
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322394807?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Linear Evolutionary Algorithm

Kezong Tang1,2, Xiaojing Yuan2, Puchen Liu3 and Jingyu Yang1
1Computer Science and Technology Department Nanjing

University of Science and Technology,
2Engineering Technology Department University of Houston,

3Department of Mathematics University of Houston,
1China

2,3United States

1. Introduction

During the past three decades, global optimization problems (including single-objective
optimization problems (SOP) and multi-objective optimization problems (MOP)) have been
intensively studied not only in Computer Science, but also in Engineering. There are many
solutions in literature, such as gradient projection method [1-3], Lagrangian and augmented
Lagrangian penalty methods [4-6], and aggregate constraint method [7-9]. Among these
methods, penalty function method is an important approach to solve global optimization
problems.. To obtain the optimal solution of the original problem, the first step is to convert
the optimization problem into an unconstrained optimization problem with a certain
penalty function (such as Lagrangian multiplier). As the penalty multiplier approaches zero
or infinite, the iteration point might approach optimal too. However, at the same time, the
objective function of the unconstrained optimization problem might gradually become
worse. This leads to increased computational complexity and long computational time in
implementing the penalty function method to solve the complex optimization problems. In
most of the research, both the original constraints and objective function are required to be
smooth (or differentiable). However, in real-world problem, it is seldom to be able to
guarantee a derivative for of the specific complex optimization problem. Hence, the
development of efficient algorithms for handling complex optimization problems is of great
importance. In this chapter, we present a new framework and algorithm that can solve
problems belong to the family of stochastic search algorithms, often referred to as
evolutionary algorithms.
Evolutionary algorithms (EAs) are stochastic optimization techniques based on natural
evolution and survival of the fittest strategy found in biological organisms. Evolutionary
algorithms have been successfully applied to solve complex optimization problems in
business [10,11], engineering [12,13], and science [14,15]. Some commonly used EAs are
Genetic algorithms (GAs)[16], Evolutionary Programming (EP)[17], Evolutionary Strategy
(ES)[18] and Differential Evolution (DE)[19]. Each of these methods has its own
characteristics, strengths and weaknesses. In general, a EA algorithm generate a set of initial
solutions randomly based on the given seed and population size. Afterwards, it will go
through evolution operations such as cross-over and mutation before evaluated by the

www.intechopen.com

Evolutionary Algorithms

28

objective function. The winning entity in the population will be selected as the parents (or
seed) of the next generation (i.e., iteration). The optimization iteration continues until the
termination criteria are satisfied. Typically, either the evolution process reached user
defined maximum number of iteration or the improvement in objective function between
the two generations converges.
The major advantages of the improved EAs compared with traditional optimization
techniques include [20-23]:
1. EAs do not require objective function to be continuous and can be used in algebraic

form.
2. EAs tend to escape more easily from local optimum due to the randomness introduced

at the beginning and perturbation introduced by the mutation operation. The amount of
perturbation is a parameter defends on the step size specified by the user.

3. EAs do not require specific domain information or prior knowledge although they can
exploit it if such information is available. It does not involve calculation of the gradients
of the objective function.

4. EAs are conceptually simple and relatively easy to implement.
The major disadvantages of EAs are their poor performance in handling constraints, long
computational time, and high computational complexity, especially when the solution space
is hard to explore. To overcome these difficulties, some ‘more intelligent’ rules and /or
hybrid techniques such as evolutionary-gradient search (EGS) have been developed to
extend EAs to overcome the slow convergence phenomena of the EAs near the optimum
solution [24-27]. In addition, improving fitness function, crossover and mutation operators,
selection mechanisms, and adaptive controlling of parameter settings all enhance EA’s
efficiency and performance. An excellent comparison study of evolutionary algorithms has
been published for global optimization problems by Michalewicz and Schoenauer [28].
Among the evolutionary algorithms the methods based on penalty functions have proven to
be the most popular. These methods augment the cost function, so that it includes the
squared or absolute values of the constraint violations multiplied by penalty coefficients.
However, there are also serious drawbacks with penalty function methods. For example,
small values of the penalty coefficients drive the search outside the feasible region and often
produce infeasible solutions [29], if imposing very severe penalties makes it difficult to drive
the population to the optimum [29-31]. To overcome these drawbacks, Kim and Myung [26]
proposed the concept of two phase evolutionary algorithm, where the penalty method is
implemented in the first phase, while during the second phase an augmented Lagrangian
function is applied on the best solution of the first phase. Tahk and Sun [32] presented the
co-evolutionary augmented Lagrangian method which uses an evolution of two populations
with opposite objectives to solve constrained optimization problems. Tang proposed a
special hybrid genetic algorithm (HGA) [33]with penalty function and gradient direction
search, which uses mutation along the weighted gradient direction as the main operation
and only in the later generation it utilizes an arithmetic combinatorial crossover. The
approach presented in [34] is an extended hybrid genetic algorithm (EHGA), which is a
fuzzy-based methodology that embeds the information of the infeasible points into the
evaluation function.
Based on the above analysis, our major concern in this chapter was how to design a linear
fitness function based on the general penalty function so as to fast evaluate candidate
solutions, regardless of the design variables’ dimensions of solving the complex
optimization problems. The major advantage of linear function is their simplicity and

