process that is for technical purposes modelled as a set of 
cyclic activities put in a logical order to guide the procedure until the desired technical aim is 
reached. The design process is comprehensible as a shortcut to a satisfying product that is also 
in clear correlation with the formulation of an algorithm, particularly with evolutionary 
algorithm. The evolutionary methods affect design process and teach about process itself. They 
stimulate innovation and creativity during the human efforts to design and apply processes 
which are all in reality an attempt to produce an unbiased human performed heuristic search. 
The evolutionary design relies on the normal contemporary progressive engineering reasoning 
aspired with achievement of highly efficient products providing appropriate safety levels by 
employing genetic algorithms. The chapter will consider how the reverse process to the 
technical progress can reconstruct the origins of contemporary products using evolutionary 
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algorithms on engineering models in two manners. Chapter will present two examples. The 
first case study in this chapter investigates the evolution of a truss structure possibly in the 
future up to the very important engineering entity – the wheel. The second case study back-
traces the development of the stiffened shells in aerospace and shipbuilding industry to their 
primitive origins in boats originally made of carved-out log. 

2. Evolutionary Algorithms 

C. Darwin wrote that evolution begins with the inheritance of the gene variations. Inspired 
by the natural evolution in the mid 20th century the field of evolutionary computation 
emerged to its dawn and new class of algorithms was born. By the principle of the survival 
of the fittest, solution or set of solutions to given problem evolve in time using fitness - 
objective function that is, as an evolutionary guide. During the search new solutions are 
generated by reusing and mixing together pieces of the past solutions. Like with the living 
organisms – information in digital computer comprehensive manner was being exchanged 
between the most feasible solutions. Important class of evolutionary algorithms, genetic 
algorithms resembled natural evolution in the most (Yokey, 2005). Information exchange 
between solutions was done by exchanging binary number strings by crossover operators. 
Information chunk exchange was described in well known Building Block Hypothesis 
(Goldberg, 1989). Goldberg’s attempt of proving the convergence of heuristic genetic 
algorithm is in line with the mid 20th century genetics theories. It is known that information 
exchange during forming of amino acids is also linear and digital like in computers and it is 
build from chunks of information (Yokey, 2005). Since they were not calculus based 
application of such genetic algorithms was soon to be recognized as they were applied as 
general optimization problem solvers. Range of applications included combinatorics 
(scheduling, TSP problem, close packing problems), various engineering optimization 
problems (single or multy-objective optimization), neural network trainers etc. 
Evolutionary algorithms own their properties and behavior to the process that they are 
trying to mimic in order to find solution - the natural evolution of living organisms. The 
solution or the set of solutions to the given problem evolves in time from the feasible 
solution population by the principle of the survival of the fittest – selection operator, with 
the fitness function acting as the evolutionary guide. The discreteness of algorithm is 
devised from its crossover operators, which when generating new solutions, are reusing and 
mixing together pieces of the past solutions making it very useful when dealing with non 
continuous problems. Such usage of the past knowledge described by Goldberg in the 
Building Block Hypothesis (Goldberg, 1989) gives to the algorithm property to converge to 
desired better solution to a given problem, which ultimately distinguish it from the plain 
random walk algorithms. More so when adding to the whole process the touch of 
randomness introduced in the form of mutation operator, the algorithm gains the property 
to avoid the pitfalls of local optima. Both of these processes, crossover and mutation, have 
been present in the natural evolution for eons of time. From an algorithms perspective 
crossover and mutation enable adaptation of the population of feasible solutions to the 
imposed environment conditions of the search spaces. The recent 15 years have presented a 
significant number of methods and tools (Goldberg, 2002) for application in engineering. 
The general multi-objective optimization problem is tackled by the NSGA-II algorithm (Deb, 
2001) that is implemented as a dynamic-link library in C# within Microsoft .NET 
Framework 2.0. to provide a generic multi-objective solver for various optimization models 
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in engineering. NSGA-II algorithm generates populations of optimal solutions distributed 
along the Pareto frontier, using constraint domination condition and constrained 
tournament selection operator (Deb, 2001). Normally the design process is structured as a 
set of cyclic activities put in a logical order to control and guide the procedure until the 
desired aim is reached (Goldberg, 2002). 

