
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322394807?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 

Linear Evolutionary Algorithm 

Kezong Tang1,2, Xiaojing Yuan2, Puchen Liu3 and Jingyu Yang1 
1Computer Science and Technology Department Nanjing  

University of Science and Technology, 
2Engineering Technology Department University of Houston, 

3Department of Mathematics University of Houston, 
1China 

2,3United States 

1. Introduction 

During the past three decades, global optimization problems (including single-objective 
optimization problems (SOP) and multi-objective optimization problems (MOP)) have been 
intensively studied not only in Computer Science, but also in Engineering. There are many 
solutions in literature, such as gradient projection method [1-3], Lagrangian and augmented 
Lagrangian penalty methods [4-6], and aggregate constraint method [7-9]. Among these 
methods, penalty function method is an important approach to solve global optimization 
problems.. To obtain the optimal solution of the original problem, the first step is to convert 
the optimization problem into an unconstrained optimization problem with a certain 
penalty function (such as Lagrangian multiplier). As the penalty multiplier approaches zero 
or infinite, the iteration point might approach optimal too. However, at the same time, the 
objective function of the unconstrained optimization problem might gradually become 
worse. This leads to increased computational complexity and long computational time in 
implementing the penalty function method to solve the complex optimization problems. In 
most of the research, both the original constraints and objective function are required to be 
smooth (or differentiable). However, in real-world problem, it is seldom to be able to 
guarantee a derivative for of the specific complex optimization problem. Hence, the 
development of efficient algorithms for handling complex optimization problems is of great 
importance. In this chapter, we present a new framework and algorithm that can solve 
problems belong to the family of stochastic search algorithms, often referred to as 
evolutionary algorithms.  
Evolutionary algorithms (EAs) are stochastic optimization techniques based on natural 
evolution and survival of the fittest strategy found in biological organisms. Evolutionary 
algorithms have been successfully applied to solve complex optimization problems in 
business [10,11], engineering [12,13], and science [14,15]. Some commonly used EAs are 
Genetic algorithms (GAs)[16], Evolutionary Programming (EP)[17], Evolutionary Strategy 
(ES)[18] and Differential Evolution (DE)[19]. Each of these methods has its own 
characteristics, strengths and weaknesses. In general, a EA algorithm generate a set of initial 
solutions randomly based on the given seed and population size. Afterwards, it will go 
through evolution operations such as cross-over and mutation before evaluated by the 
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objective function. The winning entity in the population will be selected as the parents (or 
seed) of the next generation (i.e., iteration).  The optimization iteration continues until the 
termination criteria are satisfied. Typically, either the evolution process reached user 
defined maximum number of iteration or the improvement in objective function between 
the two generations converges. 
The major advantages of the improved EAs compared with traditional optimization 
techniques include [20-23]:  
1. EAs do not require objective function to be continuous and can be used in algebraic 

form. 
2. EAs tend to escape more easily from local optimum due to the randomness introduced 

at the beginning and perturbation introduced by the mutation operation. The amount of 
perturbation is a parameter defends on the step size specified by the user. 

3. EAs do not require specific domain information or prior knowledge although they can 
exploit it if such information is available. It does not involve calculation of the gradients 
of the objective function. 