www.intechopen.com

Linear Evolutionary Algorithm

29

computational attractiveness. The chapter starts with the review that we have a briefly
review for various evolutionary approaches in the last years. In the sequel we will focus on
this compression process, in which search space of design variables will be compressed into
2-dimensional performance space and it is possible to fast discriminate ‘good’ solutions
from candidate solutions, regardless of the complexity of original space. In addition, our
method combines two improved operators in reproduction phase, i.e., crossover and
mutation. Simulation results over a comprehensive set of benchmark functions show that
our method is feasible and effective. Meanwhile, it can provide good performance in terms
of uniformity and diversity of solutions.

2. Description of EA

Evolutionary algorithm is a random search based optimization technique. Various
applications have shown that when problems are formulated properly, EA can give good
results with reasonable time complexity. EA mimics the process of natural selection and
starts with artificial individuals (represented by a population of “chromosomes”). EA tries
to evolve those individuals that are fitter and, by applying genetic operators (crossover and
mutation), it attempts to produce descendants that are better than their parents in terms of a
certain quantitative measure. In spite of their diversity, most of them are based on the same
iterative procedure.
As a heuristic population-based method, EA is really like a “black box”, completely
independent from the characteristic of the problem. Fig.1 presents the classical EA flow
chart. An initial population of individuals is generated randomly. Each of these individuals
is evaluated in terms of a certain “fitness function” that can “guide” EA to the desired
region of the search space. EA’s three genetic operators (Selection, Crossover and Mutation)
are the main components to improve the EA’s behavior. Selection is the process that mimics
the “survival of the fittest” principle in the biological theory of evolution. Firstly, the
selection operator assures that individuals are copied to the next generation with a
probability associated to their fitness values. Although selection is implemented in a EA as a
policy for determining the best candidate individuals that will be presented in the next
generation with a higher probability, it does not search the space further, because it just
copies the previous candidate individuals. The search results from the creation of new
individuals from old ones. Secondly, the crossover operator is implemented in EA by
exchanging chromosome segments between two randomly selected chromosomes.

Fig. 1. Evolutioary algorithm flow chart

yes

no

Initialization

Evaluation

Criterion
Verified？

Selection

Crossover

MutationEnd

Star

www.intechopen.com

Evolutionary Algorithms

30

Crossover process provides a mechanism to allow new chromosomes to inherit the
properties from old ones. Thirdly, mutation is a random perturbation to one or more genes
in the chromosomes during evolutionary process. The purpose of the mutation operator is
to provide a mechanism to avoid local optima by exploring the new regions of the search
space, which selection and crossover could not fully guarantee. The searching process
terminates when the predefined criterion is satisfied.

3. Related concepts of MOP

Almost all real world engineering designing problems are characterized by the presence of

several conflicting and/or cooperating objectives, as opposed to having a single objective,

and result in a set of non-dominated solutions. This set, generally called Pareto front, helps

the decision-maker to identify the best compromise solutions by eliminating inferior ones

and articulating his preference pertaining to the different objectives once he has an

additional knowledge of the Pareto frontier. The term MOP is used to broadly classify

problems with more than one objective. Without loss of generality, a general multi-objective

optimization problem can be expressed in the following equations:

 1 2min () ((), (),..., ())T
kF x f x f x f x= (1)

 1 2. . () ((), (),..., ()) 0T
ls t G x g x g x g x= ≤ (2)

 1 2() ((), (),..., ()) 0l l mH x h x h x h x+ += = (3)

where k is the number of objective functions, l and m-l are the number of unequal and equal

constraints respectively, and the vector G(x) represents constraints that probably are easily

handled explicitly, such as lower and upper bounds on the variables, x=(x1,x2,…,xn)∈ S ⊆Ω.

n is the number of designing variables. Ω and S are the searching space of objective function

and the feasible searching space, respectively.