3. Evolutionary optimization 

Evolutionary algorithms (EA) have been used as a general optimization tool for technical 
systems ranging from general single objective benchmark optimization cases, such as 
Golinski’s problem (Golinski, 1970), to multi-objective genetic algorithms (Tan, Lee&Khor, 
2002), (Deb, 2001). Evolutionary algorithms provide a solution or a set of solutions of 
optimization problems in discrete time using the fitness function and the simple prime 
mechanisms, crossover, mutation and selection. The crossover operator is in fact a great 
recombination machine that combines bits and pieces of past solutions into a new sequence. 
The binary encoded genotype in the form of binary string sequences is shuffled throughout 
the evolution. Applicability as a discrete problem solver of the genetic algorithm is a direct 
result of the crossover operator. With the introduction of a reasonably small degree of 
randomness in the form of a bit-flip mutation operator, the algorithm gains the property to 
avoid pitfalls of local optima. Both of these processes have been present in the natural 
evolution for. Crossover and mutation enable the adaptation of the feasible solution 
population to the imposed environmental conditions of the search spaces. Selection, the 
third operator, acts as a collective learning enforcer, which will ruthlessly guide the 
evolution by means of the survival of the fittest. Fitness merit is assigned after the 
evaluation of the objective function to each and every population member. The collective 
learning process and a possibility to impose the search strategy distinguish GAs from the 
plain random walk algorithms (Bäck&Fogel, 2000). The research of evolutionary 
computation-based tools for enhancing the design optimization is therefore reasonable and 
justified because real engineering design search spaces are often multimodal, full of 
discontinuities and constrained. The range of applications (Bäck&Fogel, 2000) included 
planning (scheduling, TSP problem, close packing problems), simulations (behavior 
prediction), recognition, and control (adaptation and evolvable hardware).  

4. Evolutionary design 

The design process is comprehended in this text as a shortcut to a satisfying product using 
general and personalized knowledge and experience of design modeling in order to 
accelerate the technical development which naturally should occur evolutionary in spacio-
temporal and social circumstances. The design process can be put in correlation with the 
formulation of an algorithm as an iterative problem solving procedure involving a finite 
number of steps. One could define such a procedure as a search algorithm where the search 
space itself is built on lists of requirements or design variables and constraints – the problem 
or design task formulation, and the search for the feasible solution is being conducted by 
iteration, abstraction, concretization and improvement (Goldberg, 2002). All of these four 
processes are built in core of an evolutionary algorithm. They are iterative – searching for 
solution during each new generation, abstracting – a common practice in multi-objective 
optimization where the objectives are put in order by degree of importance and evaluated 
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respectively (Bäck&Fogel, 2000), concretizing – in order not to hinder the process the 
objectives can be introduced at a desired point in evolution when solutions are evolved 
enough, improving – by evolving solutions in every generation using selection, crossover 
and mutation operators. The evolutionary methods may provide enhancement of design 
process or findings about process itself. Properties of search spaces will depend on 
complexity of the design aim and could be constrained, multimodal and full of 
discontinuities. Many applications of evolutionary algorithms in search spaces have been 
recognized (Bentley, 1999), (Golinski, 1970), (Tan, Lee&Khor, 2002). Various methods enhance 
design innovation and creativity such as Delphi method, 635 method and synectics 
(Pahl&Beitz, 1988), (Wood&Otto, 1999), or brainstorming that support an unbiased human 
search for technical solutions. The evolutionary algorithms for this purpose use the form of 
mutation operator which stochastically alters feasible solutions. It can be hypothesized that in 
order to produce innovative solutions a design process as well as the natural evolution 
should be performed without a bias. By using evolutionary design the designer is shaping 
and adjusting his designs enabling their existence in constraint bounded design space simlarly 
to the principles recurring in natural evolution. 

5. Evolution of truss structures 

In the realm of genetics, natural evolution and information theory, the problem of 
information encoding and decoding is permanently reconsidered (Yockney, 2005). A 
common point of all three mentioned researched areas is how to design a specific encoding 
of sequences carrying information, or how to decode them properly from a noisy 
environment to an error-free state. Genotype encoding and its counterpart, decoding into a 
phenotype, present a special point of interest in the evolutionary computation community 
(Goldberg, 2002) and (Bentley, 1999). Notions regarding overall convergence and 
phenomena that occur during the information exchange between chromosomes were first 
tackled in Goldberg’s famous “building-block hypothesis”. Explored further by the same 
author (Goldberg, 1989), an attempt was made to evaluate the quality of binary string 
building blocks when used in different classes of problems. Evolutionary algorithms are 
considered to be robust due to both their operators and their easy customization to suite 
different areas of application. However, to accomplish robustness specific to encoding, 
decoding and phenotype representations must be created. To found out the right answers to 
the addressed problem, evolutionary algorithms must have a good material to work with. In 
the paper, a new encoding/decoding scheme will be presented. The results point out that 
the scheme is well suited for the structural optimization of truss structures. 
The applicability of evolutionary and genetic algorithms as optimization tools is elaborated 
in the next case study. Then, a state-of-the-art overview of the truss structure optimization 
and research motivation for using advanced methods is presented. Drawbacks of each 
method, resulting from different problem approaches are also addressed. The pseudo-code 
of the proposed encoding for the 2-D continuous domain is presented.  
The aim of the research is to move away from the orthodox structural continuous optimization 
approach, where most of topology is initially fully predefined or locally constrained 
(Hasançeb, 2007), (Coello&Christiasen, 2000). In such a way, the search space is reduced, thus 
inhibiting evolution to progress towards new uncovered solutions. Such genotypes are easily 
coded because one can predict nodal inter-arrangements. They do not cover the possibilities of 
the initial randomness of the structure shape; instead, they optimize the usual truss bound 
design variables (cross-sectional area, length etc.). By contrast, a different type of coding is 

www.intechopen.com



Tracing Engineering Evolution with Evolutionary Algorithms 

 