4. EAs are conceptually simple and relatively easy to implement. 
The major disadvantages of EAs are their poor performance in handling constraints, long 
computational time, and high computational complexity, especially when the solution space 
is hard to explore. To overcome these difficulties, some ‘more intelligent’ rules and /or 
hybrid techniques such as evolutionary-gradient search (EGS) have been developed to 
extend EAs to overcome the slow convergence phenomena of the EAs near the optimum 
solution [24-27]. In addition, improving fitness function, crossover and mutation operators, 
selection mechanisms, and adaptive controlling of parameter settings all enhance EA’s 
efficiency and performance. An excellent comparison study of evolutionary algorithms has 
been published for global optimization problems by Michalewicz and Schoenauer [28]. 
Among the evolutionary algorithms the methods based on penalty functions have proven to 
be the most popular. These methods augment the cost function, so that it includes the 
squared or absolute values of the constraint violations multiplied by penalty coefficients. 
However, there are also serious drawbacks with penalty function methods. For example, 
small values of the penalty coefficients drive the search outside the feasible region and often 
produce infeasible solutions [29], if imposing very severe penalties makes it difficult to drive 
the population to the optimum [29-31]. To overcome these drawbacks, Kim and Myung [26] 
proposed the concept of two phase evolutionary algorithm, where the penalty method is 
implemented in the first phase, while during the second phase an augmented Lagrangian 
function is applied on the best solution of the first phase. Tahk and Sun [32] presented the 
co-evolutionary augmented Lagrangian method which uses an evolution of two populations 
with opposite objectives to solve constrained optimization problems. Tang proposed a 
special hybrid genetic algorithm (HGA) [33]with penalty function and gradient direction 
search, which uses mutation along the weighted gradient direction as the main operation 
and only in the later generation it utilizes an arithmetic combinatorial crossover. The 
approach presented in [34] is an extended hybrid genetic algorithm (EHGA), which is a 
fuzzy-based methodology that embeds the information of the infeasible points into the 
evaluation function. 
Based on the above analysis, our major concern in this chapter was how to design a linear 
fitness function based on the general penalty function so as to fast evaluate candidate 
solutions, regardless of the design variables’ dimensions of solving the complex 
optimization problems. The major advantage of linear function is their simplicity and 
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computational attractiveness. The chapter starts with the review that we have a briefly 
review for various evolutionary approaches in the last years. In the sequel we will focus on 
this compression process, in which search space of design variables will be compressed into 
2-dimensional performance space and it is possible to fast discriminate ‘good’ solutions 
from candidate solutions, regardless of the complexity of original space. In addition, our 
method combines two improved operators in reproduction phase, i.e., crossover and 
mutation. Simulation results over a comprehensive set of benchmark functions show that 
our method is feasible and effective. Meanwhile, it can provide good performance in terms 
of uniformity and diversity of solutions. 

2. Description of EA 

Evolutionary algorithm is a random search based optimization technique. Various 
applications have shown that when problems are formulated properly, EA can give good 
results with reasonable time complexity. EA mimics the process of natural selection and 
starts with artificial individuals (represented by a population of “chromosomes”). EA tries 
to evolve those individuals that are fitter and, by applying genetic operators (crossover and 
mutation), it attempts to produce descendants that are better than their parents in terms of a 
certain quantitative measure. In spite of their diversity, most of them are based on the same 
iterative procedure. 
As a heuristic population-based method, EA is really like a “black box”, completely 
independent from the characteristic of the problem. Fig.1 presents the classical EA flow 
chart. An initial population of individuals is generated randomly. Each of these individuals 
is evaluated in terms of a certain “fitness function” that can “guide” EA to the desired 
region of the search space. EA’s three genetic operators (Selection, Crossover and Mutation) 
are the main components to improve the EA’s behavior. Selection is the process that mimics 
the “survival of the fittest” principle in the biological theory of evolution. Firstly, the 
selection operator assures that individuals are copied to the next generation with a 
probability associated to their fitness values. Although selection is implemented in a EA as a 
policy for determining the best candidate individuals that will be presented in the next 
generation with a higher probability, it does not search the space further, because it just 
copies the previous candidate individuals. The search results from the creation of new 
individuals from old ones. Secondly, the crossover operator is implemented in EA by 
exchanging chromosome segments between two randomly selected chromosomes.  
 

 

Fig. 1. Evolutioary algorithm flow chart 

yes

no

Initialization

Evaluation

Criterion 
Verified？

Selection

Crossover

MutationEnd

Star

www.intechopen.com



Evolutionary Algorithms 

 

30 

Crossover process provides a mechanism to allow new chromosomes to inherit the 
properties from old ones. Thirdly, mutation is a random perturbation to one or more genes 
in the chromosomes during evolutionary process. The purpose of the mutation operator is 
to provide a mechanism to avoid local optima by exploring the new regions of the search 
space, which selection and crossover could not fully guarantee. The searching process 
terminates when the predefined criterion is satisfied. 