The Pareto optimal concept is initially introduced by Vilfredo Pareto in the 19th century,

and the concept has already been widely used in MOP to aid designers in their decision-

making processes. In this paper, we assume that all objectives are to be minimized for clarity

purpose since maximization of any maximization of any ()f− i . The Pareto optimal concept

is stated as follows[35,36]:
Definition 1 order relation between design vectors. Let x and x’ be two designing variables.
The dominance relations in a minimization problem are:

x dominates x’ (x≺ x’), iff ft(x) < ft(x’) and ft’(x) ≯ ft’(x’), ∀ t’≠ t∈ [1, k].

x are incomparable with x’ (x～x’),iff ft(x) < ft(x’) and ft’(x) ＞ ft’(x’), t’≠t∈ [1, k].

Definition 2 Pareto-optimal solution. A solution x is called Pareto-optimal if there is no
other x’ ∈ F, such that f(x’) < f(x). All the Pareto-optimal solutions define the Pareto-optimal
set.
Definition 3 Non-dominated solution. A solution x∈ S is non-dominated with respect to a

set x’ ∈ S if and only if ∃/ x’ ∈ S, verifying that x’ ≺ x.

Definition 4 Non-dominated set. Given a set of solutions S’, such that S’ ∈ S and Y’=f(S’),
the function h(S’) returns the set of non-dominated solutions from S’:

www.intechopen.com

Linear Evolutionary Algorithm

31

h(S’)={∀ x∈ S’ | x is non-dominated by any other z’, z’ ∈ S’ }

Fig.2 graphically describes the process of mapping from designing space to objective space
with objectives (f1 and f2), and the Pareto-optimal set are shown as the Pareto optimal front.
All of the Pareto solutions in designing space are equally important and all are the global
optimal solutions. The decision-maker articulates his preference pertaining to the different
objectives once he has knowledge of the Pareto front.

Objective space
Design space

Pareto front

S

x2 f2

x1 f1

Fig. 2. Mapping from design space to objective space.

4. The linear fitness function (LFF)

A very popular approach for handling complex constraints by using EAs is to adopt penalty
function such as [37-39]. When handling individuals violating any one of the constraints, if
the added penalties do not depend on the current iteration number and remain constant
during the entire evolutionary process, then the penalty function is called static penalty
function, and its penalties are weighted sum of all constraint violations. If, alternatively, the
current iteration number is considered while determining the penalties, then the penalty
function is called dynamic penalty function. In this paper, we adopt static penalty function
as the following manner:

max(0, ()), 1

()
| ()|, 1

j

j
j

g x j q
p x

h x l j m

⎧ ≤ ≤⎪= ⎨ + ≤ ≤⎪⎩

 (4)

where ()jp x denotes the degree of individual violating constraints. The generally fitness
function for evaluating individuals can be defined as below:

1

() () ()
m

j
j

fitness x f x r p x
=

= + ×∑ (5)

1

() () (),
k

T
i i

i

f x w f x w F x
=

= =∑

where f(x) is a convex combination of the different objectives in that the multi-objective
problem is converted into a scalar optimization one. The weighted value wi is chosen such
that wi ≥ 0, i=1,…,n, and

1

1
k

i
i

w
=

=∑ .
One of existing difficulties in penalty function is mainly that parameter r is not easily to be
selected and controlled [37]. For many MOP, we note that the searching space of the design

www.intechopen.com

Evolutionary Algorithms

32

vector is always situated in n-dimension space (n≥2). In terms of human imagination of
space, if we can attempt to give a good method to transform n-dimension space into low
dimensional space for MOP since the dimensions below three are geometrically prone to
human understanding. Therefore, we give the following transforming procedure.

1 2
1

(), ()
m

i
i

y f x y p x
=

= = ∑ . If we can make an appropriate mapping between vector 1 2[,]y y y=

and x , then fitness(x) can be represented as a linear fitness function:

2

1

() ,T
ii

i

fitness x a x a x
=

= = ∑ (6)

11 1

2 22

1
,

a x y
a x y

a r yx

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥= = = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

without loss of generality, the variable x is still denoted by x. x is a point in 2-dimension
space. 0Ta y = ascertains a hyperplane via origin, then the entire search space is divided into
two subspaces with 2-dimension respectively. a is a normal vector in hyperplane (see Fig.3).
The division of initial searching space with n-dimension is equivalent to the above results,
and the searching process is focused on 1Φ . A mapping process is described between
feasible region S and corresponding abnormity region 3Φ while any point x in 2-dimension
space is required to satisfy one of the following expressions:

1

2

0, ,

() 0, ,

0, ,

x

fitness x x

x H

> ∈Φ⎧
⎪< ∈Φ⎨
⎪ = ∈⎩

 (7)

Further analysis shows that linear fitness function may be regarded as an algebraic
measurement from point x to the hyperplane.