251 

proposed in the topological optimum design (TOD) (Jakiela at all, 2000), (Hamda&Schoenauer, 
2002) and (Kim&Weck, 2004). The structure is represented in a discrete domain, in the form of 
material distribution, which is a straightforward approach to the shape optimization. The 
genotype encodings are done through matrices, Voronoi representations 
(Hamda&Schoenauer, 2002), or even by using 3-D FEM building blocks. In the same manner, 
the phenotype representation then visually depicts the resulting structure. An interesting 
cantilever optimization problem has been elaborated by Kim and de Weck (Kim&Weck, 2004), 
who addressed the quality of search with the chromosomal length (Goldberg, 1989). They 
increased the domain resolution throughout the evolution course. By taking this approach, 
they (Kim&Weck, 2004) also addressed the design concretization defined in literature (Hubka, 
1992), (Pahl&Beitz, 1988) as progression from abstract to concrete through the design process 
stages. Although TOD is computationally demanding, it optimizes the structure in the form of 
the in-domain material distribution, but the other design variables, such as the cross-sectional 
area, remain predefined or out of reach. A more subtle approach using the the shape annealing 
(SA) method and shape grammars for structural optimization purposes was proposed by 
(Shea&Cagan, 1998). Shape grammars, as their linguistic fundament (Chomsky, 1957), provide 
language and in this case a design language for the structure shape manipulation. They are 
driven by a simple set of production IF-THEN rules. The evolution begins with the initial 
structural member expanding and growing slowly through the rule implementation to a 
complete structure. However, to search all possible truss structures that can be constructed 
within a search domain in order to obtain a global optimum, than the rule set must be 
adequate to enable the emergence of such solutions within a design language. So for generic 
approach, to evolve structures one should be able to evolve the rules (Gero&Louis, 1995). 
The genotype encoding and decoding should enable the search space to be as large and 
unconstrained as possible. Genotype are a collection of binary encoded nodes and the 
phenotype represented as truss structure is then defined as a result of the inter-nodal 
arrangement. Although this idea is straightforward, it has not been explored so far. The 
problem in the 2-D continuous domain is depicted in Fig. 1. 
 

 
Fig. 1. Random nodal arrangement in 2-D continuous domain - predefined nodes in 
supports and in force node  

There is no problem for the genetic operators to function properly for an ordinary binary 
encoded string, but getting a structure out of such genotype encoding posses a more serious 
difficulty.  
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There exist a number of connections between nodes as the ones presented in Fig. 1. In fact, 
the number of combination is enormous and it strongly depends on what is tried to be 
accomplished. How to connect 2-D collection of nodes (for a prototype planar collection of 
nodes see Fig. 1) with the resulting truss structure at the phenotype level is elaborated in the 
following chapter.  

5.1 Proposed coding scheme for 2-D continuous domain 

Genotype and phenotype representation coding schemes are proposed with some 
restrictions and are based on the following assumptions:  
• Firstly, the structural model is defined as a FEM model. In each evolution turn for every 

new population member the system stiffness matrix is re-assembled. In the matrix, truss 
(rod) elements are defined as a consequence of the inter-nodal arrangements. Hence, a 
new structural model is to be generated according to the current system topology. 

• Secondly, to use common knowledge in the design of truss structures and to avoid 
possible singularities of the system stiffness matrix, the system components are always 
arranged in triangular schemes (see Fig. 2). To clarify, it is a widely known fact that the 
triangle substructure presents a stiff building block common in engineering. Such a 
restriction narrows the search space and enhances the conversion of the algorithm by 
eliminating the known unfeasible and mathematically singular problems. By following 
the described procedure the result would not always be a structure bounded by a 
convex polygon. 

• And finally, there exist a number of predefined nodes. These nodes have defined 
positions in a given 2-D domain. Predefined nodes are always supports and nodes with 
force vector (see Fig. 1). The total number of fixed nodes is given by NoNx, and the total 
number of free nodes is given by NoN. 

5.1.1 Genotype encoding 

Genotype is encoded with binary strings. Nodes are coded as shown in Table 1. 
Chromosome is then represented as a collection of nodes (see Table 2.). All of the genetic 
operators are easily applicable to such coding.  
 