3. Related concepts of MOP 

Almost all real world engineering designing problems are characterized by the presence of 

several conflicting and/or cooperating objectives, as opposed to having a single objective, 

and result in a set of non-dominated solutions. This set, generally called Pareto front, helps 

the decision-maker to identify the best compromise solutions by eliminating inferior ones 

and articulating his preference pertaining to the different objectives once he has an 

additional knowledge of the Pareto frontier. The term MOP is used to broadly classify 

problems with more than one objective. Without loss of generality, a general multi-objective 

optimization problem can be expressed in the following equations: 

 1 2min ( ) ( ( ), ( ),..., ( ))T
kF x f x f x f x=  (1) 

 1 2. . ( ) ( ( ), ( ),..., ( )) 0T
ls t G x g x g x g x= ≤  (2) 

 1 2( ) ( ( ), ( ),..., ( )) 0l l mH x h x h x h x+ += =  (3) 

 

where k is the number of objective functions, l and m-l are the number of unequal and equal 

constraints respectively, and the vector G(x) represents constraints that probably are easily 

handled explicitly, such as lower and upper bounds on the variables, x=(x1,x2,…,xn)∈ S ⊆Ω. 

n is the number of designing variables. Ω and S are the searching space of objective function 

and the feasible searching space, respectively. 

The Pareto optimal concept is initially introduced by Vilfredo Pareto in the 19th century, 

and the concept has already been widely used in MOP to aid designers in their decision-

making processes. In this paper, we assume that all objectives are to be minimized for clarity 

purpose since maximization of any maximization of any ( )f− i . The  Pareto optimal concept 

is stated as follows[35,36]: 
Definition 1   order relation between design vectors. Let  x and x’ be two designing variables. 
The dominance relations in a minimization problem are: 

x dominates x’ (x≺ x’), iff  ft(x) < ft(x’) and ft’(x) ≯  ft’(x’), ∀ t’≠ t∈  [1, k]. 

x are incomparable with x’ (x～x’),iff ft(x) < ft(x’) and ft’(x) ＞ ft’(x’), t’≠t∈  [1, k]. 

Definition 2  Pareto-optimal solution. A solution x is called Pareto-optimal if there is no 
other x’ ∈ F, such that f(x’) < f(x). All the Pareto-optimal solutions define the Pareto-optimal 
set. 
Definition  3   Non-dominated solution.  A solution x∈ S is non-dominated with respect to a 

set x’ ∈ S  if and only if ∃/  x’ ∈ S, verifying that x’ ≺ x. 

Definition  4   Non-dominated set. Given a set of solutions S’, such that S’ ∈ S and Y’=f(S’), 
the function h(S’) returns the set of non-dominated solutions from S’: 
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h(S’)={∀ x∈ S’ | x is non-dominated by any other z’, z’ ∈ S’ } 

Fig.2 graphically describes the process of mapping from designing space to objective space 
with objectives (f1 and f2), and the Pareto-optimal set are shown as the Pareto optimal front. 
All of the Pareto solutions in designing space are equally important and all are the global 
optimal solutions. The decision-maker articulates his preference pertaining to the different 
objectives once he has knowledge of the Pareto front. 
 

Objective space 
Design space 

Pareto front 

S

x2                                                  f2

x1                                     f1  

Fig. 2. Mapping from design space to objective space. 

4. The linear fitness function (LFF) 

A very popular approach for handling complex constraints by using EAs is to adopt penalty 
function such as [37-39].  When handling individuals violating any one of the constraints, if  
the added penalties do not depend on the current iteration number and remain constant 
during the entire evolutionary process, then the penalty function is called static penalty 
function, and its penalties are weighted sum of all constraint violations. If, alternatively, the 
current iteration number is considered while determining the penalties, then the penalty 
function is called dynamic penalty function. In this paper, we adopt static penalty function 
as the following manner: 

 
max(0, ( )), 1

( )
| ( )|, 1

j

j
j

g x j q
p x

h x l j m

⎧ ≤ ≤⎪= ⎨ + ≤ ≤⎪⎩

 (4) 

where ( )jp x  denotes the degree of individual violating constraints. The generally fitness 
function for evaluating individuals can be defined as below: 