Fig. 3. Transformation of searching space.

By means of above anaysis, we give a new linear fitness function to evaluate individuals:

X1

X2

r

α

Φ1：fitness>0

Φ2：fitness<0

w

Φ3

H：fitness=0

www.intechopen.com

Linear Evolutionary Algorithm

33

 ()
|| ||

Ta x
fitness x

a
= (8)

While evaluating new individuals we may directly use formula (8) without considering the
feasibility of individual. It is very convenient to identify the good or bad individuals from
population according to corresponding fitness values.

5. Evolutionary operators

In conventional EAs, the basic operators are selection and mutation. The selection assigns
greater probabilities to the fittest individuals according to its fitness. Crossover is the
exchange of information between different individuals, and it is the principal process in
generating new individuals. Mutation is a security factor to avoid entrapment at any other
point when the population is completely converged. The parents undergo crossover and
mutation to generate two new children, and each individual in the population evolve to get
higher generation by generation.

5.1 Crossover operator

The crossover operator based on a modified self-adaptive density adopts two parents to
generate children [40]. The procedure is formulated as follows:
First, two individuals are selected using a random selection procedure to generate new
individuals. The two parents can be expressed as X=(x1, x2, …, xd) and Y=(y1,y2,…,yd), where
xi < yi.

 [,] [,]
2 2

i i i i
ii i i

x y y x
x y x y

− −
+ + = (9)

Here, we give a density function in (10). It depends on two parameters a and β, and a,

β∈ [0,1].We give a cumulated distribution function in (11) and ,0 1.
i ix yG≤ ≤ It ascertains

parameter iη in children by (12). 1
,i ix yG− is the inverse function of ,i ix yG in (12).

 ,, (, ,) : []
i i

ix y i
g x x y rα β α β× × → (10)

 , (, ,) : [,] [0,1]
i i

ix y i
G x x yα β α β× × → (11)

 1
, (, ,)

i ii x yG rη α β−= (12)

The experimental results show that density crossover operator is good at finding optimal
solutions and enlarging the search region.

5.2 Mutation operator

The neighborhood mutation operator is introduced in Ref.[41]. Individual mutation is in its
neighborhood space by using x’=x+a×r, where x’ and x are child and parent respectively, a is
a uniformly random number in [-1,1], and r is the radius of neighborhood space
dynamically compressed using r=r×cr, where cr=(1+0.1b×c)-t and cr is the compression ratio,
b and c are random integer between 0 and 9, t is the current generation.

www.intechopen.com

Evolutionary Algorithms

34

Although the neighborhood mutation operator evenly scans the whole neighborhood space
of individual at the beginning, the exploration becomes localized with the generation
increasing. In order to overcome this deficiency, the following improvements are made on

the neighborhood mutation operator. Give a binary number δ , add the following part.

' '

'

'

(,), 0

(,), 1

i
new

i i

x t b x if
x

x t x a if

λ δ

λ δ

⎧ + − =⎪= ⎨
− − =⎪⎩

 (13)

 max(,) (1), (1 /)t r t nγ βλ τ τ γ= − = −

where r is a random number in [0,1], nmax and β denote total iterative number and random
number respectively. The added part uniformly explores the whole searching space during
the execution of the algorithm. Hence, it may overcome the deficiency of the neighborhood
mutation operator. By integrating the above two parts, not only the abilities of the global
search and local exploration are balanced, but also the diversity of the population increases.
As a result, the premature convergence is avoided in a way. The experimental results show
that the improved mutation operator is very feasible for the known searching space and
insure '

newx is a random number in [ai, bi].

6. Numerical experiments

6.1 Linear evolutionary algorithm

The LEA has a different design from other variants of EAs. It does not use any information
from the dominated individuals. In each generation, we only preserve nondominated
individuals. The number of generated children is a fixed constant η . However, we limit the
number of the nondominated individuals using a nearest neighborhood distance function
(NNDF) in Ref.[41], which can help disperse the non-dominated individuals. The LEA is
described as follows:
Step 1. (Initialization). Generate an initial population containing Npop individuals where

Npop is the number of individuals in each population.
Step 2. (Evaluation). Calculate the fitness values of the generated individuals using the

LFF. Update a tentative set of non-dominated solutions. The number of non-
dominated solutions is und.