Nodej 

x coordinate - binary encoded string lj y coordinate - binary encoded string lj 

Table 1. Encoding of node 

 
Chromosomes 

Node1 Node2 ,…, Nodej ,…, Noden       (n = NoN+NoNx) 

Table 2. Chromosomes structures 

Crossover is made by randomly selecting a crossover point among nodes on the 
chromosomal level (see Table 2), and then by selecting another crossover point on the nodal 
level (see Table 1). Mutation is performed easily, in a bit-flip manner, directly altering the 
nodal position. 
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5.1.2 Genotype decoding and phenotype representation 

For every evaluation during the evolution, a genotype must be decoded into a phenotype. 
The algorithm for getting a phenotype, i.e. defining the rods and truss structure, based on 
the nodal positions is presented in the pseudo-code below: 
 

1 sort nodes ascending over x, if equal compare over y 

2 move to first node in chromosome j ← 0 

3 while (j < n - 2) do 

 A. if node(j).y >= node(j + 1).y  

for rod FEMs definition consider nodes(j + 1, j + 2 ,…, j + k) that are ordered 

ascending over y do 

break the search if node(j + k + 1): 

 a. is not ordered ascending over y 

 b. is second node in ascending order satisfying node(j + k + 1).y > node(j).y 

 c. j + k + 1 > n 

od 

 B. else: do the same as in A but considering the descending order of nodes 

 C. define rod FEMs between node(j) and all found nodes within A or B 

 D. move to next node j ← j + 1 

4 od 

 
The algorithm starts with all of the nodes being sorted ascending based on their x 
coordinate. From collection of nodes the first node is taken into consideration by setting 
counter j to zero (pseudo-code line 2). In the following while loop marked by number 3, the 
algorithm will search for possible ways to define FEM rod elements between considered 
node and all the nodes having greater x coordinate. Resulting structure must be triangular 
with no FEM elements intersections. Inside the loop two possibilities exist (marked with 
letters A and B); based on its position the first following node can be below or on equal 
height (A) or above the considered node j (B). Inside A all of the nodes will be ranked 
feasible for FEM definition if they do not violate the conditions inside a, b and c. Condition a 
takes into an account weather all of the following j + k + 1 nodes are in ascending order over 
y, b breaks the search if the node is the second one above the node j and c prevents the 
counter being larger the overall collection of nodes n. B takes into account situation opposite 
of A - the first following node being above node j thus considering the decreasing order over 
y. Afterwards the FEMs are defined and whole procedure is repeated for node j + 1. 
The singular conditions that occur when two or more nodes occupy same position are 
regulated with general constraints. The results of inversing the order of sorting in the way 
that the sorting is first conducted over the y and then over the x node coordinate (pseudo-
code line 1), were not explored in this paper. Besides for the reasons of common practice, the 
procedure runs first over x and then over y. On Fig. 2, a truss structure phenotype is 
depicted corresponding to the nodal arrangement already shown in Fig. 1. 
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Fig. 2. Truss structure obtained from nodal positions shown in Fig. 1 

5.2 Structural FEM model 
The structure is modeled with FEM planar trusses with 6 degrees of freedom. It is necessary 
to introduce bending to trusses and implicitly convert them into beams. The result of the 
evolution with infinite stiffness to bending will always converge to a single horizontal rod. 
Such structure would have zero displacement since it cannot bend, it would be minimal in 
mass since it is just a horizontal line. Normal forces would also be equal to zero if the force 
vector is put vertically as in Fig. 3-5. 
Respective force F and displacement δ vectors per element are given as follows: 
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The element stiffness matrix K is common (Zienkiewicz, 1971) and is given here by: 

[ ]

3 2 3 2

2

3 2

12 6 12 6

4 6 2

12 6

4

EA EA

l l
EI EI EI EI

l l l l
EI EI EI

l llK
EA

l
EI EI

l l
EI

symetrical
l

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

www.intechopen.com



Tracing Engineering Evolution with Evolutionary Algorithms 

 

255 

The vector of the nodal displacements u of the evolved structures is calculated by solving 
the usual linear equation system given by: 

{ } [ ]{ }F K u=  

5.3 Optimization model 
In this optimization case the goal is to find an optimal distribution of trusses that comprise 
truss structure for a given 2-D domain. The result will be a structure that is a result of its 
interaction with the environment - the objective function, design space conditions and 
constraints. For the reasons of simplicity a number of involved nodes are given by the user 
as a process input parameter. Since the algorithm uses fixed length chromosomes nodes 
cannot extinct during the course of evolution. 
Next, all the trusses have the same fixed cross-section area therefore significantly reducing 
the search space. These parameters will be introduced as variables in the future work. 
Finally, the optimization problem is formulated as follows: 

[ ]

[ ]
[ ]
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min max

min max
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The objective function is the minimization of structure mass m. 
The optimization parameters are given as follows: 
• F – force vector in vertical direction, 
• A, I, E – truss cross-section properties and material Young’s modulus, 
• NoN – number of free nodes,  
• NoNx – number of fixed nodes,  
• BC – boundary conditions – number and type of supports at particular nodes. 
Problem variables: 
• x and y coordinates of each node considered,  
• δ – absolute deflection vector, 
• l – length of respective rod. 
Constraints are defined as the maximally allowable absolute nodal deflection  δmax and the 
minimally allowable beam length lmin. The domain or design space is defined as a 2-D 
bounding box. 