 
1

( ) ( ) ( )
m

j
j

fitness x f x r p x
=

= + ×∑  (5) 

1

( ) ( ) ( ),
k

T
i i

i

f x w f x w F x
=

= =∑  

where f(x) is a convex combination of the different objectives in that the multi-objective 
problem is converted into a scalar optimization one. The weighted value wi  is chosen such 
that wi ≥ 0, i=1,…,n, and 

1

1
k

i
i

w
=

=∑ . 
One of existing difficulties in penalty function is mainly that parameter r is not easily to be 
selected and controlled [37]. For many MOP, we note that the searching space of the design 
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vector is always situated in n-dimension space (n≥2). In terms of human imagination of 
space, if we can attempt to give a good method to transform n-dimension space into low 
dimensional space for MOP since the dimensions below three are geometrically prone to 
human understanding. Therefore, we give the following transforming procedure. 

1 2
1

( ), ( )
m

i
i

y f x y p x
=

= = ∑ . If we can make an appropriate mapping between vector  1 2[ , ]y y y=  

and x , then fitness(x) can be represented as a linear fitness function: 

 
2

1

( ) ,T
ii

i

fitness x a x a x
=

= = ∑  (6) 

11 1

2 22

1
,

a x y
a x y

a r yx

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥= = = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

 

without loss of generality, the variable x is still denoted by x. x is a point in 2-dimension 
space. 0Ta y =  ascertains a hyperplane via origin, then the entire search space is divided into 
two subspaces with 2-dimension respectively. a is a normal vector in hyperplane (see Fig.3). 
The division of initial searching space with n-dimension is equivalent to the above results, 
and the searching process is focused on 1Φ . A mapping process is described between 
feasible region S and corresponding abnormity region 3Φ  while any point x in 2-dimension 
space is required to satisfy one of the following expressions: 

 
1

2

0, ,

( ) 0, ,

0, ,

x

fitness x x

x H

> ∈Φ⎧
⎪< ∈Φ⎨
⎪ = ∈⎩

 (7) 

Further analysis shows that linear fitness function may be regarded as an algebraic 
measurement from point x to the hyperplane. 
 

 

Fig. 3. Transformation of searching space. 

By means of above anaysis, we give a new linear fitness function to evaluate individuals: 

X1 

X2

r 

α

Φ1：fitness>0

Φ2：fitness<0 
 

w

Φ3

 

H：fitness=0
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 ( )
|| ||

Ta x
fitness x

a
=  (8) 

While evaluating new individuals we may directly use formula (8) without considering the 
feasibility of individual. It is very convenient to identify the good or bad individuals from 
population according to corresponding fitness values. 

5. Evolutionary operators 

In conventional EAs, the basic operators are selection and mutation. The selection assigns 
greater probabilities to the fittest individuals according to its fitness. Crossover is the 
exchange of information between different individuals, and it is the principal process in 
generating new individuals. Mutation is a security factor to avoid entrapment at any other 
point when the population is completely converged. The parents undergo crossover and 
mutation to generate two new children, and each individual in the population evolve to get 
higher generation by generation. 

5.1 Crossover operator 

The crossover operator based on a modified self-adaptive density adopts two parents to 
generate children [40]. The procedure is formulated as follows: 
First, two individuals are selected using a random selection procedure to generate new 
individuals. The two parents can be expressed as X=(x1, x2, …, xd ) and Y=(y1,y2,…,yd), where 
xi < yi.  

 [ , ] [ , ]
2 2

i i i i
ii i i

x y y x
x y x y

− −
+ + =  (9) 

Here, we give a density function in (10). It depends on two parameters a and β, and a, 

β∈ [0,1].We give a cumulated distribution function in (11) and ,0 1.
i ix yG≤ ≤ It ascertains 

parameter iη in children by (12). 1
,i ix yG− is the inverse function of ,i ix yG in (12). 