Step 3. (Selection). If und > umax, select umax individuals using NNDF, then und = umax.
Step 4. (Crossover and mutation). Generate the η offspring using crossover based on

density and modified neighbourhood space mutation.
Step 5. (Termination test). If a prespecified stopping condition is not satisfied, return to

step 2.
In step 3, we control the number of non-dominated individuals so as not to exceed a

maximum number, umax. Hence the generated offspring are under control. To filter better

individuals from the tentative set, we evenly distribute the individuals on the Pareto front

using NNDF.

Consider the entire complexity of one iteration of the proposed algorithm, the overall
complexities of the algorithm are focused on evaluation and selection. Assuming the solved
optimization problems totally have m decision variables, and population size is n. The basic
operations and their worst-case complexities are as follows:

www.intechopen.com

Linear Evolutionary Algorithm

35

1. Evaluation in step 2 o(2n(n+m)).
2. Selection in step 3 o(n2).
The overall complexity of the algorithm is o(2n(n+m)), which is governed by evaluation in
step2 (including linear mapping for decision variables from n-dimension to 2-dimension
and updating a tentative set of non-dominated solutions).

6.2 Simulation results

Simulations are performed in MATLAB with a 2 GHZ Pentium PC. In our study, five
numerical constrained optimization problems were divided into two groups (G1 and G2)
were applied to test the LEA. These benchmark problems are taken from Ref.[37] and [41].
G1 only contains inequality constraints in test problems which involving two designing
variables. G2 contains inequality and equality constraints of single objective optimization
problems which have no limitation on the number of designing variables. For all conducted
experiments, four parameters of the LEA, namely, population size (Popt), iterative number
(NG), Crossover probability (CP) and mutation probability (MP) are set 200, 300, 0.9, 0.05.
All problems are repeated for 200 in the same environment.

G1: Test Problem 1 BNH

2 2 2 2
1 1 2 1 1 2 2 1 2min () ((), ()); () 4 4 ; () (5) (5)F x f x f x f x x x f x x x= = + = − + −

. .s t 2 2 2 2 2
1 1 2 2 1() (5) 25; () (8) (3) 7C x x x C x x x= − + ≤ = − + + ≥

 1 20 5,0 3x x≤ ≤ ≤ ≤ .

Test problem 2 TNK

2 1 2 1 1 2 2min () ((), ()); () ; () ;F x f x f x f x x f x x= = =

. .s t 2 2
1 1 2 1 2() 0.1cos(16arctan(/)) 1 0;C x x x x x= + − − ≥

 2 2
2 1 2() (0.5) (0.5) 0.5C x x x= − + − ≤ ;

 1 20 ,0x xπ π≤ ≤ ≤ ≤ .

Test problem 3 Constr-Er

3 1 2 1 1 2 2 1min () ((), ()); () ; () (1) / ;F x f x f x f x x f x x x= = = +

. .s t 1 1 2 2 1 2() 9 6 0; () 9 1 0;C x x x C x x x= + − ≥ = − − ≥

 1 20.1 1,0 5x x≤ ≤ ≤ ≤ .

Here, the circular symbols represent the results obtained using NSGA-II or LEA in six
figures. For case 1, BNH is a two-objective function problem with a convex Pareto front and
constrained conditions are two inequalities. LEA gives a very good approximation of the
Pareto front by obtaining evenly distributed solutions, as shown in Fig.5. However, Fig.4

www.intechopen.com

Evolutionary Algorithms

36

shows that although a number of optimal solutions are obtained using NSGA-II, in terms of
diversity of solutions, these solutions are not evenly spread out over the entire front. There
exists some disconnected spaces on Pareto front in Fig.4. The Pareto front consists of

* *
1 2x x= ∈ [0,3], *

1x ∈ [3,5] and *
2x =3. For case 2, constraint conditions are also two

inequalities’ state. The Pareto front is well predicted, and a number of optimal solutions
obtained are spread out over the entire front using the LEA in Fig.7. Decision makers make
a final choice of optimal solution according to real conditions from Pareto optimal set. But
result of Fig.6 shows that we probably are not able to well predict the three disconnected
curves. For case 3, it is the two-objective function problem of Constr-Ex with two-
dimensional curve. Fig.9 shows the predicted Pareto front in the two-dimensional objective
space obtained by the LEA. The method can capture the distinct solution along this front.
Fig.8 shows that comparative method can performs well elsewhere along the Pareto front.
We adopt some performance measures described in [42] so as to obtain more quantitative
measures of algorithm performances. These performance metrics are generational distance
and the diversity metric. The performance of algorithm is measured both in terms of the
proximity to the true Pareto front that is achieved as well as in terms of the diversity of the
optimal solutions. The means and variance of these measures are evaluated by conducting
20 distinct runs of each simulation. The results are tabulated in table 1. From table 1, we can
see that the LEA has better convergence performance than NSGA-II because it is obvious
that the generational distance metric is larger than the later, and diversity metric is also
larger using NSGA-II. The LEA is an effective and robust method.