5.3.1 Implementation, control parameters and evolutionary operators 
The applied genetic algorithm is a struggle genetic algorithm. Reasons for applying this 
particular GA lay in its elitist steady-state evolution. Only the best solution from the 
offspring population replaces the closest solution from the parent population if it is better. 
The distance between solutions is measured in the Euclidian objective space. The struggle 
GA manages to maintain diversity during the evolution process, thus preventing premature 
convergence. The control parameters of algorithm (Bäck&Fogel, 2000) are as follows: 
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• population size λ= 60,  
• offspring population λ = λ,  
• one point crossover probability pc = 1, 
• bit-flip mutation probability when static pm’’ = 0.02. 
Mutation operator was introduced to help guide and boost the process in order to avoid 
local optima in the early stages of evolution. In literature, there exist a number of such 
mutation approaches (Goldberg, 1989), (Bentley, 1999), (Deb, 2001) and (Bäck&Fogel, 2000). 
This one is driven by the notions from the natural evolution, where initial mutation rates 
were much higher because of the imposed environmental conditions. Bit flip mutation rate 
is a function of its initial rate pm’ = 0.1 and the number of evolution iteration N. Mutation rate 
is simply linearly scaled over a desired number of iterations by the following formula: 

    1000
1000

                         1000

m m
m

m

m

p p
N p N

p

p N

′′ ′−⎧ ′+ <⎪= ⎨
⎪ ′′ ≥⎩

 

Constraint handling is done by measuring how potential solutions violate constraints. Two 
populations of feasible and unfeasible solutions were ranked accordingly; the feasible one 
sorted ascending over the objective function and the latter sorted in the same manner but 
over the violation measure. Constraint violation measure ( )( )ixΩ  (Deb, 2001) of i-th solution 
x(i) is derived as the summation of normalized violations ωj(x(i)): 

3
( ) ( )

1
( ) ( )i i

j j
j

x R xω
=

Ω = ∑  

No violations were favored so the weighting factor used is R=1 for all constraints. Every 
chromosome is a collection of n nodes. For encoding of the nodal x and y coordinates, 
binary strings were used. In addition to the refinement of the search, the Gray coding was 
applied (Bäck&Fogel, 2000). 

5.4 Results 

The results were obtained after roughly 1000 iterations in each of the presented examples. 
The evolution was conducted on a PC with the AMD Athlon 64 X2 5000+ processor. For the 
sake of further research, object-based dynamic-link libraries were designed in C# (MS .NET 
Framework 2.0) to provide a generic multi-objective solver for various engineering 
optimization models. The results of the optimal truss structure on the following three 
figures (Fig. 3-5) present the course of evolution under different initial conditions. The 
number of free nodes is increased as the load is increased in the force node.  
 

 
Fig. 3. Optimal structure with 5 free nodes 
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Fig. 4. Optimal structure with 6 free nodes 

 

 
Fig. 5. Optimal structure with 10 free nodes 

Of course, this is a subjective approach. There is an obvious correlation between the number 
of nodes, the amount of load imposed and the cross-section of the respective rod. At this 
point of research it was impossible to tackle all of the possible influences since the research 
focus was on a new type of encoding. 
 

0 500 1000 1500 2000

m

N  
Fig. 6. Graph of the algorithm performance shown in terms of objective function m put 
against evolution step N 

Graph of the algorithm performance shown in terms of objective function m and number of 
evolution steps N is presented in Fig. 6. This particular graph corresponds to the initial 
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condition of five free nodes. Every fifth solution is drawn in graph. Because of its stochastic 
nature algorithm cannot produce same performance graph in every run, however some key 
features remain. In Fig. 6 it is clearly visible that after the step N=1100 the value of the 
objective function stepwise diminishes. With sufficient certainty it could be said that the 
algorithm moved search to the feasible space. Before the N=1100 the aim of the algorithm 
was the minimization of the constraint violation expressed in equation (6) resulting in 
dispersion of the values of the objective function. After the step N=2000 the evolution slows 
down and no significant improvements were noted.  

6. Evolution of stiffened panels 

The simplified ship hull structure in this case study, see for example a traditional boat in Fig. 7, 
is modeled as a transversely framed shell of isotropic material under lateral outer pressure p, 
and longitudinal in-plane stress σL (Hughes, 1972), Fig. 8, also considering the state of the art 
rules and regulations of classification societies based on experience of shipbuilding and 
shipping (CRS, 2006) (DNV, 1978) that evolved during a long period of development of theory 
and practice of shipbuilding. The material properties are the elastic modulus E, the Poisson’s 
ratio ν, the allowable normal σa and shear τa stresses in shell and in framing (CRS, 2006). 
 