 ,, ( , , ) : [ ]
i i

ix y i
g x x y rα β α β× × →  (10) 

 , ( , , ) : [ , ] [0,1]
i i

ix y i
G x x yα β α β× × →  (11) 

 1
, ( , , )

i ii x yG rη α β−=  (12) 

The experimental results show that density crossover operator is good at finding optimal 
solutions and enlarging the search region. 

5.2 Mutation operator 

The neighborhood mutation operator is introduced in Ref.[41]. Individual mutation is in its 
neighborhood space by using x’=x+a×r, where x’ and x are child and parent respectively, a is 
a uniformly random number in [-1,1], and r is the radius of neighborhood space 
dynamically compressed  using r=r×cr, where cr=(1+0.1b×c)-t and cr is the compression ratio, 
b and c are random integer between 0 and 9, t is the current generation. 
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Although the neighborhood mutation operator evenly scans the whole neighborhood space 
of individual at the beginning, the exploration becomes localized with the generation 
increasing. In order to overcome this deficiency, the following improvements are made on 

the neighborhood mutation operator. Give a binary number δ , add the following part. 

 
' '

'

'

( , ), 0

( , ), 1

i
new

i i

x t b x if
x

x t x a if

λ δ

λ δ

⎧ + − =⎪= ⎨
− − =⎪⎩

 (13) 

 max( , ) (1 ), (1 / )t r t nγ βλ τ τ γ= − = −  

where r is a random number in [0,1], nmax and β denote total iterative number and random 
number respectively. The added part uniformly explores the whole searching space during 
the execution of the algorithm. Hence, it may overcome the deficiency of the neighborhood 
mutation operator. By integrating the above two parts, not only the abilities of the global 
search and local exploration are balanced, but also the diversity of the population increases. 
As a result, the premature convergence is avoided in a way. The experimental results show 
that the improved mutation operator is very feasible for the known searching space and 
insure '

newx  is a random number in [ai, bi]. 

6. Numerical experiments 

6.1 Linear evolutionary algorithm 

The LEA has a different design from other variants of EAs. It does not use any information 
from the dominated individuals. In each generation, we only preserve nondominated 
individuals. The number of generated children is a fixed constant η . However, we limit the 
number of the nondominated individuals using a nearest neighborhood distance function 
(NNDF) in Ref.[41], which can help disperse the non-dominated individuals. The LEA is 
described as follows: 
Step 1. (Initialization). Generate an initial population containing Npop individuals where 

Npop is the number of individuals in each population. 
Step 2. (Evaluation). Calculate the fitness values of the generated individuals using the 

LFF. Update a tentative set of non-dominated solutions. The number of non-
dominated solutions is und. 

Step 3. (Selection). If und  > umax, select umax individuals using NNDF, then und = umax. 
Step 4. (Crossover and mutation). Generate the η  offspring using crossover based on 

density and modified neighbourhood space mutation. 
Step 5. (Termination test). If a prespecified stopping condition is not satisfied, return to 

step 2. 
In step 3, we control the number of non-dominated individuals so as not to exceed a 

maximum number, umax. Hence the generated offspring are under control. To filter better 

individuals from the tentative set, we evenly distribute the individuals on the Pareto front 

using NNDF. 

Consider the entire complexity of one iteration of the proposed algorithm, the overall 
complexities of the algorithm are focused on evaluation and selection. Assuming the solved 
optimization problems totally have m decision variables, and population size is n. The basic 
operations and their worst-case complexities are as follows: 
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1. Evaluation in step 2 o(2n(n+m)). 
2. Selection in step 3 o(n2). 
The overall complexity of the algorithm is o(2n(n+m)), which is governed by evaluation in 
step2 (including linear mapping for decision variables from n-dimension to 2-dimension 
and updating a tentative set of non-dominated solutions). 

6.2 Simulation results 

Simulations are performed in MATLAB with a 2 GHZ Pentium PC. In our study, five 
numerical constrained optimization problems were divided into two groups (G1 and G2) 
were applied to test the LEA. These benchmark problems are taken from Ref.[37] and [41]. 
G1 only contains inequality constraints in test problems which involving two designing 
variables. G2 contains inequality and equality constraints of single objective optimization 
problems which have no limitation on the number of designing variables. For all conducted 
experiments, four parameters of the LEA, namely, population size (Popt), iterative number 
(NG), Crossover probability (CP) and mutation probability (MP) are set 200, 300, 0.9, 0.05. 
All problems are repeated for 200 in the same environment.  