Fig. 4. Pareto front on BNH using NSGA-II Fig. 5. Pareto front on BNH using LEA

Fig. 6. Pareto front on TNK using NSGA-II Fig. 7. Pareto front on TNK using LEA

www.intechopen.com

Linear Evolutionary Algorithm

37

Fig. 8. Pareto front on CE using NSGA-II Fig. 9. Pareto front on CE using LEA

Generational distance Diversity
Test problems

Mean Variance Mean Variance

0.0032356 0.0000009 0.4516783 0.00156753
BNH

0.0026733 0.0000005 0.4356745 0.00107867

0.0051289 0.0000012 0.2389783 0.00825676
TNK

0.0050125 0.0000011 0.2337892 0.77867826

0.0043216 0.0000011 0.3567882 0.00578933
CE

0.0040102 0.0000010

0.3389563 0.00623124

Table 1. The results of mean and variance on test problems using NSGA-II and LEA
respectively.

G2: Test Problem 2 TP1

3 3
1 1 2 2min () 3 0.000001 2 (0.000002 / 3)g x x x x x= + + +

. .s t 4 3 4 30.55 0, 0.55 0x x x x− + ≥ − + + ≥ ；

3 4 11000sin(0.25) 1000sin(0.25) 894.8 0;x x x− − + − − + − =

3 3 4 21000sin(0.25) 1000sin(0.25) 894.8 0;x x x x− + − − + − =

4 4 31000sin(0.25) 1000sin(0.25) 1294.8 0x x x− + − − + =

0 1200(1,2)ix i≤ ≤ = ； 055 0.55(3,4)ix i≤ ≤ = .

Test Problem 2 TP2

1 2 3 4 5min () x x x x xg x e=

. .s t 2 2 2 2 2
1 2 3 4 5 10 0x x x x x+ + + + − = ;

3 3
2 3 4 5 1 25 0, 1 0x x x x x x− = + + = ;

2.3 2.3(1,2)ix i− ≤ ≤ = ； 3.2 3.2(3,4,5)ix i− ≤ ≤ = .

www.intechopen.com

Evolutionary Algorithms

38

Two test problems in second group contain equality and inequality’s constraints that are
tested for single objective optimization problems. In many real-world optimization
problems, optimal solutions of them are obtained by transforming MOP into single objective
optimization. Thus, the research of single objective optimization is also very improtant in
engineering application areas. For TP1, we find total optimal solutions for 25,
(668.94675327911, 1013.10377656821, 0.10773654866, 0.39654576851). Distance of optimal
solution is 2.3323246783310e-13, which is corresponding to optimal value 5198.5467. For test
problems 2, we find total optimal solutions for 21, x = (-1.77365745561,1.45675698761,-
1.5678457772,0.66755656893,-0.75778765788), which is corresponding to the optimal value
0.055894567. The mean and worst values of solutions are formulated for two test problems
in Table 2.
For TP1 and TP2, results of the first row are obtained using LEA, similarly, the second row
takes a Pareto strength evolutionary algorithm [37] (denoted by ZW). The third row means
results of a random sorting [43] (denoted by RY). From Table 2, we can see that the LEA
outperforms other two algorithms in terms of experimental data involving the best value,
mean and the worst value, as demonstrate the LEA is a robust algorithm with generality
and effectivity.

Problems Best Mean Worst

LEA 5126.4266 5126.5461 5126.9586
ZW 5126.49811 5126.52654 5127.15641 TP1

RY 5126.497 5128.881 5142.472
LEA 0.053945563 0.053999775 0.054993677
ZW 0.053949831 0.053950257 0.053972292 TP2

RY 0.053957 0.057006 0.216915

Table 2. Comparison among LEA(new algorithm), ZW(in Ref.[27]) and RY(in Ref.[33]) (40
independent run)

7. Conclusion

In this paper, we propose an approach of using the LEA to optimize MOP, which finds the
optimal solutions using the method of transforming the search space with high dimensions
into low dimensional space. Numerical experiments show that the LEA performed well in
the problems of two groups in terms of the quality of the solutions found. Moreover, the
LEA is also a fast and robust method. A future work aims to validate this new optimization
method on real-life engineering optimiztion problems (e.g. issued from mechanical
engineering and power systems).

8. References

[1] Yang, J.B. (1999). Gradient projection and local region search for multiobjective
optimisation. European Journal of operational Research. 112(2), 432-459.