 
Fig. 7. Boat hull structure 

The small deflection elastic plate bending theory (Hughes, 1972) defines the maximal local 
stress under lateral pressure p in the middle of the longer edge `  in the direction of the 
shorter edge s in the plating of thickness t clamped at stiffeners, Fig. 8. Using the semi-

empirical plate side aspect ratio (Hughes, 1972) 
2

1 0,4s

s
k

⎛ ⎞= − ⎜ ⎟
⎝ ⎠`

, the stress in the shell 

under lateral load p  can be assessed as: 

 
2

0,5p s

s
p k

t
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⎝ ⎠
 (1) 

The simple elastic beam bending theory (Hughes, 1972) defines the normal stresses in 
frames, Fig. 8: 
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,
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f e

s
p k

W
σ = ⋅ ⋅

`
 (2) 
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The end connection factor for clamped frame ends is km=1/12. The elastic section modulus 
Wf,e of a single frame accounts for the width of the effective plate flange. The shear stress at 
supporting ends of the frame web (Hughes, 1972), taking the correction factor wc =3/2 for 
rectangular cross sectional area Af of a flat bar (CRS, 2006) (DNV, 1978) is as shown: 

 
2

w
f

f

c p s

A
τ

⋅ ⋅ ⋅
=

`
 (3) 

The orthotropic plate elastic bending theory (Hughes, 1972) defines the stresses in the edges 
of the longer side in the direction of the shorter edge, Fig. 7, of the whole transversely 
stiffened plate as: 

 
2

s
f

s e
K p

I
σ ⋅ ⋅

= ⋅ ⋅
`

 (4) 

In (4), If  is the frame moment of inertia including effective plating width and e is the 
distance from the neutral axes to the plating. From Shade’s diagrams (Hughes, 1972) is 
K=0.0916 for the edges of the longer side in the direction of the shorter edge and K=0.0627 
for the edges of the shorter side. 
The critical buckling stress of plating under in-plane compression of plates between frames 

(Hughes, 1972), (CRS, 2006), (DNV, 1978)  using the term 
2

, 212(1 )p e

Eπσ
ν

=
−

 is: 
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σσ σ
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⎝ ⎠
 (5) 

For transversely stiffened panels is 

22

1p

s
k

⎡ ⎤⎛ ⎞= +⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦`

 and for longitudinally stiffened panels 

is 4pk = . For elastic buckling is 1kσ =  and for plastic buckling is 

2
,

,

/ 2
1 c e y

c e

kσ
σ σ

σ

−⎛ ⎞
= − ⎜ ⎟⎜ ⎟

⎝ ⎠
when , / 2c e yσ σ≥ . 

The torsional buckling of flat bar stiffeners prevents the empirical ratio of height to thickness 
(DNV, 1978)  that is normally < 20. 
The ultimate bending strength with respect to multimodal plastic failure modes of plates at 

the mid of the longer edge of unit plate plastic section modulus 
2

, 4p p

t
W =  between frames 

under bending moment 2
mM k p s= ⋅ ⋅  acting due to lateral pressures p combined with in-

plane load Lσ , may be expressed by the following interaction formula (DNV, 1978) 
2

,
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y p p y

M

W

σ β
σ β σ

⎛ ⎞
⎜ ⎟+ =
⎜ ⎟⋅ ⎝ ⎠

. 

www.intechopen.com



Evolutionary Algorithms 

 

260 

The usage factor β  relates the maximal permissible load to the collapse load. Using the 

factor 

2

,
1 L

L p
y

k
σβ

β σ

⎡ ⎤⎛ ⎞⎢ ⎥⎜ ⎟= −
⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥⎣ ⎦

 to represent the influence of the in-plane stress, the ultimate 

lateral pressure on plating accounting for the yield stress σy (DNV, 1978) is: 

 
2

,
, , 3 L p

u p y
s

kt
p

s k
σ σ⎛ ⎞= ⋅ ⋅ ⋅⎜ ⎟

⎝ ⎠
 (6) 

The ultimate bending strength of frames under lateral pressure and axial stress is the 
capability to prevent the plastic failure defined as a three-hinged mechanism (DNV, 1978). 
For frames with plastic section modulus ,f pW  including the effective plate flange under 
bending moment 2

mM k p s= ⋅ ⋅ ⋅ `  due to lateral pressure p and for small axial stresses xσ  
(the shear is usually small) the relation derived from (2) holds (DNV, 1978): 

 ,
, , 212 f p

f u y

W
p

s
σ ε σ= ⋅ ⋅ ⋅

`
 (7) 

where ε  is the permissible usage factor. 
The ultimate lateral pressure on the whole panel viewed as the orthotropic plate (4), is as 
shown: 

 , , 2
y f

b p

I
p

K s e
σ

σ
= ⋅

⋅ ⋅`
 (8) 

Since the transverse in-plane compression of bottom plating is normally small, Fig. 7, it is 
not likely that buckling of plating occurs at all (DNV, 1978).  
The model is a ship hull panel of thickness t, length ` , width b which is transversely 
stiffened by n flat bars of thickness tw and height hw at spacing s, Fig. 8. The plate is laterally 
loaded by pressure p and with in-plane stress σL. 
 