G1: Test Problem 1 BNH 

2 2 2 2
1 1 2 1 1 2 2 1 2min ( ) ( ( ), ( )); ( ) 4 4 ; ( ) ( 5) ( 5)F x f x f x f x x x f x x x= = + = − + −  

. .s t 2 2 2 2 2
1 1 2 2 1( ) ( 5) 25; ( ) ( 8) ( 3) 7C x x x C x x x= − + ≤ = − + + ≥  

 1 20 5,0 3x x≤ ≤ ≤ ≤ .  

Test problem 2 TNK 

2 1 2 1 1 2 2min ( ) ( ( ), ( )); ( ) ; ( ) ;F x f x f x f x x f x x= = =  

. .s t 2 2
1 1 2 1 2( ) 0.1cos(16arctan( / )) 1 0;C x x x x x= + − − ≥  

        2 2
2 1 2( ) ( 0.5) ( 0.5) 0.5C x x x= − + − ≤ ; 

        1 20 ,0x xπ π≤ ≤ ≤ ≤ . 

Test problem 3 Constr-Er 

3 1 2 1 1 2 2 1min ( ) ( ( ), ( )); ( ) ; ( ) (1 ) / ;F x f x f x f x x f x x x= = = +  

. .s t 1 1 2 2 1 2( ) 9 6 0; ( ) 9 1 0;C x x x C x x x= + − ≥ = − − ≥   

                 1 20.1 1,0 5x x≤ ≤ ≤ ≤ . 

Here, the circular symbols represent the results obtained using NSGA-II or LEA in six 
figures. For case 1, BNH is a two-objective function problem with a convex Pareto front and 
constrained conditions are two inequalities. LEA gives a very good approximation of the 
Pareto front by obtaining evenly distributed solutions, as shown in Fig.5. However, Fig.4 
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shows that although a number of optimal solutions are obtained using NSGA-II, in terms of 
diversity of solutions, these solutions are not evenly spread out over the entire front. There 
exists some disconnected spaces on Pareto front in Fig.4. The Pareto front consists of 

* *
1 2x x= ∈ [0,3], *

1x ∈ [3,5] and *
2x =3. For case 2, constraint conditions are also two 

inequalities’ state. The Pareto front is well predicted, and a number of optimal solutions 
obtained are spread out over the entire front using the LEA in Fig.7. Decision makers make 
a final choice of optimal solution according to real conditions from Pareto optimal set. But 
result of Fig.6 shows that we probably are not able to well predict the three disconnected 
curves. For case 3, it is the two-objective function problem of Constr-Ex with two-
dimensional curve. Fig.9 shows the predicted Pareto front in the two-dimensional objective 
space obtained by the LEA. The method can capture the distinct solution along this front. 
Fig.8 shows that comparative method can performs well elsewhere along the Pareto front. 
We adopt some performance measures described in [42] so as to obtain more quantitative 
measures of algorithm performances. These performance metrics are generational distance 
and the diversity metric. The performance of algorithm is measured both in terms of the 
proximity to the true Pareto front that is achieved as well as in terms of the diversity of the 
optimal solutions. The means and variance of these measures are evaluated by conducting 
20 distinct runs of each simulation. The results are tabulated in table 1. From  table 1, we can 
see that the LEA has better convergence performance than NSGA-II because it is obvious 
that the generational distance metric is larger than the later, and diversity metric is also 
larger using NSGA-II. The LEA is an effective and robust method.  
 