[2] Harada, K. ; Sakuma, J.; Ono, I.; Kobayashi, S. (2007). Constraint-handling method for
multi-objective function optimization: Pareto descent repair operator. In 4th
International Conference of Evolutionary Multi-Criterion Optimization. pp.156-170.

[3] Miettinen, K.; Makela, M. M.(1993). Interactive method for nonsmooth multiobjective
optimization with an application to optimal control. Optimization Methods and
Software. 2(1):31-44.

www.intechopen.com

Linear Evolutionary Algorithm

39

[4] Bazaraa,M.S.; Shetty,L.M.(1993). Non-linear programming: theory and algorithms. New
York:Wiley.

[5] McCormick, G.P. (1983). Nonlinear programming: theory,algorithms and applications.New
York: Wiley.

[6] Zhang, J.Z.; Zhang, L.W.(2010). An augmented Lagrangian method for a class of inverse
quadratic programming problems. Applied Mathematics and Optimization. 61(1):57-83.

[7] Yu, B.; Feng, G.C.; Zhang, S.L.(2001).The aggregate constraint homotopy method for
nonconvex nonlinear programming. Nonlinear Analysis. 45(7):839-847.

[8] Thakur, M.; Wang, L.Z.; Hurhurgh, C.R. (2010). A multi-objective optimization approach
to balancing cost and traceability in bulk grain handling. Journal of Food Engineering.
101(2):193-200.

[9] Li, Y.Y.; Tan, T.; Li, X.S.(2010). A gradient-based approach for discrete optimum design.
Structural and Multidisciplinary Optimization. 41(6):881-892.

[10] Su, C.T.; Chiang, C.L.(2004). An incorporated algorithm for combined heat and power
economic dispatch. Electric Power Systems Research. 69(2-3):187-195.

[11] Wu, J. Y. (2010). Computational Intelligence-Based Intelligent Business Intelligence
System: Concept and Framework.In Proceedings of the 2010 Second International
Conference on Computer and Network Technology. pp. 57-89.

[12] Carlos,A.; Coello,C.(2000). Use of a self-adaptive penalty approach for engineering
optimization problems. computers in Industry.41(2):113-127.

[13] Falconer, M.; Greenwood, G.; Morgan, K.;et al. (2010). Using evolutionary algorithms
for signal integrity assessment of high-speed data buses. Journal of Electronic Testing:
Theory and Applications. 26(3): 297-305.

[14] Rahnamayan, S.; Tizhoosh, H.R.; Salama,M.M.A. (2007). A novel population
initialization method for accelerating evolutionary algorithms.Computers and
Mathematics with Application. 53(10):1605-1614.

[15] Nobakhti, A.(2010). On natural based optimization. Cognitive Computation. 2(2):97-119.
[16] Ge, J.K.; Qiu, Y.H.; Wu, C.M.; et al. (2008). Summary of genetic algorithms research.

Application Research of Computers. 25(10):2911-2916. (In Chinese).
[17] Dong, H.B.; He, J.; Huang, H.K.; et al. (2007). Evolutionary programming using a mixed

mutation strategy. Information Sciences. 177(1):312-327.
[18] Jürgen, P.(2004). Finding optimal decision scores by evolutionary strategies. Artificial

Intelligence in Medicine. 32(2):85-95.
[19] Babu, B.V.; Chakole, P.G.; Syed Mubeen, J.H.(2005). Multiobjective differential

evolution (MODE) for optimization of adiabatic styrene reactor. Chemical
Engineering Science. 60(17): 4822-4837.

[20] John w. Fowler,; Esma S. Gel.; Murat M.K�ksalan. ;et al.(2010). Interactive evolutionary
multi-objective optimization for quasi-concave preference functions. European
Journal of Operational Research. 206(2):417-425.

[21] Sun, D.Y.; NI, S.C.; Huang, T.C.(2010). Apply a novel evolutionary algorithm to the
solution of parameter selection problems. Applied Mathematics and Ccomputation.
216(11):3343-3354.

[22] Mitchell, M. An introduction to genetic algorithms. Cambridge, MA:MIT Press,1996.
[23] Sarimveis, H.; Nikolakopoulos, A. (2005). A line up evolutionary algorithm for solving

nonlinear constrained optimization problems. Computers & Operations Resarch.
32(6): 1499-1514.

[24] Glannakoglou,K.C.; Papadimitriou, D.I.; Kampolis, I.C.(2006).Aerodynamic shape
design using evolutionary algorithms and new gradient-assisted metamodels.
Compute Methods in Applied Mechanics and Engineering. 195(44-47):6312-6329.

www.intechopen.com

Evolutionary Algorithms

40

[25] Rada. R.(1982). Evolutionary search: Gradients and information.Biosystems. 15(2):169-
177.