 
Fig. 8. Panel structural model 

The evolutionary design in this example uses the engineering model in order to demonstrate 
the technical development by employing genetic algorithms aspired with achievement of 
appropriate safety level as well as with reduction of weight, expenses and production efforts 
using different materials. 

b

l

p

  hw 

ttw

s
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Therefore the stiffened panel design of the case study is basically defined as a general non-
linear mathematical programming model of the appropriate ship structure built of the 
material characterized by material coefficient k and l density ρ following section 4 as 
follows: 
- parameters: , , , , , , , ,y f s sp b k ρ σ σ σ τ`  

- variables: n, t, tw, hw  
Design goals are the minimization of panel mass m, the minimization of number of 
transversely stiffening flat bars n which expresses in a simple way the complexity of design 
or workmanship expenses and finally the minimization of standard deviation of ultimate 
load carrying capacity taken as a measures of robustness of a structure (Žiha, 2000) 
st.dev.( , ,u pp σ , , ,f pp σ , , ,b pp σ ). 
The later encapsulates the robustness of design by leveling out the safety apprehended as 
the maximum lateral pressure that the whole panel and its structural members – plate and 
stiffeners can withstand (Žiha, 2000)  that means avoidance of week links in the structure. 
Finally the design problem is formulated as: 
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 (9) 

 

At the beginning hard constraints in (9) can hinder the evolutionary process since the 
majority of the early solutions are infeasible. Consequently, by measuring constraint 
violations one can rank infeasible solutions. 
Later that ranking is added to Pareto frontier of feasible population (Deb, 2001). Constraint 
violation measure ( )( )ixΩ  of i th−  solution ( )ix  is derived as summation of normalized 
violations ( )( )i

j xω  (10) (Deb, 2001): 

 
8

( ) ( )

1
( ) ( )i i

j j
j

x R xω
=

Ω = ∑  (10) 

 

No violations were favored so the weighting factor used is 1R =  for all j .  
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For encoding of chromosomes binary strings were used. Every chromosome consists of four 
genes which comprise four design variables of the ship hull panel. In addition for the 
refinement of search the Gray coding was applied (Pahl, 1998). 
 
Design variable t n hw tw 

The gene number 1 2 3 4 

Available strings per gene 10 10 10 10 

Maximum value attainable after mapping 
[mm] 

130 200 430 20 

Table 3. The chromosome structure 

The emergence of new genes 2, 3, and 4, Table 3, for number of frames, thickness and height of 
the frame web opens potentials for development of plates stiffened by flat bars. These four 
characteristics together with the problem parameters define all the other panel properties. 
Since the evolution was carried through fixed length chromosomes then the length of the 
individual genes is also a limitation - constraint put upon the search space, that guide 
evolution towards reasonable solutions and hopefully speed up the overall search process, 
Table 3. 
Control parameters of the applied NSGA-II algorithm (Deb, 2001) were as follows: 
- population size 60λ = ,  
- offspring population μ λ= ,  
- uniform crossover (Bäck&Fogel, 2000) - probability 1cp = . 

- bit flip mutation probability 1 / 0.026mp l= ≡  (Bäck et. al., 2000). 

The genetic algorithm tackles the design of the stiffened plate of a contemporary steel ship 
transversely stiffened panel structure, Fig. 9, of breadth b=28,8 m, length `  =5,17 m under 
lateral pressure of p=0.1 N/m2 according to design loads defined by classification rules (CRS, 
2006) using potentials of all the genes, Table 3. 
 

 
Fig. 9. The modern ship hull transversely framed side structure 
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The computation results of one out of many iterative trials with repeatable outcomes on 
standard personal computers are presented as the 3-D Pareto frontier plot n-m-st.dev., 
Fig. 10. 
 

 
Fig. 10. 3-D Pareto frontier plot 

After the full gene potential of chromosome, Table 3, is being unleashed more up to date 
solutions evolved. The obtained results after 8000 iterations are plotted on Figs. 10. – 14. 
 

 
Fig. 11. n-m plot 
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Fig. 12. st.dev.-m plot  

 