 

Fig. 4. Pareto front on BNH using NSGA-II      Fig. 5. Pareto front on BNH using LEA 

 

 

Fig. 6. Pareto front on TNK using NSGA-II      Fig. 7. Pareto front on TNK using LEA 

www.intechopen.com



Linear Evolutionary Algorithm 

 

37 

 

Fig. 8. Pareto front on CE using NSGA-II         Fig. 9. Pareto front on CE using LEA 

 

Generational distance Diversity 
Test problems 

Mean Variance Mean Variance 

0.0032356 0.0000009 0.4516783 0.00156753 
BNH 

0.0026733 0.0000005 0.4356745 0.00107867 

0.0051289 0.0000012 0.2389783 0.00825676 
TNK 

0.0050125 0.0000011 0.2337892 0.77867826 

0.0043216 0.0000011 0.3567882 0.00578933 
CE 

 

0.0040102 0.0000010 

 

0.3389563 0.00623124 

Table 1. The results of mean and variance on test problems using NSGA-II and LEA 
respectively. 
 

G2: Test Problem 2  TP1 

3 3
1 1 2 2min ( ) 3 0.000001 2 (0.000002 / 3)g x x x x x= + + +  

. .s t  4 3 4 30.55 0, 0.55 0x x x x− + ≥ − + + ≥ ； 

3 4 11000sin( 0.25) 1000sin( 0.25) 894.8 0;x x x− − + − − + − =  

3 3 4 21000sin( 0.25) 1000sin( 0.25) 894.8 0;x x x x− + − − + − =

4 4 31000sin( 0.25) 1000sin( 0.25) 1294.8 0x x x− + − − + =  

0 1200( 1,2)ix i≤ ≤ = ； 055 0.55( 3,4)ix i≤ ≤ = . 

Test Problem 2  TP2 

1 2 3 4 5min ( ) x x x x xg x e=  

. .s t 2 2 2 2 2
1 2 3 4 5 10 0x x x x x+ + + + − = ; 

3 3
2 3 4 5 1 25 0, 1 0x x x x x x− = + + = ; 

2.3 2.3( 1,2)ix i− ≤ ≤ = ； 3.2 3.2( 3,4,5)ix i− ≤ ≤ = . 
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Two test problems in second group contain equality and inequality’s constraints that are 
tested for single objective optimization problems. In many real-world optimization 
problems, optimal solutions of them are obtained by transforming MOP into single objective 
optimization. Thus, the research of single objective optimization is also very improtant in 
engineering application areas. For TP1, we find total optimal solutions for 25, 
(668.94675327911,  1013.10377656821, 0.10773654866, 0.39654576851). Distance of optimal 
solution is 2.3323246783310e-13, which is corresponding to optimal value 5198.5467. For test 
problems 2, we find total optimal solutions for 21, x = ( -1.77365745561,1.45675698761,-
1.5678457772,0.66755656893,-0.75778765788), which is corresponding to the optimal value 
0.055894567. The mean and worst values of solutions are formulated for two test problems 
in Table 2. 
For TP1 and TP2, results of the first row are obtained using LEA, similarly, the second row 
takes a Pareto strength evolutionary algorithm [37] (denoted by ZW). The third row means 
results of a random sorting [43] (denoted by RY). From Table 2, we can see that the LEA 
outperforms other two algorithms in terms of experimental data involving the best value, 
mean and the worst value, as demonstrate the LEA is a robust algorithm with generality 
and effectivity. 
 

Problems Best Mean Worst 

LEA 5126.4266 5126.5461 5126.9586 
ZW 5126.49811 5126.52654 5127.15641 TP1 

RY 5126.497 5128.881 5142.472 
LEA 0.053945563 0.053999775 0.054993677 
ZW 0.053949831 0.053950257 0.053972292 TP2 

RY 0.053957 0.057006 0.216915 

Table 2. Comparison among LEA(new algorithm), ZW(in  Ref.[27]) and RY(in Ref.[33]) (40 
independent run) 

7. Conclusion 

In this paper, we propose an approach of using the LEA to optimize MOP, which finds the 
optimal solutions using the method of transforming the search space with high dimensions 
into low dimensional space. Numerical experiments show that the LEA performed well in 
the problems of two groups in terms of the quality of the solutions found. Moreover, the 
LEA is also a fast and robust method. A future work aims to validate this new optimization 
method on real-life engineering optimiztion problems (e.g. issued from mechanical 
engineering and power systems). 
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