[26] Kim J. H, Myung H. ; Evolutionary programming techniques for constrained
optimization problems. IEEE Trans Evol Comput 1997;1(2):129-140.

[27] Salomon R. Evolutionary algorithms and gradient search: similarities and differences.
IEEE Transa Evol comput 1997;2(2):45-55;

[28] Michalewicz, Z.; Schoenauer, M.(1996). Evolutionary algorithms for constraint
parameter optimization problems. Evolutionary Computation. 4(1):1-32;

[29] Michalewicz, Z. Genetic algorithms + data structures = evolution programming. New York:
Springer,1996.

[30] Anderson,E. J.; Ferris, M. C.(1994). Genetic algorithms for combinatorial optimization:
the assembly line balancing problem. ORSA Journal on Computing.6(2):161-73..

[31] Coit, D. W.; Smith, A.E.; Tate, D.M. (1996). Adaptive penalty methods for genetic
optimization of constrained combinatorial problems. INFORMS Journal on
Computing. 8(2):173-82.

[32] Tahk, M.J.; Sun, B.C. (2000). Co-evolutionary augmented Lagrangian methods for
constrained optimization. IEEE Transactions on Evolutionary Computation .
4(2):114-24.

[33] Tang, J.; Wang, D.; Ip, A.; Fung, R.Y.K.(1998). A hybrid genetic algorithm for a type of
nonlinear programming problem. Computers and Mathematics with Application.
36(5):11-21.

[34] Fung, R.Y.K.;Tang, J.F; Wang, D.W.(2002). Extension of a hybrid genetic algorithm for
nonlinear programming problems with equality and inequality constraints.
Computers and operations Research. 29(3):261-74.

[35] Kelner, V.; Capitanescu, F. (2008). A hybrid optimization technique coupling an
evolutionary and a local search algorithm. Computational and Applied Mathematics.
215(2): 448-456.

[36] Tang, K.Z.; Yang, J. Y.; Gao, S.; Sun, T.K.(2010). A self adaptive linear evolutionary
algorithm for solving constrained optimization problems. Journal of Control Theory
and Application. Online First™,28 March.

[37] Zhou, Y.R.; Li, Y. X.(2003). A Pareto Strength evolutionary algorithm for constrained
optimization. Journal of Software, 14(7) : 1243-1249. (In Chinese)

[38] Sarimveis, H.; Nikolakopoulos, A. (2005). A line up evolutionary algorithm for solving
nonlinear constrained optimization problems. Computers and Operations
Research, 32(6):1499-1514.

[39] Varadarajan, M.; Swarup, K.S. (2008). Differential evolutionary algorithm for optimal
reactive power dispatch. Electrical Power and Energy Systems, 30(8): 435-441.

[40] Gegndex, M.E.; Palacios. P.; Lvarez. J.L.(2007). A new self-adaptive crossover operator
for real-coded evolutionary algorithms. Lecture Notes in Computer Science,
4431(1):39-48.

[41] Zou, X.F.; Liu.M.Z.(2004). A roubst evolutionary algorithm for constrained multi-
objective optimization problems. Computer Research and Development,41(6): 986-
990.

[42] Madavan, N.K.(2001). Multiobjective optimization using a Pareto differential evolution
approach. Proceedings of 2002 World Congress on Computational Intelligence.
Piscataway: IEEE Press, 1145-1150.

[43] Runarason, T.; Yao, X.(2000). Stochastic ranking for constrained evolutionary
optimization. IEEE transactions on Evolutionary Computation, 4(3): 284-294.

www.intechopen.com

Evolutionary Algorithms

Edited by Prof. Eisuke Kita

ISBN 978-953-307-171-8

Hard cover, 584 pages

Publisher InTech

Published online 26, April, 2011

Published in print edition April, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Evolutionary algorithms are successively applied to wide optimization problems in the engineering, marketing,

operations research, and social science, such as include scheduling, genetics, material selection, structural

design and so on. Apart from mathematical optimization problems, evolutionary algorithms have also been

used as an experimental framework within biological evolution and natural selection in the field of artificial life.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Kezong Tang, Xiaojing Yuan, Puchen Liu and Jingyu Yang (2011). Linear Evolutionary Algorithm, Evolutionary

Algorithms, Prof. Eisuke Kita (Ed.), ISBN: 978-953-307-171-8, InTech, Available from:

http://www.intechopen.com/books/evolutionary-algorithms/linear-evolutionary-algorithm

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