 
Fig. 13. st.dev.-n plot  

The aim of the illustrative example is to interpret the optimization results obtained by 
evolutionary algorithm as the effects of social and environmental conditions on the 
development of technical structures. It is comprehensible on one hand, Fig. 11, how the 
expensive workmanship related to the number of stiffeners irrespective to the material 
expenses and other technical requirements may yield to preferable solutions of thicker 
plates with smaller number of stiffeners, even simple plates without stiffeners, regardless of 
the overall mass of the panel. On the other hand, the socio-environmental condition of 
expensive material or technical request for light structures irrespective to the workmanship 
expenses leads to solution of thinner plates with greater number of stiffeners. For highly 
efficient light-weight structures when the material and workmanship expenses are 
irrelevant, just the minimal mass, thinner plates with a greater number of stiffeners of 
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higher class material are preferable. The mathematical model incorporates the assumption 
of the importance of robustness when the environmental conditions imply uncertainties. 
The robustness is considered as the minimal variation among safety measures of different 
failure modes (Žiha, 2000) (inter frame plate bending (6), frame bending (7), overall panel 
yield (8) and effect of shear stresses (3)). In Fig. 12 it is shown how the request for maximum 
robustness (minimal standard deviation of safety measures) in this example leads to 
solution of minimal mass panel that satisfies the prescribed safety level. Moreover the 
increase of robustness followed by diminution of mass is affordable only by significant 
increase in workmanship efforts due to large number of built-in stiffeners, Fig. 13.  
Implementing the ancient conditions of expensive (unavailable) material (except for 
example wood) and tough workmanship (no experience and tools available) into the 
mathematical model the solutions points to least expensive plane plate, Fig. 11, without 
stiffening as the primitive carved-out logs, Fig. 14.  
 

 
Fig. 14. The primitive boat structure 

Finally, the contemporary engineering model resulting in four genes, Table 1, in the last run 
degenerates to the one single primitive gene number 1, having the plate thickness for the 
only property. The design model is used in its most degenerative form appropriate to early 
days of shipbuilding and lack of engineering knowledge and experience. As a final 
consequence, the mathematical model points to un-stiffened 125 millimeter thick plating, 
Fig. 14, as the least workmanship demanding solution although inappropriate for now days 
practice. The only affordable outcome of one primitive gene is the simple un-stiffened plate 
of minimal thickness appropriate to ancient conditions for carved-out logs that satisfies the 
past and modern safety requirements, Fig 15. 

 

 
Fig. 15. Carved-out log 
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7. Conclusion 

The first case study in this chapter brings a special way of genotype encoding well suited for 
mechanisms of genetic algorithm operators. Furthermore, it considered how the structural 
model is decoded from such a genotype. The aim of this study of the new “mesh-like” 
approach was a consequence of formerly detected deficiencies of the existing methods. The 
presented advanced methods for the truss structure optimization work perfectly, but are 
specialized either for the structure properties optimization (Hasançeb, 2007), 
(Coello&Christiansen, 2000), or the structure topology optimization (Jakiela at all, 2000), 
(Hamdam, Schoenauer, 2002) and (Kim&Weck, 2004). Shape annealing and shape grammars 
applied for the structural optimization (Shea&Cagan, 1998) offered an alternative, but a GAs 
are found as suitable alternatives. For the reasons of simplicity, at this point of research the 
search space is reduced. The struggle genetic algorithm applied for single objective uses a 
fixed length chromosome, and the number of nodes is therefore user-defined. The cross-
section area of trusses is fixed. Future work will include an introduction of these present 
parameters as variables with suitable coding and will aim at defining load vectors. To 
enhance speed the parallelization of algorithm is being considered in future too. With all 
which has been accomplished, moving away from the single to the multi-objective 
optimization makes a natural step ahead in evolving truss structures. 
The evolutionary design supports normally the contemporary progressive engineering 
reasoning aspired with achievement of highly efficient products providing socially 
acceptable safety levels and appropriately lower costs by employing genetic algorithms. 
However, the second case study in this chapter indicates how the reverse process to the 
technical progress can reconstruct the origins of contemporary products using evolutionary 
algorithms on engineering models in two manners. The simplest way is the replication of 
primitive conditions, such as for example lack of experience, unavailability of appropriate 
material and technology. Introduction of past conditions into up to date mathematical 
models corroborates early solutions based on past engineering practice. Reconstruction of 
past social and environmental conditions may lead to primitive solutions appropriate to 
early human’s engineering but it does not characterize only the evolutionary algorithms. 
Another way is the simplification or degeneration of the design model that is in terms of 
genetic algorithms, deactivating or removing more complex genes from the chromosomes 
that might be viewed as a particular feature of evolutionary algorithms. 
Evolutionary design approach upholds that the technical progress goes on if the existing 
gene potentials are activated or the new evolutionary potentials based on additional 
knowledge are introduced.  
The optimization search by genetic algorithms may be viewed as time-condensed best-
practice that in reverse order can back-trace the engineering development either by 
replicating past condition or by omission of chromosomes introduced into evolutionary 
models by growth of engineering experience. 
The chapter demonstrated that the evolution of structural systems is successfully driven 
forward towards the fittest structures by the synthesizing criteria of most uniform 
responsiveness. The changing of external circumstances that provoke uniform structural 
response is interpretable as the robustness criteria. The research takes up the most 
commonly used statistical measures of data dispersion to define the structural system 
robustness for practical purposes. The most conveniently measure appears the minimal 
coefficient of variations of internal forces under displaced external loads. Shortly, the thesis 
is that the fittest structure is the robust one. 
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